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Abstract—We introduce the concepts of Poisson boundedness and partial Poisson boundedness
for a solution of a differential system. These properties mean that the solution or, respectively,
its projection onto a given subspace is contained in some ball for the values of an independent
variable belonging to countably many intervals converging to infinity. Based on the method of
Lyapunov vector functions and the Krasnosel’skii canonical domain method, sufficient conditions
are obtained for the existence of such solutions.
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The foundations of the theory of stability of motion were laid in the classical monograph
by A.M. Lyapunov [1], in which, in particular, the Lyapunov function method was developed for
studying various types of stability. Numerous applications of the Lyapunov function method to
problems of the qualitative theory of differential equations and mechanics are given in the classical
papers [2–5] and many others.

We present results on the application and development of the method of Lyapunov functions that
are directly related to the issues considered in this paper. Yoshizawa [5] considered applications of
the Lyapunov function method to the study of the boundedness property of solutions of systems of
differential equations. Rumyantsev and Oziraner [6, pp. 223–228] developed the theory of partial
(with respect to part of the variables) boundedness of solutions on the basis of the method of
Lyapunov functions. Matrosov [7, pp. 282–348] presented a method of Lyapunov vector functions
that generalizes the method of Lyapunov functions and provides much greater opportunities for
studying various types of boundedness of solutions in comparison with the latter. Krasnosel’skii [8]
(see also [9]) developed the canonical domain method and the director function method and used
them to derive sufficient conditions for the existence of solutions bounded on the entire real line
for an arbitrary nonlinear system [8, pp. 178–206].

On the other hand, the paper [10] commenced a study of new types of boundedness of solutions
and, in particular, their Poisson boundedness. This concept is characterized by the fact that the
solution, together with solutions close to it at some point in time, may not be contained in some ball
of the phase space for all values of the independent variable but possess the property of returning
to this ball a countable number of times within the same time intervals. Note that the concept
of uniform Poisson boundedness of a solution and the concept of positive Poisson stability of the
trajectory of motion of a dynamical system (see, e.g., [11]) are dual to each other in the sense of
rearranging some universality and existence quantifiers in the corresponding definitions. The study
of the conditions for the existence of Poisson stable solutions of systems of differential equations
was carried out in the monographs [12, pp. 199–224; 13, pp. 105–130]. In the cited paper [10], in
particular, sufficient conditions were obtained under which all solutions of the system are uniformly
bounded in the sense of Poisson.

In the present paper, we introduce the concept of Poisson boundedness of a solution of a system
that, in contrast to the concept of uniform Poisson boundedness [10], does not impose any restric-
tions on the behavior of solutions close to the given solution. Sufficient conditions for the existence
of Poisson bounded solutions are obtained on the basis of the method of Lyapunov vector functions
and the Krasnosel’skii canonical domain method. The concept of partial Poisson boundedness of
a solution of the system is also introduced. Based of the method of Lyapunov vector functions and
the Krasnosel’skii canonical domain method, we establish conditions sufficient for the existence of
solutions partially bounded in the sense of Poisson. Now let us proceed to rigorous definitions and
statements.
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Suppose we are given an arbitrary system of differential equations of n variables

dx

dt
= F (t, x), t ∈ R+ ≡ [0,+∞), x ∈ Rn, (1)

where the vector function F (t, x) = (F1(t, x), . . . , Fn(t, x))T is continuous in R+ × Rn. We also
assume that F (t, x) satisfies the Lipschitz condition with respect to variable x, and in addition, we
require the extendability of solutions of system (1) to the entire time half-axis R+.

In what follows, ‖ · ‖ stands for the Euclidean norm on Rn. For a solution x = x(t) of system (1)
issuing from a point (t0, x0) ∈ R+ × Rn, we use the notation x = x(t, t0, x0). For each t0 ∈ R+,
by R+(t0) we denote the set {t ∈ R : t ≥ t0}. In the sequel, any nonnegative monotone increasing
numerical sequence τ = {τi}i≥1 such that lim

i→∞
τi = +∞ will be called a P-sequence, and for

each P-sequence τ = {τi}i≥1, by M(τ) we denote the set
⋃∞
i=1[τ2i−1, τ2i].

Recall [5] that a solution x = x(t, t0, x0) of system (1) is said to be bounded if there exists a
number β > 0 such that the condition ‖x(t, t0, x0)‖ ≤ β is satisfied for all t ∈ R+(t0).

Definition 1. A solution x = x(t, t0, x0) of system (1) is said to be Poisson bounded if there
exists a P-sequence τ = {τi}i≥1, where t0 ∈ M(τ), and a number β > 0 such that the condi-
tion ‖x(t, t0, x0)‖ ≤ β is satisfied for all t ∈ R+(t0) ∩M(τ).

Speaking the geometric language, Definition 1 implies that a solution starting at some point in
time from within a ball of radius β > 0 with center at the origin will return to this ball countably
many times. It is obvious that if a solution of system (1) is bounded, then this solution will also be
bounded in the sense of Poisson.

A simple example of a system with solutions that are bounded in the sense of Poisson but are
not, generally speaking, bounded is the system [14]

ẋ1 =
e−t − cos t− f(t, x1, x2)

2(1 + sin t+ e−t)
(x1 + x2),

ẋ2 =
cos t− e−t + f(t, x1, x2)

2(1 + sin t+ e−t)
(x1 − x2),

where t ∈ R+, (x1, x2) ∈ R2 and f(t, x1, x2) is any nonnegative continuous function. For each
solution of this system, the P-sequence from Definition 1 is the sequence τ = {τi}i≥1, where τ1 = 0
and τ2 < τ3 < . . . < τi < . . . is the sequence of all roots of the equation sin t+ e−t = 0.

Following [6], recall some information on Lyapunov vector functions that will be needed below.
Suppose that we are given a continuously differentiable vector function

V (t, x) = (V1(t, x), . . . , Vk(t, x))T, k ≥ 1, (t, x) ∈ R+ × Rn.

The derivative of this vector function according to system (1) is defined by the relation
V̇ (t, x) = (V̇1(t, x), . . . , V̇k(t, x))T, where V̇i(t, x) is the derivative according to system (1) of the
function Vi(t, x), 1 ≤ i ≤ k. In what follows, for vectors ξ = (ξ1, . . . , ξk)

T and η = (η1, . . . , ηk)
T ∈ Rk

we use the notation ξ ≤ η if ξi ≤ ηi for each 1 ≤ i ≤ k. Suppose that we are also given a continuous
vector function

f(t, ξ) = (f1(t, ξ), . . . , fk(t, ξ))
T, (t, ξ) ∈ R+ × Rk.

In what follows, we use the notation f(t, ξ) ∈ W if f(t, ξ) satisfies the Ważewski condition, which
requires that for each 1 ≤ s ≤ k the function fs(t, ξ) does not decrease in the variables ξ1, . . . ,
ξs−1, ξs+1, . . . , ξk; i.e., the fact that ξi ≤ ηi, 1 ≤ i ≤ k, i 6= s, and ξs = ηs implies the inequal-
ity fs(t, ξ) ≤ fs(t, η). It is obvious that the condition f(t, ξ) ∈W is always satisfied for k = 1.

A continuously differentiable vector function V (t, x) ≥ 0 (0 ∈ Rk) and a system

dξ

dt
= f(t, ξ), f(t, ξ) ∈W, (2)

are called, respectively, a Lyapunov vector function and a comparison system for system (1) if the
following condition is satisfied:

V̇ (t, x) ≤ f(t, V (t, x)).
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Hereinafter, we always assume that the right-hand side of system (2) satisfies the Lipschitz condition
with respect to ξ. Since one has the uniqueness of solution of the Cauchy problem for system (2), it
follows by the Ważewski theorem (see, e.g., [2, p. 236]) that for each point (t0, x0) ∈ R+×Rn the solu-
tion x(t, t0, x0) of system (1), the Lyapunov vector function V (t, x), and the solution ξ(t, t0, V (t0, x0))
of the comparison system (2) for system (1) are related, for all t ≥ t0, by the inequality

V (t, x(t, t0, x0)) ≤ ξ(t, t0, V (t0, x0)). (3)

Following [8] (see also [9]), recall that a Krasnosel’skii canonical domain in Rk is any compact
subset Ω ⊂ Rk that has nonempty interior and satisfies the conditions

1. Ω is defined by finitely many inequalities

Φi(ξ) ≤ 0, ξ ∈ Rk, 1 ≤ i ≤ r, (4)

where the functions Φi(ξ) are continuously differentiable.
2. If one has the equality Φi0(ξ0) = 0 at a point ξ0 of the boundary ∂Ω of the set Ω, then

grad Φi0(ξ0) 6= 0.
It should be noted that, unlike [8] and [9], we do not presume the convexity of the domain Ω,

because we do not consider here the issues of existence of periodic solutions.
In the sequel, for each Krasnosel’skii canonical domain Ω in Rk defined by inequalities (4) and for

each point ξ ∈ ∂Ω, by α(ξ) we will denote the set of those indices i for which the condition Φi(ξ) = 0
is satisfied.

Let us state and prove a condition sufficient for the existence of Poisson bounded solutions of
system (1) in terms of Krasnosel’skii canonical domains and Lyapunov vector functions.

Theorem 1. Assume that for system (1) there exists a P-sequence τ = {τi}i≥1 , a nonincreas-
ing function b : R+ → R+ for which b(r) → +∞ as r → +∞, and a Lyapunov vector func-
tion V (t, x) = (V1(t, x), . . . , Vk(t, x))T such that for all (t, x) ∈M(τ)× Rn the condition

b(‖x‖) ≤
k∑
i=1

Vi(t, x) (5)

is satisfied. In addition, let Ω be a Krasnosel’skii canonical domain in Rk defined by inequalities (4)
for which

D = {(t, x) ∈ R+ × Rn : Φi(V (t, x)) ≤ 0, 1 ≤ i ≤ r} 6= ∅,

and let the right-hand side f(t, ξ) of the comparison system (2) for system (1) satisfy the inequality

(grad Φi(ξ), f(t, ξ)) ≤ 0 (6)

for any (t, ξ) ∈ R+ × ∂Ω and i ∈ α(ξ). Then the solution x(t, t0, x0) of system (1) is Poisson
bounded for each point (t0, x0) ∈ D.

Proof. First, let us show that each solution ξ(t, t0, ξ0) of the comparison system (2) for sys-
tem (1), where (t0, ξ0) ∈ R+ × Ω, is bounded. For system (2), consider the system

dξ

dt
= f(t, ξ) + γ(s0 − ξ) (7)

with a real parameter γ > 0, where s0 is any fixed interior point in Ω. The geometrically obvious
inequality (grad Φi(ξ), s0 − ξ) < 0 for ξ ∈ ∂Ω, i ∈ α(ξ), as well as condition (6), implies that the
right-hand side of system (7) satisfies the inequality

(grad Φi(ξ), f(t, ξ) + γ(s0 − ξ)) < 0 (8)

for all (t, ξ) ∈ R+ × ∂Ω and i ∈ α(ξ).
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Choose any point (t0, ξ0) ∈ R+ × Ω and for each fixed γ > 0 consider the solution ξγ(t, t0, ξ0)
of system (7). Let us show that for all t ≥ t0 one has the inclusion ξγ(t, t0, ξ0) ∈ Ω. Assume the
contrary: for the solution ξγ(t, t0, ξ0) there exists a number t′γ > t0 such that ξγ(t′γ , t0, ξ0) 6∈ Ω.
It follows from this assumption, with allowance for the continuity of the solution ξγ(t, t0, ξ0) with
respect to t and for the compactness of the set Ω, that there exists a t0 ≤ tγ < t′γ such that the
relations ξγ(tγ , t0, ξ0) ∈ Ω and ξγ(t, t0, ξ0) 6∈ Ω hold for the values of t > tγ sufficiently close to tγ .
It is obvious that ξγ(tγ , t0, ξ0) ∈ ∂Ω, and consequently, we have

Φi(ξγ(tγ , t0, ξ0)) = 0 for i ∈ α(ξγ(tγ , t0, ξ0)) and
Φi(ξγ(tγ , t0, ξ0)) < 0 for i 6∈ α(ξγ(tγ , t0, ξ0)).

Now, using condition (8), we obtain the inequality

Φi(ξγ(t, t0, ξ0))

dt

∣∣∣∣
t=tγ

< 0, i ∈ α(ξγ(tγ , t0, ξ0)),

which implies that Φi(ξγ(t, t0, ξ0)) < 0, i ∈ α(ξγ(tγ , t0, ξ0)), for the values of t > tγ sufficiently close
to tγ . For the same values of t > tγ , one can assume that Φi(ξγ(t, t0, ξ0)) < 0 for i 6∈ α(ξγ(tγ , t0, ξ0)),
because the functions Φi(ξ) are continuous. Thus, for the values of t > tγ sufficiently close to tγ
one has the inequalities

Φi(ξγ(t, t0, ξ0)) < 0, 1 ≤ i ≤ r;

i.e., ξγ(t, t0, ξ0) ∈ Ω. We have arrived at a contradiction with the fact that ξγ(t, t0, ξ0) 6∈ Ω for the
values of t > tγ sufficiently close to tγ . The above assumption is, therefore, wrong, and consequently,
the inclusion ξγ(t, t0, ξ0) ∈ Ω is satisfied with all t ≥ t0 for the above-indicated solution ξγ(t, t0, ξ0)
of system (7).

Now consider system (7) for γ ≥ 0 and its solution ξ0(t, t0, ξ0) for γ = 0, i.e., the solution
of system (2), which we will denote from now on by ξ(t, t0, ξ0). Let us show that ξ(t, t0, ξ0) ∈ Ω
for t ≥ t0. To this end, we choose any numerical sequence {γi}i≥1, γi > 0, converging to zero. Since
system (7), whose right-hand side is considered with the parameter γ ≥ 0, satisfies the conditions of
the theorem on the continuous dependence of solutions on a parameter (see, e.g., [15, pp. 109–110]),
it follows that for each fixed number t ≥ t0 the sequence (ξγi(t, t0, ξ0))i≥1 of points in Rk converges
to the point ξ(t, t0, ξ0) ∈ Rk. It follows that the inclusion ξ(t, t0, ξ0) ∈ Ω is satisfied for the solu-
tion ξ(t, t0, ξ0) of system (2) with all t ≥ t0. Indeed, assume that one has the relation

ξ(τ, t0, ξ0) 6∈ Ω

for some τ > t0. Since the set Ω is closed and the sequence (ξγi(τ, t0, ξ0))i≥1 of points in Rk converges
to the point ξ(τ, t0, ξ0) 6∈ Ω, we conclude that ξγi(τ, t0, ξ0) 6∈ Ω for sufficiently large i. This contra-
dicts the fact that ξγi(τ, t0, ξ0) ∈ Ω for all i ≥ 1. Therefore, the above assumption is wrong, and
consequently, the considered solution ξ(t, t0, ξ0) of system (2) satisfies the condition ξ(t, t0, ξ0) ∈ Ω
for all t ≥ t0.

Since the set Ω is compact in Rk, we conclude that there exists a ball of radius α > 0 in Rk
with center the origin that contains Ω, and consequently, for all t ≥ t0 one has the inequal-
ity ‖ξ(t, t0, ξ0)‖ ≤ α.

We have thus shown that for each point (t0, ξ0) ∈ R+ × Ω the solution ξ(t, t0, ξ0) of the com-
parison system (2) for system (1) is bounded. Using this result, we can now show that for
each point (t0, x0) ∈ D the solution x(t, t0, x0) of system (1) is bounded in the sense of Pois-
son. Using condition (5) and inequality (3), for the solution x(t, t0, x0) of system (1) and the
solution ξ(t, t0, V (t0, x0)) of the comparison system (2) we obtain the inequalities

b(‖x(t, t0, x0)‖) ≤
k∑
i=1

Vi(t, x(t, t0, x0)) ≤
k∑
i=1

ξi(t, t0, V (t0, x0)),
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holding for all t ∈M(τ). Moreover, for each t ≥ 0 we have the obvious inequalities
k∑
i=1

ξi(t, t0, V (t0, x0)) ≤
k∑
i=1

|ξi(t, t0, V (t0, x0))| ≤ k‖ξ(t, t0, V (t0, x0))‖.

Since (t0, x0) ∈ D, we have V (t0, x0) ∈ Ω, and consequently, ‖ξ(t, t0, V (t0, x0))‖ ≤ α for all t ≥ t0.
Based on this, as well as the above inequalities, we conclude that the inequality b(‖x(t, t0, x0)‖) ≤ kα
holds for all t ∈ R+(t0) ∩ M(τ). Using the condition b(r) → ∞ as r → ∞ and the fact that
the number kα is fixed, we choose a number β > 0 such that kα ≤ b(β). In view of this, for
all t ∈ R+(t0) ∩M(τ) we obtain the inequality b(‖x(t, x0, t0)‖) ≤ b(β). Since the function b(r) is
nondecreasing, we see that the last inequality implies that ‖x(t, x0, t0)‖ ≤ β for all t ∈ R+(t0)∩M(τ).
We have thus shown that the solution x(t, t0, x0) of system (1) is bounded in the sense of Poisson
for each point (t0, x0) ∈ D. The proof of the theorem is complete.

In what follows, for each x = (x1, . . . , xn)T ∈ Rn, n ≥ 2, and any fixed 1 ≤ m < n we use the
notation x = (y, z), where y = (x1, . . . , xm)T ∈ Rm and z = (xm+1, . . . , xn)T ∈ Rn−m.

Recall [6] that a solutionx(t, t0, x0) of system (1) is said to be y-bounded if there exists a num-
ber β > 0 such that the condition ‖y(t, t0, x0)‖ ≤ β is satisfied for all t ∈ R+(t0).

Definition 2. A solution x = x(t, t0, x0) to system (1) is said to be y-bounded in the sense of
Poisson if there exists a P-sequence τ = {τi}i≥1, where t0 ∈ M(τ), and a number β > 0 such that
the condition ‖y(t, t0, x0)‖ ≤ β is satisfied for all t ∈ R+(t0) ∩M(τ).

It can readily be seen that if a solution of system (1) is y-bounded, then this solution is Pois-
son y-bounded.

In what follows, for each ξ = (ξ1, . . . , ξk)
T ∈ Rk and any fixed number 1 ≤ p ≤ k we will use the

notation ξ = (µ, ϑ), where µ = (ξ1, . . . , ξp)
T ∈ Rp and ϑ = (ξp+1, . . . , ξk)

T ∈ Rk−p.
The following assertion, which can be proved by analogy with Theorem 1, is a sufficient condition

for the existence of Poisson y-bounded solutions of system (1).

Theorem 2. Suppose that for system (1) there exists a P-sequence τ = {τi}i≥1 , a nonin-
creasing function b : R+ → R+ for which b(r) → +∞ as r → +∞, a Lyapunov vector func-
tion V (t, x) = (V1(t, x), . . . , Vk(t, x))T , and a number 1 ≤ p ≤ k such that the condition

b(‖y‖) ≤
p∑
i=1

Vi(t, x)

is satisfied for all (t, x) ∈M(τ)×Rn. In addition, assume that there exists a Krasnosel’skii canonical
domain Ω in Rp defined by inequalities (4) in which ξ ∈ Rk has been replaced by µ ∈ Rp , for which

Dµ = {(t, x) ∈ R+ × Rn : Φi(V
µ(t, x)) ≤ 0, 1 ≤ i ≤ r} 6= ∅,

where V µ(t, x) = (V1(t, x), . . . , Vp(t, x))T. Finally, let all solutions of the comparison system (2) for
system (1) be extendible to the half-axis R+ , and let the right-hand side f(t, ξ) of the comparison
system satisfy the inequality

(grad Φi(µ), fµ(t, ξ)) ≤ 0

for any (t, ξ) ∈ R+ × (∂Ω× Rk−p) and i ∈ α(µ), where fµ(t, ξ) = (f1(t, ξ), . . . , fp(t, ξ))
T. Then the

solution x(t, t0, x0) of system (1) is y-bounded in the sense of Poisson for each point (t0, x0) ∈ Dµ.
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