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Abstract—In the multidimensional case, we study the problem with initial and boundary con-
ditions for the equation of vibrations of a beam with one end clamped and the other hinged.
An existence and uniqueness theorem is proved for the posed problem in Sobolev classes. A so-
lution of the problem under consideration is constructed as the sum of a series in the system of
eigenfunctions of a multidimensional spectral problem for which the eigenvalues are determined
as the roots of a transcendental equation and the system of eigenfunctions is constructed. It is
shown that this system of eigenfunctions is complete and forms a Riesz basis in Sobolev spaces.
Based on the completeness of the system of eigenfunctions, a theorem about the uniqueness of
a solution to the posed initial-boundary value problem is stated.

DOI: 10.1134/50012266119100094

1. STATEMENT OF THE PROBLEM

Many problems about vibrations of rods, beams, and plates are of great importance in structural
mechanics and lead to higher-order differential equations [1, pp. 141-143; 2, pp. 278280 of the
Russian translation; 3, Ch. 3 of the Russian translation; 4, p. 45; 5, p. 35 of the Russian translation;
6, Ch. 4 of the Russian translation]. The beam vibration equation also arises when calculating the
stability of rotating shafts and studying ship vibration [7, Ch. 2].

In the present paper, in a domain I x (0,7), where II = (0,1) x --- x (0,1) and [, T are given
positive numbers, we consider the more general equation

N 4m,
u(y,t
Dgu(y,t) +a* ayim )Zf(y,t), (y,t) eIIx (0,T), p—1<a<p, mpeN, (1)
- ;

with the initial conditions
DG u(y,t) = ¢iy),  i=1,....p. @)
—0

and the boundary conditions

84ku(y7 t) =0 0"l (y’ ) =0
y;* ;=0 ay4k+1 y;=0
84k t a4k+2
’U,(g; ) :0’ 4kEry27 ) :0, ijO,...,m—1, ]:17,N (3)
8yj y;=l ay Y=l

Here (y,t) = (y1,...,yn,t) € II x (0,7T), the number a > 0 is fixed, and f(y,t) and ¢;(y),
1=1,...,p, are given functions. The Riemann-Liouville integro-differentiation operator D¢ of
order a with origin at a point s € R is defined as follows:

Sgn (t—s
Dstu( ) / |t _ 7-|oz+1
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INITIAL-BOUNDARY VALUE PROBLEM FOR THE BEAM VIBRATION EQUATION 1337
if « < 0; D%u(y,t) = u(y,t) if « = 0; and
t
ar . sgnPti(t — ) dP u(y, T)dr
D Pu(y, t) = ’
a5 D= 00 ) aw | = e

S

D¢u(y,t) = sgn?(t — s)

fp—l<a<p pelN

Note that separation of variables was used in the above papers to determine the fundamental fre-
quencies (eigenvalues) for the simplest beam vibration equation; however, the issues of justifying the
well-posedness of initial-boundary value problems have been left unexamined. In the papers [8-10],
initial-boundary value problems were studied for the beam vibration equation, i.e., for Eq. (1) with
a=2,m=1, N =1. In the present paper, based on the papers [8, 11, 12], we state an existence
and uniqueness theorem for problem (1)—(3) in the class of generalized Sobolev functions. The so-
lution is constructed in the form of a series in the system of eigenfunctions of a multidimensional
problem.

2. COMPLETENESS OF SYSTEM OF EIGENFUNCTIONS
IN SOBOLEV CLASSES

We will seek a solution u(y,t) of problem (1)—(3) in the form of a Fourier series expansion
u(y,t) = Z Z Toyonn (t)vnr“nN(y)v

n1=0 ny=0

where T),, ..y (t) = (w(y,t), V5, .0y (y)) are the series coefficients, {v,(y) : n € ZY} is the system of
eigenfunctions for the multidimensional spectral problem

N
2(y)
gytm  — AWY) =0, (4)
= Y
a4kv(y) 0 84k+1v(y) 0
8y?k y; =0 ’ ay;’lkJrl y;=0 ’
a4kv(y) 84k+21)(y)
=0 0 k=0 -1 =1 N 5
8:1/;% b=l ) ay;;lﬁ-z vt ) ’ , M ) J ) ) ) ( )

and A is the variable separation constant.
We seek the eigenfunctions of problem (4), (5) in the form of the product

v(y) = Xi(y1) - Xn(yn)-

Then, to determine each of the functions X;(y;), i = 1,..., N, instead of the spectral problem
in (4), (5), we arrive at one and the same one-dimensional spectral problem

XUm) () - XX (z) =0, 0<z<lI, (6)
XUR(0) = XD (0) = XU (1) = X2 (]) = 0, k=0,...,m—1. (7)
Here the X;(y;) are denoted by X (x) for simplicity.

By L we denote the differential operator generated by the differential expression /(X ) = X “™ (x)
on the set W,™(0,1) N C*™~10,1], of, generally speaking, complex-valued functions satisfying the
boundary conditions in (7).

The following assertion holds.
Lemma 1. The operator LX = X“™) (x) with domain
D(L) = {X(x) : X(x) € W;™(0,1) nC*"10,1],
XUR(0) = XWHD(0) = XU () = XU+ () =0, k=0,...,m—1},

is a positive symmetric operator in the space Ly(0,1).
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1338 KASIMOV, MADRAKHIMOV
Proof. The positiveness of the operator L in the space L,(0,1) follows from the relations

(LX,X) = / LX - X(z)dx = / XUm) ()X () da

0

= XUm=D ()X (2)|, — /X(4m_1)(m)X’(a:) dx

I
= XU () X (z)]}, — XU (2) X" ()]} + /X(4m2)(m)X”(m) de = ...
0

= XUV (@) X ()] — X2 (@) X (@)]o + - - + X O (2) X @m=2) ()]
. l
— X@m) ()X Cm-1) ()]} + /X(2m>(m)X(2m)(g;) dr = / \X(Qm)(x)\zdm > 0.
0

0

Consequently, each eigenvalue of the operator L is nonnegative.

Let us prove that the operator L is symmetric in the space L,(0,1). Indeed, since the functions f
and g belong to the domain D(L), we have Lf € L5(0,l) and Lg = Lg € Ly(0,l). Further,
the functions f and g satisfy the boundary conditions

FAR(0) = FARI(0) = AR = FH(1) = 0

and
919 (0) = g4+ (0) = g (1) = g2 (1) = 0
for k=0,...,m — 1. Then

l l l

(Lf.g) = / Lf - g(x)d= / FAm (@) g(z) dr= FOm D (2)g () — / F4mD(2)g () de

0 0 0

= [ D (@)g(a) o — FU P () ()] + /f(4m‘2)(96)9”(96) dr == fO" D (z)g(x)l;

~ £ D @) )+ 4 (2)g D @)y~ Fa)g D )+ [Fla)g (@) do=(f. Lg)

for k = 0,...,m — 1. Thus, (Lf,g) = (f,Lg) for any f,g € D(L). The proof of the lemma is
complete.
It is easily seen that A = 0 is not an eigenvalue of problem (6), (7). Indeed, for A = 0 the general
solution of Eq. (6) has the form
$4m71 3;.4m72 $4m74k

X@) = C iy i TP g oy T T O gy

|+"'+C4m7 (8)

where the C; are arbitrary constants. The function (8) satisfies the first two conditions in (7) once
the relations

X (0) = Cypm_p) =0, XD (0) = Cypnry—1 =0, k=0,...,m—1,
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INITTAL-BOUNDARY VALUE PROBLEM FOR THE BEAM VIBRATION EQUATION 1339

hold and the last two conditions in (7) once for each £k = 0,...,m — 1 we have the system of
equations
l4(m7k)71 l4(m7k)72 l3 l2
C. oo 4 Cym—i)— Cim-r)—2, =0,
Cam— k) =1 T m — ) — o T T Camon—s gy ¥ a2y
o l4(m—k)—3 o l4(m—k)—4 o l o 0 0
1(4(m—k)—3)! + 2(4(m—k)—4)! +-+ A(m—k)=3 1 + Cym—r)—2 = 0. 9)

If kK =m — 1, then from (9) we obtain

Ol3 0l2—0 ol o =0
g T 0299 =0 T2 =0

Since the determinant of this linear system is distinct from zero, the system has only the zero
solution C = Cy = 0. Taking this into account, it follows from (9) for £ = m — 2 that

Ol3 0l2—0 ol i =0
sgp T Cog =0 sy T =0

Hence, as above, C5 = 0, Cs = 0. In a similar way, continuing this process, we will successively
obtain 09 = 0, 010 = 0, Clg = 0, 014 = 0, ey O4m_3 = 0, O4m_2 = 0. ThUS, C4(m—k)—3 = 0,
Cym—ty—2 = 0 for all k = 0,...,m — 1. Hence X(z) = 0; i.e., A = 0 is not an eigenvalue of
problem (6), (7).
Let A = b, b > 0. Then the set of roots of the characteristic equation p*™ —b*™ = 0 for Eq. (6)
consists of the numbers
,uj:beij”/@m), 7=0,...,4m — 1.

The following factorization identity holds for the operator L:

Am

d 4m—1 d 2m—1 d2
Am T _ Am T _ 2
L-v"r=, . —bv"r=]] (dw—uﬁ) = 1] <dw2 —Mj1>

=0 7=0
m—1 m—1
d* d*
4 _ 4 4
_H<dx4_ .>_<dx4—bl>}_[1<d4 Mj>. (10)
Here I is the identity operator and the pf = b*e™™/™ j=1,... m —1, are nonpositive numbers.

It follows from identity (10) that the operator LX = X“™)(z) with domain D(L) has an eigen-
function X = X (z) if and only if the function X (z) is a nontrivial solution of the problem

XW(z) =b* X (z), 0<z<l, (11)

X(0)=X'(0)=X1)=X"(l)=0. (12)

Indeed, let X“™) (x) = b*™ X (z), X(x) € D(L) and suppose that X (z) # 0 is not a solution to
problem (11), (12). By virtue of (10), we have

(o) -vr)x=o. xwepm. xo

j=

Since the spectral problem (11), (12) has only positive eigenvalues, this identity amounts to the
identity

Tl (d‘i - ug)(ji - b4I>X =0, X(x)eD@L), X(z)=0.

J
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1340 KASIMOV, MADRAKHIMOV

In a similar way, we obtain

nﬁl<d$4 I ><dd; - b41>X =0, X(z)eD(L), X(z)#0.

J=

Continuing this process, we arrive at the identity

(dci; - b4I>X =0, X(z)eD(@L), X(z)Z0.

However, this is in contradiction with the assumption made.

Thus, the operator LX = X®™(x) with domain D(L) has an eigenfunction X (z) if and only
if the function X (x) is a nontrivial solution of problem (11), (12). Consequently, instead of the
spectral problem (6), (7) we obtain the spectral problem (11), (12).

Let us find the eigenvalues and the corresponding eigenfunctions of the spectral prob-
lem (11), (12). We write the general solution of Eq. (11) in the form

X (x) = Acos(bx) + Bsin(bzx) + C cosh(bzx) + D sinh(bz), (13)

where A, B, C, and D are arbitrary constants. The function (13) satisfies the first two conditions
in (12) once C = —A and D = —B. Then the function (13) acquires the form

X (x) = A(cos(bzr) — cosh(bx)) + B(sin(bz) — sinh(bx)). (14)
The function (14) satisfies the last two boundary conditions in (12) once the system of equations

A(cos(bl) — cosh(bl)) + B(sin(bl) — sinh(bl)) = 0,

A(cos(bl) + cosh(bl)) + B(sin(bl) + sinh(bl)) =0 (15)
takes place. Equating the determinant of this system with zero, i.e.,
A = [008(bD) — cosh(bl) - sin(bl) = sinh(bl)| _ o511 1Y cos(bl) — cosh(bl) sin(bl)) =
cos(bl) + cosh(bl) sin(bl) + sinh(bl)
we arrive at the transcendental equation
tan(lb) = tanh(lb) (16)

for the eigenvalues. It follows from the graphs of the functions tan(lb) and tanh(lb) than within
each of the intervals (wn/l,mn/l + n/(4l)), n € Z,, there is exactly one root b, of Eq. (16), with
mn/l+m/(4l)—b, — 0 as n — oo. Therefore, this equation has a countable set of roots (eigenvalues)

bp < by <---<b, <...,

and in this case, as n — 0o, we have the asymptotic formula
™

_ —27n
b, = ; +4l+0( ).

From system (15), with allowance for Eq. (16), we express B via A and substitute the resulting
expression into (14). As a result, we find the corresponding system of eigenfunctions

1 [sin(b,(I —x)) sinh(b,(l —x))
Xalw) = \/1< sin(bl)  sinh(b,l)

Thus, the eigenvalues of problem (6), (7) are determined using the formula X\, = b'™ n € Z,,
where b, is the root of Eq. (16), and the eigenfunctions, by formula (17).

>, ne . (17)
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INITTAL-BOUNDARY VALUE PROBLEM FOR THE BEAM VIBRATION EQUATION 1341

The norm on the space W;(0,1), where s € N, is defined by the relation

£ s 0.0 = 120 + 1D F 1200y

Let

X, () 1 1 <sin(bn(l —x))  sinh(b,(l — 7))

= V1 + bVl sin(b,,1) sinh(b,[) >7 n € Ly, (18)

be the corresponding system of eigenfunctions of problem (6), (7).

The eigenfunctions X, (x) and X, (x) of the symmetric operator L corresponding to distinct
eigenvalues \,, and )\, are known to be orthogonal in the space L(0,1).

The following assertion holds.

Lemma 2. The eigenfunctions X,,(x) of the operator L that correspond to distinct eigenvalues
A\, = b2 n € Z, are orthonormal in the class W}(0,1).

Proof. Let X, (z) and X;(z) be the eigenfunctions of the operator L corresponding to the
eigenvalues A, and )\, respectively. This implies that

LXn - )\an, LXk == )\ka
By virtue of the relation X (¥ = b2 X,,, this means that

(X7 (2), X} (%)) = X/ (2) X (2)]o — X (2) X ()] + by, (X (), X (@)
= b, (X (@), Xi(2)) = 0.

Further, we have the following relations
(XS0, XY) = 0bi (X, X) =0, (X, X)) = bbi (X7, X}) = 0.

In a similar way, (X(QS),X,?S)) = 0. Indeed, if s is even, s = 2¢q, then

(X529, X7) = b6 (X,, X)) = 0.
If sis odd, s = 2¢ + 1, then

(X(QS)vXIgZS)) = biqbiq(X;z/v Xl/c/) =0.

Thus, (X7”Xk)W223(O,l) =0 for n # k.

Calculating the norm of the function X, (z) in the Sobolev space W3*(0,1), we arrive at the
relation

. 1 by’
1Xn @)z 0. = 1Xn (@) 2000 + 1D X (@) a0 = 4 e T =1
The proof of the lemma is complete.

Theorem 1. The system of eigenfunctions (18) of the spectral problem (11), (12) is a complete
orthonormal system in the Sobolev class W$%(0,1).

Proof. As is known from the theory of differential operators [13, p. 91], the system of eigen-
functions X, (z) of a self-adjoint operator is a complete orthogonal system in the space L, (0,1).
It follows from the relation X**)(z) = b X, (z) that

(X, X)) = 0.

n

Consequently, the system of functions (18) is a complete orthonormal system in the space W3*(0,1).

DIFFERENTIAL EQUATIONS Vol. 55 No. 10 2019



1342 KASIMOV, MADRAKHIMOV
If f(x) € W}(0,1), then there exists a sequence of functions g, (z) € W3*(0,1), k € N, such that

gk () — f(ﬂf)ngs(o,l) —+0 as k— oo,

where the series g;.(z) = > " b X, (x) converges in the norm of the space W;*(0,1). This implies

that for each function f(z) € W3*(0,1) and for each £ > 0 there exists a sequence of functions
gr(z) € W(0,1), k € N, for which we have the inequality
lgn (@) = F(@)llwzs 00y < /2
Further, for each ¢ > 0 there exists a number Ny (e) such that for all N > Ny (e) we have the

inequality
N
— Z bk x

n=0

3

< _.
2

Wi (0,1)

Let us introduce a Sobolev space H*(0,!) with the norm

HS(Ol)_ Z HDk HLg(Ol)?

0<k<s

1f (2

where s € N. In view of the equivalence of norms in the spaces H*(0,1) and W, (0,1), the inequalities

coll f (@) lws 0.y < N1 ()]

hold, where ¢y and ¢; are some positive constants. This implies that

‘gk(x) -

Using the embedding of the space H*¢(0,1) in the space H?**(0,1), we have the estimate

Mm—ZW&m

€
l9i(2) = F (@)l p2s 0,y < rllgn(@) = F(@)lwze00) < 1y

a0 < el f(@)|lwes o (19)

N

gi(@) =Y 0P X, ()

n=0

<
H4(0,1)

<

C
12
”245(0 l)

<
C

2
H#4s (O,l)

H?5(0,1)

Since

by using the triangle inequality, we arrive at

N N
Wm—zww <7 ) = @) ooy + || () — S B X

n=0 H25(0,1) n=0 H25(0,1)

c © +c — C1€
12 12'— 1<-
It follows that
(k) (k) !
[F2€: Zb X Hf Zb X <L E
W225(0 1) H23(07l)

Hence the system of eigenfunctions { X, (x)}>°, is complete in the space W3*(0,1) and, by Lemma 2,
orthonormal in this space. The proof of the theorem is complete.
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INITTAL-BOUNDARY VALUE PROBLEM FOR THE BEAM VIBRATION EQUATION 1343

Theorem 2. The system of eigenfunctions (18) of the spectral problem (11), (12) is a Riesz
basis in the Sobolev space H*(0,1).

Proof. By Theorem 1, the system of eigenfunctions X, (z) of the self-adjoint operator L is
a complete orthonormal system in the space W3;*(0,1). Hence if f(z) € H*(0,1), then there exists
a sequence of functions gy (z) € W2*(0,1) such that the following relation holds:

lgn () — f ()]

where g(z) = >0 b®) X, (z) converges in the norm of the space W2(0,1), i.e., for each ¢ > 0

n=0"n

there exits a positive integer M (g) such that for all £ > M(e) we have the inequality

llgx () — f(x)HHS(O,l) <e/2.

w0 as k— oo,

Further, for a given ¢ > 0 there exists a number Ny (¢) such that for all N > N, (e) we have the
inequality

€
< _.
W3 (0.0)

gi(@) =Y 0P X, ()

n=0

Taking into account the latter inequality, by virtue of the right estimate in (19), we conclude that

Using the embedding of the space H*(0,1) in the space H*(0,1), we will have
\ <|

Using this fact and the triangle inequality, we obtain

<
H25(0,0)

gi(@) =Y 0P X, ()

n=0

gi(@) = Y0P X, ()

n=0

<
C

2
”2 (O l)

gi(@) =Y 0P X, ()

n=0

gi(@) =Y P X, ()

n=0

3
<612

Hs(0,1) H22(0,1)

Hf(w) S X, @)

g
< (1+C1)2,

< @) = gk(@) e o) + ‘
H5(0,0)

ge(@) = 3B X, ()

H5(0,0)

with this inequality holding for each permutation of functions in the system {X,(z)}>,; ie.,
the system of eigenfunctions {X, (x)}5°, is a permutation basis in the class H*(0,1). It follows
that the system of eigenfunctions {X, (x)}>, forms a Riesz basis in the Sobolev space H*(0,1).
The proof of the theorem is complete.

The inner product is introduced in the space W5"**((0,1) x (0,1)) as follows:

(f(l’ay)yg(l’ay))w;l*ﬂ((m)x(m)) = (f(xay)79(337y))Lz((o,l)x(o,z))
+ (D7 f(@,9), D2 9(x9)) 1, 0yxoy T Py F@:9) DEg(,9)) o 0.0
+ (D;T:&S2 (‘I? y)? D;T:&S2g(m7 y))LQ((OJ)X(OJ)). (20)

Accordingly, the norm in this space is given by the relation

||f($7y)||12/v231’52((07l)><(07l)) = Hf(aj’y)||2L2((O,l)><(O,l)) + ||D;1f(90,y)||2L2((o7z)x(o7z))
+ D32 f (2, )12 00 <00y + 1D55%2 F @ 0) 1000 % 0.00)-
Lemma 3. If {¢n(x)} and {1,(2)} are complete orthonormal systems in the spaces W3 (0,1)
and W3?(0,1), respectively, then the system of all products fi,(z,2) = @r(x)Yn(2) is a complete
orthonormal system in the space W5**((0,1) x (0,1)).

DIFFERENTIAL EQUATIONS Vol. 55 No. 10 2019



1344 KASIMOV, MADRAKHIMOV

Proof. By the Fubini theorem, we have

”fkn(x’Z)”%/le’”((o,l)x(o,z)) = [lox(z )HLQ 0,) Hwn('z)HLg(OJ) + HD?S%(@”%Q(O,J)”Qpn(z)”%g(m)
+ ller @7, 00 D2 (2) 100 + 1D 0k (@)1 7,00 1 D320 (2) 17,0 0.
= (ler@) o000 + 105 @r(@)I7 00 1¥n () o0 + (lor @)1 Zo 00 + 105 01 (@)1 00.))
XDz (217000 = (k@) 120 0.0 T 11 D5 (@) 170 0.)) 1900 () L 0.0 HIDZ W () 20 0.)) =1

If k # k; or n # n, then, by virtue of the same theorem, we derive

(flm(m:z)afklnl(xaZ))W;1*32((o,z)x(o,1))
= (fkn(l‘?z)’fklnl(aj’Z))LQ((O,Z)X(O,Z)) + (D3 frn (@, 2), D3 fryn, (, z))L2((0 )% (0,1))

+ (D2 fin (2, 2), D2 froin, (€52)) 0.y x0.0y) T (D™ Fon (€5.2), D312 frony (€52)) Loy xo)
= (@), 000 () Ly 0.0 (¥ (2), ¥y (2)) L, 0.0) + (D3 (@), D30k, () 1y 0.0y ($n (2)s ¥ (2) L0

+ (pr(2), 1, (x))Lg(O,l)(D?Qpn(z)v D§2¢n1(z))L2(0,l)

+ (D3t en(z), D3t ooy, (2 ))L2oz)(D??/fn(Z),D?%I(Z))LQ(M)

= ((@r (), 0, () 0,0y + (D32 (), D3 iy () 1y (0,0)) (Y (2), ¥ma (2)) Lo

+ (((or (), on () 1y 00y + (D3t or (@), D3t or (2)) 1 0.0 (D220 (2), D20, (2)) 100

= ((@r (), 01, () Ly 0,) T (D32 epr (), D3 iy () 1y 0,0))

X ((¥n(2), ¥, (2 ))LgOl (D22 (2), D2 thn, (2 ))L2(0l))

Since the inner product (20) is defined for functions given on II = (0,1) x (0,1), we will prove the
completeness of the system {f.,(z,z)}. Suppose that in W;***(II) there exists a function f(z,2)
orthogonal to all functions fy,(x, z). We set

Fk(z) = (f(xa Z)7 Sok(x))wgl(o,l)'
It can be easily seen that the function Fj(z) belongs to the class W32(0,1). Then we have
(Fk(Z'), T/Jn(z))wy(o,z) = (f(flf, Z)a fkn(xa Z))ng’sz(((),l)x((),l)) = 0.

In view of the completeness of the system {v,(2)}, it follows that for almost all z and each k the
relations F.(z) = 0 hold. However, then for almost each z we have the relations

(f(xﬂz)ﬂok(x))wfl(o,l) =0

for all k. In view of the completeness of the system {¢(z)}, this implies that for almost each z
the set of those = for which f(x,z) # 0 has the measure zero. By the Fubini theorem, this implies
that on IT = (0,1) x (0,1) the function f(z,z) is zero almost everywhere. The proof of the lemma
is complete.

The inner product is introduced in the space Wy"**»*~(II) as follows:

(f(w),g(x))wgl~sz ~~~~~ v = (@), 9(2)) L,

© 3 (D) D)+ S (DI DI D)
oy 1<51<j2<N
+ > (DEDIz DY (), DD - DEN (), -

1<j1 <2< <GN <N
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Accordingly, the norm in this space is given by the relation

Lf @) ysr2 o oy = 1 ()17 >+Z||D;ﬁ )17, m
Ji=1
+ Y DS D f @)+ > |1D2, D222 -+ D f (@),
1<j1<j2<N 1<j1<g2 < <GN <N

By induction, using the assertion in Lemma 3 as the base case, we arrive at the following
assertion.

Lemma 4. If {p, (z1)},...,{ony(xN)} are complete orthonormal systems in the spaces
W3 (0,1),..., W3V (0,1), respectively, then the system of all products
fa(@) = foynn (@155 2N) = @0y (1) - @uy (W)

is a complete orthonormal system in the space Wy 2% 2N (),

.....

Let us apply Lemma 4 to our orthonormal systems. In the space W;*"'***»**¥(II) of functions

of N variables f(x) = f(x1,...,2y), a complete orthonormal system is formed by all possible
products

Uny-nn (mla s 7xN) = an (xl) Tt XnN (xN)a
where

<sin(bnj (I =x)) sinh(b,, (I — :1:)))
x) = . - . ) U2 € Z—H
\/1 + bis Vi sin(by,, 1) sinh (b, 1)
b, is the root of Eq. (16).
Thus, the following assertion holds.

Theorem 3. The system of eigenfunctions

N
{,Unr“nN(ajlv"'7$N)}(n1 ..... nN)er = {HXTLJ(':L‘J)} (21)
(n1 YezZy

of the spectml problem in (4), (5) is a complete orthonormal system in the Sobolev class
W251 252 2SN (1—[)'

The following assertion can be proved by analogy with Theorem 2.

Theorem 4. The system of eigenfunctions (21) of the spectral problem in (4), (5) is a Riesz
basis in the Sobolev space H®»*2-5N (II).

Corollary 1. If s; > k+ N/2, k € Z then the Fourier series of the function
f(.’B) € H51:525N (H) N Ck(l—[)

in the system of eigenfunctions (21) of the spectral problem (4), (5) converges in the norm of the
space C*(I1) to the function f(x).

Proof. Let s; > k+ N/2, k € Z. Then, by the Sobolev theorem, the embedding of the space
Hsvs2-58 (T1) in the space C*(II) takes place and the following estimate holds:

Il f (@)l crny < el f(@)||merenen qy, ¢ = const > 0. (22)

According to Theorem 4, each sequence of partial sums S, (z) € H**2*N(II) of the Fourier
series for the function f(x) € H®52*N(II) converges to the function f(x) € H®*>~*N(II) in the
norm of the space H®-*25N(II); i.e., we have the relation

1S (2) — f(2)]
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Therefore, making use of the estimate in (22), we conclude that for each function f(x) €
Hsvs258 (T1) N Ck(IT) we have the convergence

HSn(‘T) - f(x)HCk(H) —0 as n — oo.

This implies that the Fourier series of the function f(z) € H*::52+¥ (II) N C*(II) in the system
of eigenfunctions (21) of the spectral problem in (4), (5) converges in the norm of the space C*(II)
to the function f(x). The proof of Corollary 1 is complete.

3. EXISTENCE AND UNIQUENESS OF SOLUTION
OF THE INITIAL-BOUNDARY VALUE PROBLEM

Since the system of eigenfunctions (21) of the spectral problem in (4), (5) is a Riesz basis
in the Sobolev space H®**2*~(II), it follows that each function in this class can be represented
in the form of a convergent Fourier series in this system. For each ¢ > 0 we expand the solution
u(y,t) of problem (1), (3) in a Fourier series in the system of eigenfunctions (21) of the spectral
problem (4), (5),

u(y,t) = Z Z Tmmnz\z (t)vnl'”nN (y)a (23)

n1=0 ny=0

where Ty, .y (8) = (WY, 1), Vnyoonny (V) Vngoonn (¥)) = vazl X, (y;), and b, is the root of Eq. (16).
By virtue of (1), (2), the unknown functions T,,(t) = T}, ..., (t) satisfy the equations

DgtTn1---nN (t) + )\nl"'nNTnl"'nN (t) = fm...nN (t), p—1<a<p, p €N, (24)
with the initial conditions

DS T, o () = Pinyomns i=1,...,p, n; € N. (25)
t—0

The solution of the Cauchy problem in (24), (25) is known (e.g., see [14, pp. 601-602; 15,
pp. 221-223; 16, pp. 16-17]) and has the form
p .
ELI---”N (t) = ZSoi,(nr“nN)taizEa,a—i—i-l(,UnynnNta)
i=1

t

" / (t = 1) Ea s (= 7) faroomn (7) . (26)

[}

where the coefficients are determined as follows:
N N
e Z)‘"f‘ = —a? Z bi’;, (27)
j=1 j=1

a4
(lu’”l'“nNt ) , (28)
MNoag+a—i+1)

I
[M]#

Ea,afiJrl (:ummnzv ta)

q=0
oy _ N () (E =)™

Ea,a My -m t—71 = ) 29
st =3 o (20)
f(y7t) = Z Z fnl---nN(t)Unl---nN(yh---7yN), (30)

n1=0 ny=0
sz(y) = Z e Z Pi,(n1--nn)VUni-ny (yl’ e vyN)’ i1=1,...,p. (31)

n1=0 ny=0

DIFFERENTIAL EQUATIONS Vol. 55 No. 10 2019



INITTAL-BOUNDARY VALUE PROBLEM FOR THE BEAM VIBRATION EQUATION 1347

After substituting the solution (26) into the expansion (23), we arrive at the unique solution of
problem (1)—(3) in the form of the series

Z Z [Z@Z (n1-- nN)t Ea,oz—i+1(:unl-~.nNta)

n1=0 ny=0
t

+ / (t = 7) " Baltinsmn (t = ) frreomn (T) AT | Vnyeoonn (W1 -+ Y )- (32)

0
We have thus proved the following assertion, central to this paper.

Theorem 5. There exists a unique solution of problem (1)—(3), which can be represented in the
form of the series (32) with coefficients determined using formulas (27)—(31).

In structural mechanics, of most interest are the cases where o = 2, n = 1, N = 2,3, i.e.,
respectively, the equations
Ugt + a2 (uylylylyl + uyzyzyzyz) = f(ylv Y2, t)v

2 _
Uy +a (uylyly1y1 + Uysyayoy2 + uysysysys) - f(ylv Y2, Y2, t)'

If « =2, n=1, and N = 2, then the solution (32) has the form

sin a\/b + bt ¢
Yo, R bh, + byt
w(y1, Yo, t 7112:07;0 {801 \/bil +bi2 P2 COS(a\/ 1 2 )
N / sin(a,/b4 + b1, (t—7))

nin2 d ninz ) )
a\/bm+b;§2 Jrina (T) T}v (Y1, Y2)

0

where the coefficients are determined using the formulas

ylv y2 Z Z ©i, n1n2vn1n2 Y1, y2) 901'7711712 = (901(y1, y2)7 Uning (yb y2))7 1= 17 27

ny= 0 ’I’L2_O
2

Frana(t) = (F (Y1, Y2, 8)s Vnins (Y1, Y2), Vnyny (Y1, Y2)) = Han(yj)'

Jj=1

In the case where @ = 2, n = 1, and N = 3, the solution of problem (1)—(3) based on (32) is
determined by the formula

sin(a\/b}, + b, + b2 t)

u(y1, Y2, Yz, t) = Z Z Z [901)”1712"3 a\/b4n1+ b4n2+ b4n3

n1=0n2=0n3=0

- @2.minan cos(ay /b, + b, + b3, 1)

fn1n2n3 (T) dr Uninans (yla Y2, y3)7

N / sin(ay/b% +bi, + bk (t—7))
a\/by, +b5, +05,

0

where the coefficients are found using the formulas

©i(Y1,Y2,Y3) Z Z Z Piny mains Unanans (Y1, Y2, Ys),

n1—0 nog= O’I’Lg 0

Soi,?’u,?m,ns = (Qpl(ylv Y2, y3)7 Unlngn_g (yh Y2, y3))7 1= 17 27

fnl,ngmg(t) (f(yl Y2,Ys, ) n1n2n3(y1 y27y3)) vnlngng(y17y2ay3)) = HXn] (yj)
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