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Abstract—We consider families of n-dimensional (n ≥ 2) linear differential systems on the
time half-line with parameter belonging to a metric space. We obtain a complete description of
the Lyapunov irregularity coefficient as a function of the parameter for families whose depen-
dence on the parameter is continuous in the sense of uniform convergence on the time half-line.
As a corollary, we completely describe the parametric dependence of the Lyapunov irregularity
coefficient of a regular linear system with a linear parametric perturbation decaying at infinity
uniformly with respect to the parameter.
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1. INTRODUCTION. STATEMENT OF THE PROBLEM

For a positive integer n, let Mn be the class of linear differential systems

ẋ = A(t)x, x ∈ R
n, t ∈ R+ ≡ [0,+∞), (1)

whose coefficient matrix A(·) : R+ → R
n×n is piecewise continuous and bounded on the time half-

line R+. In what follows, we identify system (1) with its coefficient matrix and write A ∈ Mn.
For a system A ∈ Mn, let λ1(A) ≤ . . . ≤ λn(A) be its Lyapunov exponents [1, p. 561], and let
σL(A) be its Lyapunov irregularity coefficient [1, p. 563]; i.e.,

σL(A) =

n∑

i=1

λi(A)− lim
t→+∞

1

t

t∫

0

trA(τ) dτ,

where tr is the trace of a matrix. By virtue of the Lyapunov inequality [2, p. 72], the quantity σL(A)
is nonnegative.

The Lyapunov irregularity coefficient is one of the most important asymptotic characteristics
of systems in the class Mn. The condition σL(A) = 0 singles out the subclass Rn ⊂ Mn of
Lyapunov regular systems, historically the first class of systems for which the problem of conditional
stability by the first approximation has been proved to be solved in the affirmative [1, pp. 563–566].
Moreover, this coefficient is used to state sufficient conditions characterizing the response of a system
A ∈ Mn to exponentially decaying linear and higher-order infinitesimal nonlinear perturbations.
For example, the Lyapunov exponents of a system A are preserved under linear exponentially
decaying perturbations Q(·) satisfying the estimate [3] ‖Q(t)‖ ≤ C exp(−σt), t ∈ R+, with some
positive constants C and σ provided that σ > σL(A). (In particular, linear exponentially decaying
perturbations do not affect the Lyapunov exponents of regular systems.) If the order m > 1 of
a higher-order infinitesimal perturbation f(t, x) (‖f(t, x)‖ ≤ const‖x‖m, t ∈ R+) of a system A
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satisfies the estimate (m− 1)λn(A) + σL(A) < 0, then the trivial solution of the perturbed system
is stable (the Lyapunov–Massera theorem [1, pp. 577–579; 4]).

Along with the Lyapunov irregularity coefficient, the Perron σP(A) [5] and Grobman σG(A)
[6] irregularity coefficients are defined for a system A ∈ Mn as well (e.g., see [2, pp. 67, 73]
or [7, pp. 9–10]). For these coefficients, we have the inequalities 0 ≤ σP(A) ≤ σG(A) ≤ σL(A) ≤
nσP(A) [7, p. 13], which, as established in [8], determine all possible relations between these coeffi-
cients in the class Mn. It follows from the above inequalities that the vanishing of at least one of
these coefficients is equivalent to the Lyapunov regularity of the system A. The role of the Grobman
irregularity coefficient is quite similar to that of the Lyapunov irregularity coefficient. (In partic-
ular, the above assertions remain valid if we replace the quantity σL(A) appearing in them with
the quantity σG(A) not exceeding it.) This is far from being the case for the Perron irregularity
coefficient, and its properties have been studied to a much lesser extent (see [7, pp. 303–307]).

Let M be a metric space. Consider a family

ẋ = A(t, μ)x, x ∈ R
n, t ∈ R+, (2)

of linear differential systems depending on a parameter μ ∈ M such that the matrix-valued function
A(·, μ) : R+ → R

n×n on the time half-line R+ is continuous and bounded (by a constant depending
on μ) for each μ ∈ M . Therefore, for each μ ∈ M we obtain a linear differential system in the
family (2) with continuous coefficients bounded on the half-line. We denote the Lyapunov exponents
of this system by λ1(μ;A) ≤ . . . ≤ λn(μ;A) and its Lyapunov irregularity coefficient by σL(μ;A).

The family of matrix-valued mappings A(·, μ), μ ∈ M , is commonly considered under one of
the following two natural assumptions: this family is continuous in either (a) the compact-open
topology or (b) the uniform topology. Condition (a) is equivalent to saying that if a sequence
(μk)k∈N of points in M converges to a point μ0, then the sequence of functions A(·, μk) of the
variable t ≥ 0 converges to the function A(·, μ0) as k → +∞ uniformly on each closed interval of
the half-line R+, while condition (b) implies that the convergence is uniform on the entire time
half-line R+. We denote the classes of families (2) continuous in the above sense in the compact-
open topology and in the uniform topology by Cn(M) and Un(M), respectively. We obviously have
the inclusion Un(M) ⊂ Cn(M). In the sequel, we identify the family (2) with the matrix-valued
function A(·, ·) defining it and hence write A ∈ Cn(M) or A ∈ Un(M).

Along with the class Un(M), consider the subclass UZn
R(M) defined as follows. For a number

n ∈ N and a metric space M , by Zn(M) we denote the class of jointly continuous matrix-valued
functions Q(·, ·) : R+×M → R

n×n decaying to zero uniformly with respect to μ ∈ M (i.e., satisfying
the condition supμ∈M ‖Q(t, μ)‖ → 0 as t → +∞). The class UZn

R(M) consists of the families

ẋ = (B(t) +Q(t, μ))x, x ∈ R
n, t ∈ R+, (3)

where B ∈ Rn and Q ∈ Zn(M). We denote the coefficient matrix of the family (3) by A(t, μ) and,
as above, identify it with the family itself and write A ∈ UZn

R(M).
The aim of the present paper is to give a complete descriptive function-theoretic characterization

of each of the function classes

S[Un(M)] = {σL(· ;A) : A ∈ Un(M)} and S[UZn
R(M)] = {σL(· ;A) : A ∈ UZn

R(M)}

for any n ∈ N and any metric space M .

2. PRELIMINARIES ON DESCRIPTIVE SET THEORY
AND DESCRIPTIVE FUNCTION THEORY

To make the presentation self-contained, let us give the necessary definitions from descriptive
set theory and descriptive function theory [9].

Let f(·) be a real-valued function defined on a set M. For each r ∈ R, the Lebesgue set [f ≥ r]
of the function f(·) is defined to be the set [f ≥ r] = {t ∈ M : f(t) ≥ r}, i.e., the preimage of the
half-open interval [r,+∞) under the mapping f . A function g : M → R is called a majorant of
a function f : M → R if the inequality g(μ) ≥ f(μ) holds for all μ ∈ M.
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If M is a topological space, then its first three Borel classes of sets are known to be defined as
follows [9, p. 203]. The zero class consists of closed and open sets (their classes being denoted by F
and G, respectively). The first class consists of sets of the type Gδ and of the type Fσ (the Gδ- and
Fσ-sets), i.e., the sets that can be represented in the form of countable intersections of open sets or
countable unions of closed sets, respectively. The second class includes sets of the type Fσδ and of
the type Gδσ (the Fσδ- and Gδσ-sets), i.e., the sets that can be represented in the form of countable
intersections of Fσ-sets or countable unions of Gδ-sets, respectively. We do not need Borel classes
with higher numbers in the present paper.

Let N be a system of subsets of a set M. We say [9, pp. 266–267] that a function f(·) : M → R

belongs to the class (∗,N), or is a function of the class (∗,N), if for each r ∈ R its Lebesgue set
[f ≥ r] belongs to the system N. In what follows, we only need functions M → R of the class
(∗, Gδ), i.e., functions such that the preimage of the half-open interval [r,+∞) is a Gδ-set in the
metric space M for each r ∈ R.

3. SURVEY OF PREVIOUS RESULTS

The direction in the theory of Lyapunov exponents dealing with the dependence of asymp-
totic properties and characteristics of parametric differential systems on the parameter is due to
V.M. Millionshchikov, who initiated systematic research in this direction with a series of papers,
of which we only mention the paper [10]. We are also indebted to him for understanding that the
language of the Baire theory of discontinuous functions is an adequate language for describing such
a dependence. We point out that here one speaks of a complete description of all possible types of
behavior of some properties or characteristics of a system under changes in the system parameters.
Since then, quite a few results have been obtained, of which we will only mention those directly
related to the problems considered in the present paper, i.e., concerning the dependence of the
regularity property of parametric linear systems on the parameter.

The analysis of the parameter dependence of the regularity property of parametric linear systems
started from Bogdanov’s problem on the existence of a system A ∈ Rn such that the system

ẋ = μA(t)x, x ∈ R
n, t ∈ R+, (4)

is irregular for some μ ∈ R. Although this problem is known as Bogdanov’s problem, Bogdanov
himself repeatedly stated that it had been posed as early as in the 1950s at Erugin’s seminar
at Leningrad State University. Bogdanov’s problem was solved in the affirmative in [11]: it was
established that for each number n ≥ 2 there exists a system A ∈ Rn that becomes irregular
if its coefficient matrix is multiplied by some real number. We assign the set WA = {μ ∈ R :
μA 
∈ Rn}, called the irregularity set of the system A, to each system A ∈ Mn. Following
the result in [11], Izobov [12] posed the problem of finding a complete description of the class
Wn = {WA : A ∈ Mn} of irregularity sets. Various examples of particular irregularity sets were
constructed in the papers [13–17]. It was proved in [18] and [19] that an arbitrary open or closed,
respectively, set on the real line not containing zero is the irregularity set of some linear system
in Mn. At the same time, it was shown in [15] that the irregularity sets are Gδσ-sets not containing
zero. The converse is true as well [18] if the coefficient matrix of the system is allowed to be
unbounded; this gives a complete description of the class of irregularity sets for systems (1) with,
generally speaking, unbounded coefficients. Describing the irregularity sets of the systems in Mn

is an open problem yet.
Irregularity sets can be considered not only for the families (4) but also for the families in

the above-introduced classes Cn(M), Un(M), and UZn
R(M). For example, the irregularity set of

a family A ∈ Cn(M) consists of μ ∈ M such that the system A(·, μ) is irregular. In particular,
let us introduce the compact-open and uniform topologies on the class Mn and denote the resulting
metric spaces by Mc

n and Mu
n. The spaces Mc

n and Mu
n can be viewed as elements of the classes

Cn(M) and Un(M), respectively, in which the parameter space M coincides with the respective
space itself; i.e., M = Mc

n and M = Mu
n, respectively. Vetokhin [20] generalized the result in [15]

on the Borel type of the irregularity set of the families (4): if n ≥ 2, then the set Rn of regular
systems is an Fσδ-set and is not a Gδσ-set in the space Mu

n; in particular, it follows from this result
that the irregularity sets of the families (4) must be Gδσ-sets. It was proved in [18] that a subset
of a metric space M is an irregularity set for some family in Cn(M) if and only if it is a Gδσ-set in
this space.
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The fact that the points of discontinuity of the functionals λk : Mu
n → R, k = 1, . . . , n, n ≥ 2,

include regular systems was established by Vinograd as early as in [21, 22]; we return to this
important result in Section 4.2. This result was strengthened in the paper [23]: even the restrictions
of these functionals to the class of regular systems are discontinuous. It was proved in [24] that these
restrictions are neither lower nor upper semicontinuous, while the restrictions of the functionals
λk : Mc

n → R, k = 1, . . . , n, n ≥ 2, to the class of regular systems are exactly of the first Baire
class.

Various examples of the possible dependence of the Lyapunov exponents and the characteristic
function of the set of regular systems on the parameter μ ∈ R for families in Un(R), n ≥ 2, were
constructed in [25, 26]. Namely, a family for which all these functions are everywhere discontinuous
was constructed in [25], and a family for which these functions are step functions was constructed
in [26]. (In the latter example, the system is regular and all of its Lyapunov exponents are zero
for μ ≤ 0, while for μ > 0 it is irregular and all of its Lyapunov exponents are equal to unity.)
The latter result was strengthened in the papers [27, 28], where it was shown that among families
in Un(R), n ≥ 2, with a step-like dependence there exist families that are infinitely differentiable
with respect to the parameter and such that their matrix A(· ;μ) is obtained from the matrix A(· ; 0)
by some (depending on μ) perturbation decaying at infinity.

4. MAIN THEOREM

For families in the class Un(M), a complete description of their Lyapunov irregularity coefficient
is given by the following assertion.

Theorem 1. For each metric space M , a function σ : M → R+ is the Lyapunov irregularity
coefficient of some family in Un(M) (i.e., belongs to the class S[Un(M)]) if and only if

(a) It is continuous for n = 1.

(b) It belongs to the class (∗, Gδ) and has a continuous majorant for n ≥ 2.

Remark. The description of the class S[Cn(M)] = {σL(· ;A) : A ∈ Cn(M)} follows from the
result in [29] and is as follows: for each n ∈ N and each metric space M , a function σ : M → R+

is the Lyapunov irregularity coefficient of some family in Cn(M) if and only if it belongs to the
class (∗, Gδ). This description also obviously follows from the more general result in [30] providing
a complete description of the class of vector functions {(σL(· ;A), σP(· ;A)) : A ∈ Cn(M)} composed
of the Lyapunov and Perron irregularity coefficients of families in Cn(M): for each n ∈ N and
each metric space M , a vector function (σ1, σ2) : M → R

2
+ belongs to that class if and only if the

functions σ1 and σ2 are functions of the class (∗, Gδ) and the inequalities

0 ≤ σ2(μ) ≤ σ1(μ) ≤ nσ2(μ)

hold for each μ ∈ M .

Since Un(M) ⊂ Cn(M), we have the inclusion S[Un(M)] ⊂ S[Cn(M)]. Let us show that, gener-
ally speaking, the inclusion is proper. To this end, it suffices to give an example of a nonnegative
function in the class (∗, Gδ) that does not have a continuous majorant. Consider the function

σ(μ) =

⎧
⎨

⎩
|μ|−1 for μ ∈ R \ {0},
0 for μ = 0.

This function is obviously nonnegative and belongs to the class (∗, Gδ). Indeed, its Lebesgue set
[σ ≥ r] is the union of half-open intervals [−r−1, 0) and (0, r−1] if r > 0 and the real line R if r ≤ 0.
The first of these sets is a Gδ-set, because [−r−1, 0)∪(0, r−1] =

⋂
k∈N

((−r−1−k−1, 0)∪(0, r−1+k−1)).
However, this function does not have a continuous majorant, because it is unbounded in any
neighborhood of the point x = 0.

5. PROOF OF THE THEOREM FOR n = 1

Necessity. Given a family A ∈ U1(M), i.e., the equation

ẋ = A(t, μ)x, x ∈ R
1, t ∈ R+, (5)
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it is clear that each of the functions

λ(μ) = lim
t→+∞

1

t

t∫

0

A(τ, μ)dτ and s(μ) = lim
t→+∞

1

t

t∫

0

A(τ, μ)dτ (6)

is a continuous function M → R. Indeed, if μk → μ0 as k → +∞, then, according to the definition
of the class U1(M), for each ε > 0 there exists a k(ε) ∈ N such that |A(t, μk) − A(t, μ0)| ≤ ε
for all t ∈ R+ and k ≥ k(ε). Hence for these k we have the inequalities |λ(μk) − λ(μ0)| ≤ ε
and |s(μk) − s(μ0)| ≤ ε; this implies the continuity of the functions (6). Therefore, the Lyapunov
irregularity coefficient σ(μ) = λ(μ)− s(μ) of Eq. (5) is a continuous function, and it is obvious that
it is nonnegative.

Sufficiency. Let σ : M → R+ be a continuous function. Consider a sequence (Tk)k∈N monotone
increasing to +∞ of points on the time half-line such that T1 = 0 and Tk+1/Tk → +∞ as k → +∞.

Define a function Ã(· ; ·) : R+ ×M → R+ by the relation

Ã(t, μ) =

⎧
⎨

⎩
σ(μ) if t ∈ [T2l−1, T2l),

0 if t ∈ [T2l, T2l+1),
l ∈ N.

Set T ′
k = Tk+1 − (Tk+1 − Tk)/k, k ≥ 1. Based on the function Ã(t, μ), we construct the continuous

function A(·, ·) : R+ × M → R+ that coincides with Ã(t, μ) for (t, μ) ∈ [Tk, T
′
k] × M , k ≥ 1, and

is the linear function connecting the points (T ′
k, Ã(T ′

k, μ)) and (Tk+1, Ã(Tk+1, μ)) on the interval
[T ′

k, Tk+1] for each μ ∈ M . The continuity of the function A(·, ·) follows from the continuity of the
function σ(·) and the continuity of linear functions.

It is obvious that the functions (6) for the function A(·, ·) thus constructed satisfy the inequalities
λ(μ) ≤ σ(μ) and s(μ) ≥ 0 for all μ ∈ M . On the other hand, by the definition of the function
A(·, ·), we have the inequalities

T2l∫

0

A(τ, μ) dτ ≥ σ(μ)(T ′
2l−1 − T2l−1) and

T ′
2l∫

0

A(τ, μ) dτ ≤ σ(μ)T2l,

which, together with the fact that T ′
k/Tk+1 → 1 as k → ∞, imply the opposite inequalities λ(μ) ≥

σ(μ) and s(μ) ≤ 0. Therefore, the Lyapunov irregularity coefficient of Eq. (5) with such a function
A(·, ·) coincides with the function σ. The proof of the theorem for n = 1 is complete.

6. PROOF OF THE THEOREM FOR n ≥ 2

Necessity. Consider a family A ∈ Un(M), n ≥ 2. It was established in [31] that each of the
functions λi(· ;A), i = 1, . . . , n, belongs to the class (∗, Gδ) and has a continuous majorant. In the
same way as in the proof of necessity for n = 1, one can prove that the function

μ �→ lim
t→+∞

t−1

t∫

0

trA(τ, μ) dτ

is continuous. Hence the function σL(· ;A) has a continuous majorant. Since every continuous
function belongs to the class (∗, Gδ), it follows by virtue of [9, p. 267, II] that so does the function
σL(· ;A). The nonnegativity of the function σL(· ;A) follows from the Lyapunov inequality [2, p. 72].
The proof of the necessity of the assumptions in the theorem for n ≥ 2 is complete.

Sufficiency. Consider a function σ : M → R+ belonging to the class (∗, Gδ) and having a con-
tinuous majorant b : M → R+. We will construct a family A ∈ Un(M) for which σL(μ;A) = σ(μ)
for all μ ∈ M . The construction of the desired family splits into several steps.
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6.1. Preliminary Conventions

The following three conventions–definitions make for a convenient language in the subsequent
reasoning.

Given a differential system ẋ = A(t)x (a system A) defined only for t ∈ [0, δ), the expression
“repeat the system A k times” implies considering the system

ẋ = Ak(t)x, t ∈ [0, kδ),

with the matrix Ak(·) defined by the formulas

Ak(t) ≡ A(t− iδ) for t ∈ [iδ, (i + 1)δ), i = 0, . . . , k − 1.

The expression “repeat the system A k times starting from the point t = T” implies considering
the system

ẋ = Ak,T (t)x, t ∈ [T, T + kδ),

where Ak,T (t) ≡ Ak(t − T ). Thus, from now on a pair of subscripts on a system (matrix), e.g.,
Ak,T , indicates the system (matrix) associated with the already defined system (matrix) A by the
above relations.

Given a linear differential system ẋ = B(t)x (a system B) defined only for t ∈ [τ, T ), the ex-
pression “extend the system B oddly beyond the point T” implies considering the system

ẋ = B∗(t)x, t ∈ [T, 2T − τ)

on the half-open interval [T, 2T − τ), where B∗(t) ≡ −B(2T − t) for t ∈ [T, 2T − τ). Thus, from
now on a system (matrix) with a superscript ∗, e.g., B∗, implies the system (matrix) associated
with the already defined system (matrix) B by the indicated relations. Obviously, the following
assertion (let us call it property A), which is important in the sequel, holds: if the coefficient
matrix of a system B is piecewise constant, then the Cauchy matrix XB∗(·, ·) of the odd extension
system B∗ satisfies the relation XB∗(T + t, T ) = XB(T − t, T ) for all t ∈ [0, T − τ ]. In particular,
XB∗(2T − τ, T )XB(T, τ) = E, where E is the identity matrix.

Let us also adopt the convention that if a pair of subscripts and a superscript ∗ occur in the
notation of a matrix (system), then the operation of repetition comes first, followed by the operation
of extension; i.e., the notation A∗

k,T means that we first repeat the system A k times starting from
the point t = T and then extend the resulting system oddly.

In all subsequent constructions, we use the operations of (i) repeating some system the required
number of times starting from a certain point and (ii) extending the respective system oddly, as
well as an operation (to be introduced below) of (iii) a special perturbation of an appropriate
system belonging to a class defined below. Operations (i) and (ii) have been defined above, and
operation (iii) is described in the next subsection.

6.2. Preliminary Constructs

Let us proceed to operation (iii) and the respective class (family) of systems. Let us specify the
class of systems to be perturbed.

6.2.1. Family of unperturbed systems defined on finite intervals. Let us define a family
of linear two-dimensional systems depending on two parameters m > 0 and b > 0. Their coefficient

matrix will be denoted by B[m; b](t). The matrix B[m; b](t) is defined only on the interval Δ(m)
def
=

[0, 4(m + 1)], and to define it, we will need notation for some points of this interval. We denote

Tm
0 = 0, Tm

i = Tm
i−1 +

⎧
⎨

⎩
1 if i = 2, 4, 5, 7,

m if i = 1, 3, 6, 8,
i = 1, . . . , 8,

and Δi(m) = [Tm
i−1, T

m
i ], i = 1, . . . , 8; i.e., the length of the interval Δi(m) is m if i = 1, 3, 6, 8 and 1

if i = 2, 4, 5, 7. By Δ◦
i (m) we denote the interior of the interval Δi(m), i = 1, . . . , 8. The matrix
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B[m; b](t) is given by the relation

B[m; b](t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

diag[b,−b] for t ∈ Δ1(m)
⊔

Δ8(m),

diag[−b, b] for t ∈ Δ3(m)
⊔

Δ6(m),

2−1πJ2 for t ∈ Δ◦
4(m),

O2 for other t ∈ Δ(m),

where

J2 =

(
0 1

−1 0

)
and O2 =

(
0 0

0 0

)
.

Obviously, the trace trB[m; b](t) of the matrix B[m; b](t) is zero for all t ∈ Δ(m). For the Cauchy
matrix XB[m;b](·, ·) of the system

ẋ = B[m; b](t)x, x = (x1, x2)
T ∈ R

2, t ∈ Δ(m), (7)

the following relations are obvious:

XB[m;b](T8, T0) = J2 and ‖XB[m;b](T
′′, T ′)‖ ≤ exp(bm) for any T ′′, T ′ ∈ Δ(m). (8)

6.2.2. Family of unperturbed systems defined on the half-line. Let us describe a family
of Lyapunov regular two-dimensional systems, each to be used for constructing a system imple-
menting a given Lyapunov irregularity coefficient.

Fix some bounded sequence β = (bq)
∞
q=1 of positive numbers. Let us select a sequence ω =

(mq)
∞
q=1 of numbers no less than unity and a sequence κ = (kq)

∞
q=1 of positive integers such that

the following relations hold:

lim
q→∞

mq

τq−1

= 0, lim
q→∞

mq = ∞, lim
q→∞

mqkq
τq−1

= ∞, (9)

where the sequence (τq)
∞
q=0 is defined recursively by the formula τq = τq−1 + 8(mq + 1)kq , q ∈ N.

For example, the sequences mq = q and kq = 22
q

, q ∈ N, will be suitable. We also set τ0 = 0 and
τ ′
q = (τq−1 + τq)/2 = τq−1 + 4(mq + 1)kq .

We denote the coefficient matrix of the family of systems being defined by P [κ;ω;β](t) and
specify it as follows:

P [κ;ω;β](t) =

⎧
⎨

⎩
Bkq,τq−1

[mq; bq](t) for t ∈ [τq−1, τ
′
q),

B∗
kq,τq−1

[mq; bq](t) for t ∈ [τ ′
q, τq),

q ∈ N.

Note that the trace of the matrix P [κ;ω;β](t) is identically zero. Let us prove that under the
first condition in (9) the system

ẋ = P [κ;ω;β](t)x, x ∈ R
2, t ∈ R+, (10)

is Lyapunov regular with zero Lyapunov exponents whatever the sequences β, ω, and κ might be.

Denote tlq = τq−1 + 4l(mq + 1), l = 0, . . . , 2kq . Let x(·) be a solution of system (10) with the

initial vector satisfying the condition ‖x(0)‖ = 1. According to (8), we have ‖x(tlq)‖ = 1 for any

q ∈ N and l = 1, . . . , kq , and then, by virtue of property A, we have the relation ‖x(tlq)‖ = 1

for any q ∈ N and l = kq + 1, . . . , 2kq . Inside each interval [tlq, t
l+1
q ], l = 0, . . . , 2kq − 1, in view

of inequality (8), the solution x(·) satisfies the estimate ‖x(t)‖ ≤ exp(bqmq), t ∈ [tlq, t
l+1
q ]. Since
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tlq ≥ τq−1, it follows from this estimate that t−1 ln ‖x(t)‖ ≤ bqmq/τq−1. Since the sequence (bq)q∈N

is bounded, we conclude by virtue of the first relation in (9) and the equalities established above
that the Lyapunov exponents of system (10) are zero. Hence this system is regular, because it has
zero trace.

6.2.3. Family of perturbed systems defined on finite intervals. The desired system
will be constructed as a perturbation of system (10). The main element in the construction of
the system is special perturbations of the matrix B[m; b](t). Let us proceed to defining these
perturbation matrices (i.e., perturbations of system (7)).

We define the perturbation matrix (denoted by Q[m; b](t)) as

Q[m; b](t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎝ 0 0

e−bm 0

⎞

⎠ if t ∈ Δ2(m)
⊔

Δ5(m),

⎛

⎝0 −e−bm

0 0

⎞

⎠ if t ∈ Δ7(m),

and Q[m; b](t) ≡ O2 for the other t ∈ Δ(m).

Set C[m; b](t) = B[m; b](t)+Q[m; b](t), t ∈ Δ(m). Obviously, the trace of the matrix C[m; b](t)
is identically zero. Consider the perturbed system

ẏ = C[m; b](t)y, y ∈ R
2, t ∈ Δ(m), (11)

which will be called system C[m; b]. Let us calculate the Cauchy matrices Y (·, ·) of system (11) on
the intervals Δi(m), i = 1, . . . , 8 :

Y (Tm
1 , Tm

0 ) = Y (Tm
8 , Tm

7 ) = diag[emb, e−mb], Y (Tm
3 , Tm

2 ) = Y (Tm
6 , Tm

5 ) = diag[e−mb, emb], (12)

Y (Tm
2 , Tm

1 ) = Y (Tm
5 , Tm

4 )=

(
1 0

e−bm 1

)
, Y (Tm

7 , Tm
6 )=

(
1 −e−bm

0 1

)
, Y (Tm

4 , Tm
3 ) = J2. (13)

Let us determine the Cauchy matrix Y (Tm
8 , Tm

0 ) of the perturbed system. Since

Y (Tm
8 , Tm

0 ) = Y (Tm
8 , Tm

7 ) · · ·Y (Tm
1 , Tm

0 ),

we multiply the matrices (12) and (13) in the order specified and arrive at

Y (Tm
8 , Tm

0 ) = diag[e2bm, e−2bm].

Set e1 = (1, 0)T and e2 = (0, 1)T. Then

Y (Tm
8 , Tm

0 )e1 = (e2bm, 0)T and Y (Tm
8 , Tm

0 )e2 = (0, e−2bm)T.

Thus, while the norm of the solution xi(·) of the unperturbed system issuing at time t = 0 from
the vector ei does not change (remains unity) by time Tm

8 , the norm of the solution yi(·) of the
perturbed system issuing at time t = 0 from the vector ei increases by the factor e2bm for i = 1 and
decreases by the factor e2bm for i = 2, with the vector yi(T

m
8 ) remaining collinear to the vector ei,

i = 1, 2.

6.2.4. Family of perturbed systems defined on the half-line. According to [32] (see also
[29, Remark 2]), for the function σ(·) there exists a sequence of continuous functions σq : M → R,
q ∈ N, such that

σ(μ) = lim
q→∞

σq(μ), μ ∈ M.
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Let us construct a family of 2 × 2 matrices D(t, μ), (t, μ) ∈ R+ ×M , that are piecewise constant
in t for each μ ∈ M and continuous in μ uniformly with respect to t ∈ R+ and satisfy the relations
σL(μ;D) = σ(μ) for all μ ∈ M.

Without loss of generality, we can assume that the inequalities b(μ) ≥ 1 and 0 ≤ σq(μ) ≤ b(μ)
are satisfied for all q ∈ N and μ ∈ M . (Otherwise, we replace the function b(·) with the function
b(·) + 1 and every function σq(·) with the function min{max{σq(·), 0}, b(·)}.)

Let us fix sequences ω = (mq)
∞
q=1 and κ = (kq)

∞
q=1 satisfying the conditions indicated in Sec-

tion 6.2.2, and let (τq)
∞
q=1 be the sequence determined by ω and κ (see Section 6.2.2). As above,

let τ ′
q be the midpoint of the interval [τq−1, τq], i.e., τ

′
q = (τq−1 + τq)/2 = τq−1 + 4(mq + 1)kq , and

let the points tlq = τq−1 + 4l(mq + 1), l = 0, . . . , kq, divide the interval [τq−1, τ
′
q] into kq equal parts.

Takingm = mq in system (11) and replacing the number b with the function 4b(μ), we repeat this
system kq times starting from the point τq−1 to obtain the following family of systems parametrized
by the number q ∈ N:

ẏ = Bkq,τq−1
[mq; 4b(μ)](t) +Qkq,τq−1

[mq; 4b(μ)](t), y ∈ R
2, t ∈ [τq−1, τ

′
q]. (14)

This family will play an auxiliary role in what follows. Let yq(·) be the solution of system (14)
with the initial vector y(τq−1) = (1, 0)T. As follows from Section 6.2.3, the relations ‖yq(tlq)‖ =

exp{8b(μ)lmq} hold for the norm of the solution yq(·) at times t = tlq, l = 0, . . . , kq .

For each q ∈ N and each l = 0, . . . , kq, we define the sets

F l
q = {μ ∈ M : ln ‖yq(tlq)‖ ≤ σq(μ)t

l
q} and Φl

q = {μ ∈ M : ln ‖yq(tlq)‖ ≥ (σq(μ) + εq)t
l
q},

where εq = 1/τ 2
q . Let q ≥ 2. Obviously, F 0

q = M and Φ0
q = ∅, because ‖yq(t0q)‖ = 1. Moreover,

it can readily be seen that the sets F l
q and Φl

q are disjoint, with the following chains of inclusions
holding true:

F 0
q ⊃ F 1

q ⊃ . . . ⊃ F kq

q and Φ0
q ⊂ Φ1

q ⊂ . . . ⊂ Φkq

q .

Since
ln ‖yq(tkq−1

q )‖
t
kq−1
q

=
8b(μ)(kq − 1)mq

τq−1 + 4(kq − 1)(mq + 1)
→

q→+∞
2b(μ)

uniformly with respect to μ, by virtue of the second and third relations in (9) and because

2b(μ) > σq(μ), for all q starting from some q0 ≥ 2, we have Φ
kq−1
q = M , and hence F

kq
q = ∅.

It can readily be seen that for any q ∈ N and l = 0, . . . , kq − 1 we have the double inequality

εq ≤
ln ‖yq(tl+1

q )‖
tl+1
q

−
ln ‖yq(tlq)‖

tlq
≤ 8b(μ)mq

τq−1

. (15)

Since F
kq
q = ∅ if q ≥ q0 and F 0

q = M , it follows that for each q ≥ q0 and any μ ∈ M there

exists a greatest number j (which we denote by jq(μ)) such that the inclusion μ ∈ F j
q holds, i.e.,

μ ∈ F
jq(μ)
q ; however, μ 
∈ F

jq(μ)+1
q . Then the double inequality

σq(μ)−
8b(μ)mq

τq−1

<
ln ‖yq(tjq(μ)q )‖

t
jq(μ)
q

≤ σq(μ) (16)

holds. (The right inequality in (16) holds by virtue of the inclusion μ ∈ F
jq(μ)
q , and the left one

follows from the right inequality in (15) with l = jq(μ) and the fact that μ 
∈ F
jq(μ)+1
q .)

In view of the continuity of the functions b(·) and σq(·), q ∈ N, the sets F l
q and Φl

q are closed

as the preimages of closed sets under a continuous mapping. Let ϕl
q : M → [0, 1] be a continuous

function equal to unity on F l
q and zero on Φl

q. It follows from the preceding that only one of the

numbers ϕl
q(μ), l = 1, . . . , kq,—the number ϕ

jq(μ)+1
q (μ)—can prove to be distinct from 0 and 1.
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Let us define the matrix D(t, μ). Set D(t, μ) = O2 for t ∈ [0, τq0−1). On the interval [τq−1, τq),
q ≥ q0, first we define the matrix D(t, μ) on its left half [τq−1, τ

′
q) using the relations

D(t, μ) = Bkq,τq−1
[mq; 4b(μ)](t) + ϕl

q(μ)Qkq ,τq−1
[mq; 4b(μ)](t), t ∈ [tl−1

q , tlq), l = 1, . . . , kq,

and then we oddly extend the matrix D(t, μ), already defined for t ∈ [τq−1, τ
′
q), to the right half

[τ ′
q, τq). As can be seen, on each half-interval [tl−1

q , tlq), l = 1, . . . , kq , the matrix D(t, μ) is the matrix

of system (14) modified using the function ϕl
q . Since τq → ∞ as q → ∞, it follows that the system

D(·, μ) is defined on the entire half-line R+.
Let us clarify the above construction. For a fixed μ ∈ M , the system constructed looks as follows.

For each q ≥ q0, the perturbed system C[mq; 4b(μ)] = B[mq; 4b(μ)]+Q[mq ; 4b(μ)] is repeated jq(μ)

times (for jq(μ) > 0) on the interval [t0q , t
jq(μ)
q ) starting from the point t = t0q. On the interval

[t
jq(μ)+1
q , t

kq
q ), the unperturbed system B[mq; 4b(μ)] is repeated kq−jq(μ)−1 times starting from the

point t = t
jq(μ)+1
q . On the interval [t

jq(μ)
q , t

jq(μ)+1
q ), the constructed system is a convex combination of

the perturbed and unperturbed systems, D(t, μ) = (1−rq(μ))B[mq; 4b(μ)](t)+rq(μ)C[mq; 4b(μ)](t),

where rq(μ) = ϕ
jq(μ)+1
q (μ) ∈ [0, 1]. Further, the system defined on the interval [t0q, t

kq
q ) is extended

oddly beyond the point t
kq
q .

Let us show that the system constructed possesses the desired properties. Note that the matrix
D(t, μ) has zero trace for all t ∈ R+, because this property is possessed by the matrices of the
families B[m; b](t) and Q[m; b](t), t ∈ Δ(m).

Let yi be the solution of the constructed system issuing at time t = 0 from the vector ei, i = 1, 2.
Define a function pi : R+ → R by the relation pi(t) = t−1 ln ‖yi(t)‖, t ∈ R+, i = 1, 2. Denote
δq(μ) = 16b(μ)(mq + 1)/τq−1. Fix an arbitrary q ≥ q0. By construction, the following assertions
hold true for i = 1, 2: (i) if t ∈ [tl−1

q , tlq), l = 1, . . . , kq, then pi(t) ≤ max{0, pi(tl−1
q )} + δq(μ);

(ii) if t ∈ [t
kq
q , τq), then pi(t) ≤ max{pi(2tkq

q − t), 0}; (iii) pi(τq−1) = pi(τq) = 0. Further, for

l = 0, . . . , jq(μ), by virtue of the left inequality of the chain (15), we have p1(t
l
q) ≤ p1(t

jq(μ)
q ).

Finally, p1(t
l
q) ≤ p1(t

jq(μ)
q ) + δq(μ) for l = jq(μ) + 1, . . . , kq. It follows from what has been said that

λ[y1] = lim
t→+∞

p1(t) = lim
q→∞

p1(t
jq(μ)
q ),

and, hence, using the estimates (16), we obtain

λ[y1] = lim
q→∞

σq(μ) = σ(μ).

By construction, we have the inequality p2(t
l
q) ≤ 0 for l = 0, . . . , jq(μ) and the inequality

p2(t
l
q) ≤ δq(μ) for l = jq(μ) + 1, . . . , kq. Taking into account the above assertions (i)–(iii), we con-

clude that p2(t) ≤ 2δq(μ) for all t ∈ [τq−1, τq), q ∈ N. Therefore,

λ[y2] = lim
t→+∞

p2(t) = 0.

Note that the basis of solutions (y2(·), y1(·)) of the system D(·, μ) is normal. Indeed, if σ(μ) > 0,
then this follows from the fact that the Lyapunov exponents λ[y1] and λ[y2] of these solutions are
distinct. For σ(μ) = 0, the normality of the indicated basis follows from the Lyapunov inequality,
because

λ[y1] + λ[y2] = 0 = lim
t→+∞

1

t

t∫

0

trD(s, μ) ds.

It has thus been established that λ1(μ;D) = 0 and λ2(μ;D) = σ(μ).
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Note that if σ(μ) ≡ 0, μ ∈ M , then, choosing identically zero functions as the functions σq,
we obtain a family D(·, ·) coinciding with the unperturbed family P [κ;ω; 4β(μ)](t), t ∈ R+, μ ∈ M ,
defined in Section 6.2.2.

Let us show that the family constructed is continuous in μ uniformly with respect to t ∈ R+;
i.e., the relation

lim
ν→μ

sup
t∈R+

‖D(t, μ)−D(t, ν)‖ = 0, μ ∈ M,

holds. Fix an arbitrary μ ∈ M and an ε > 0. Let t ∈ [tl−1
q , tlq) for some q ∈ N and l = 1, . . . , kq .

Then for any ν ∈ M we have the chain of inequalities

‖D(t, μ)−D(t, ν)‖ ≤ ‖B[mq; 4b(μ)](t) −B[mq; 4b(ν)](t)‖ + |ϕl
q(μ)− ϕl

q(ν)|‖Q[mq ; 4b(μ)](t)‖
+ ϕl

q(ν)‖Q[mq ; 4b(μ)](t) −Q[mq; 4b(ν)](t)‖
≤ 5|b(μ) − b(ν)|+ |ϕl

q(μ)− ϕl
q(ν)| exp(−mq).

According to the second relation in (9), there exists a q∗ ∈ N such that exp(−mq∗) < ε/2 for
all q ≥ q∗. Further, using the continuity of the function b(·) and the functions ϕl

q(·), q = 1, . . . , q∗,
l = 1, . . . , kq, we choose a neighborhood U of the point μ such that the inequalities

|b(μ)− b(ν)| < ε/10, |ϕl
q(μ)− ϕl

q(ν)| < ε/2, q = 1, . . . , q∗, l = 1, . . . , kq,

hold for all ν ∈ U . By construction, for any q ∈ N we have the inequality

sup
t∈[τq−1,τq)

‖D(t, μ) −D(t, ν)‖ = sup
t∈[t0q,t

kq
q )

‖D(t, μ)−D(t, ν)‖;

by the preceding, it follows that

sup
t∈[τq−1,τq)

‖D(t, μ)−D(t, ν)‖ < ε, q ∈ N,

for each ν ∈ U . The continuity in the uniform topology of the family constructed has thus been
established.

6.2.5. Continuous family implementing the irregularity coefficient. Let us show that
there exists a family of systems

ẋ = A(t, μ)x, x ∈ R
n, t ∈ R+, μ ∈ M,

belonging to the class Un(M) such that its Lyapunov irregularity coefficient σL(·;A) coincides with
a given function σ(·).

By (tk)
∞
k=1 we denote the increasing sequence of points of discontinuity of the matrices D(·, μ),

μ ∈ M (one and the same for all μ ∈ M). By construction, tk − tk−1 ≥ 1, k ∈ N, and t0 ≡ 0. Let
δk be the closed interval of length |δk| = 2−k exp(−t2k+1) centered at the point tk, k ∈ N. Further,
let s : R+ → [0, 1] be a continuous (e.g., piecewise linear) function vanishing at the points of the
sequence (tk) and equal to unity on the set R+ \

⊔∞
k=1 δk. For each μ ∈ M , the obvious chain of

inequalities

I(μ) ≡
+∞∫

0

‖s(τ)D(τ, μ) −D(τ, μ)‖ exp(τ 2) dτ ≤
∞∑

k=1

tk+|δk|/2∫

tk−|δk|/2

‖D(τ, μ)‖ exp(τ 2) dτ ≤ sup
t∈R+

‖D(τ, μ)‖

implies that the integral I(μ) converges. Therefore, according to the Bogdanov–Grobman theo-
rem [3, 6], the Lyapunov exponents of the systems s(·)D(·, μ) and D(·, μ) coincide. Finally, set

A(t, μ) = diag[s(t)D(t, μ), 0, . . . , 0︸ ︷︷ ︸
n−2

], t ∈ R+, μ ∈ M.
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For each μ ∈ M , the matrix A(·, μ) has the identically zero trace, because so does the matrixD(·, μ).
It follows from the inequality ‖A(t, μ) − A(t, ν)‖ ≤ ‖D(t, μ) − D(t, ν)‖, t ∈ R+, μ, ν ∈ M , that
A ∈ Un(M). For each μ ∈ M , all but the leading Lyapunov exponents of the system A(·, μ) are
zero, while the leading exponent λn(μ;A) is the same as the leading exponent λ2(μ;D) of the
system D(·, μ), with the latter, in turn, being equal to σ(μ).

Thus, for each μ ∈ M the Lyapunov irregularity coefficient σL(μ;A) of the system A(·, μ) is σ(μ).
The proof of the theorem is complete.

7. COROLLARIES

Vinograd [21, 22] provided examples of systems A ∈ R2 such that their Lyapunov exponents
change under the action of certain linear perturbations decaying at infinity. He therewith gave
a negative answer to a conjecture that persisted for a long time and claimed that for regular
systems such perturbations preserve the Lyapunov exponents of these systems and hence their
regularity.

The following two theorems generalize Vinograd’s examples, the first being a direct corollary
of Theorem 1 and the second following quite easily from the proof of the main theorem and the
paper [33].

Theorem 2. For each n ≥ 2 and each metric space M , the function σ : M → R+ is the
Lyapunov irregularity coefficient of some family in UZn

R(M) if and only if it is bounded and belongs
to the class (∗, Gδ).

Theorem 3. For each n ≥ 2 and each metric space M , the vector function (f1, . . . , fn)
T :

M → R
n is the n-tuple of Lyapunov exponents (λ1, . . . , λn) of some family A ∈ UZn

R(M) (i.e.,
fk(μ) = λk(μ;A) for all μ ∈ M and k = 1, . . . , n) if and only if it satisfies the following conditions:
its components fk, k = 1, . . . , n, are bounded, belong to the class (∗, Gδ), and satisfy the inequalities
f1(μ) ≤ . . . ≤ fn(μ) for each μ ∈ M .
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