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Abstract—In the multidimensional case, we study the problem with initial and boundary con-
ditions for the equation of vibrations of a beam with one end clamped and the other hinged.
An existence and uniqueness theorem is proved for the posed problem in Sobolev classes. A so-
lution of the problem under consideration is constructed as the sum of a series in the system of
eigenfunctions of a multidimensional spectral problem for which the eigenvalues are determined
as the roots of a transcendental equation and the system of eigenfunctions is constructed. It is
shown that this system of eigenfunctions is complete and forms a Riesz basis in Sobolev spaces.
Based on the completeness of the system of eigenfunctions, a theorem about the uniqueness of
a solution to the posed initial–boundary value problem is stated.

DOI: 10.1134/S0012266119100094

1. STATEMENT OF THE PROBLEM

Many problems about vibrations of rods, beams, and plates are of great importance in structural
mechanics and lead to higher-order differential equations [1, pp. 141–143; 2, pp. 278–280 of the
Russian translation; 3, Ch. 3 of the Russian translation; 4, p. 45; 5, p. 35 of the Russian translation;
6, Ch. 4 of the Russian translation]. The beam vibration equation also arises when calculating the
stability of rotating shafts and studying ship vibration [7, Ch. 2].

In the present paper, in a domain Π × (0, T ), where Π = (0, l) × · · · × (0, l) and l, T are given
positive numbers, we consider the more general equation

Dα
0tu(y, t) + a2

N∑

j=1

∂4mu(y, t)

∂y4m
j

= f(y, t), (y, t) ∈ Π× (0, T ), p− 1 < α ≤ p, m, p ∈ N, (1)

with the initial conditions

lim
t→0

Dα−i
0t u(y, t) = ϕi(y), i = 1, . . . , p, (2)

and the boundary conditions

∂4ku(y, t)

∂y4k
j

∣∣∣∣
yj=0

= 0,
∂4k+1u(y, t)

∂y4k+1
j

∣∣∣∣
yj=0

= 0,

∂4ku(y, t)

∂y4k
j

∣∣∣∣
yj=l

= 0,
∂4k+2u(y, t)

∂y4k+2
j

∣∣∣∣
yj=l

= 0, k = 0, . . . ,m− 1, j = 1, . . . , N. (3)

Here (y, t) = (y1, . . . , yN , t) ∈ Π × (0, T ), the number a > 0 is fixed, and f(y, t) and ϕi(y),
i = 1, . . . , p, are given functions. The Riemann–Liouville integro-differentiation operator Dα of
order α with origin at a point s ∈ R is defined as follows:

Dα
stu(y, t) =

sgn(t− s)

Γ(−α)

t∫

s

u(y, τ) dτ

|t− τ |α+1
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if α < 0; Dα
stu(y, t) = u(y, t) if α = 0; and

Dα
stu(y, t) = sgnp(t− s)

dp

dtp
Dα−p

st u(y, t) =
sgnp+1(t− s)

Γ(l − α)

dp

dtp

t∫

s

u(y, τ) dτ

|t− τ |α−p+1

if p− 1 < α ≤ p, p ∈ N.

Note that separation of variables was used in the above papers to determine the fundamental fre-
quencies (eigenvalues) for the simplest beam vibration equation; however, the issues of justifying the
well-posedness of initial–boundary value problems have been left unexamined. In the papers [8–10],
initial–boundary value problems were studied for the beam vibration equation, i.e., for Eq. (1) with
α = 2, m = 1, N = 1. In the present paper, based on the papers [8, 11, 12], we state an existence
and uniqueness theorem for problem (1)–(3) in the class of generalized Sobolev functions. The so-
lution is constructed in the form of a series in the system of eigenfunctions of a multidimensional
problem.

2. COMPLETENESS OF SYSTEM OF EIGENFUNCTIONS
IN SOBOLEV CLASSES

We will seek a solution u(y, t) of problem (1)–(3) in the form of a Fourier series expansion

u(y, t) =

∞∑

n1=0

· · ·
∞∑

nN=0

Tn1···nN
(t)vn1···nN

(y),

where Tn1···nN
(t) = (u(y, t), vn1···nN

(y)) are the series coefficients, {vn(y) : n ∈ Z
N
+} is the system of

eigenfunctions for the multidimensional spectral problem

N∑

j=1

∂4mv(y)

∂y4m
j

− λv(y) = 0, (4)

∂4kv(y)

∂y4k
j

∣∣∣∣
yj=0

= 0,
∂4k+1v(y)

∂y4k+1
j

∣∣∣∣
yj=0

= 0,

∂4kv(y)

∂y4k
j

∣∣∣∣
yj=l

= 0,
∂4k+2v(y)

∂y4k+2
j

∣∣∣∣
yj=l

= 0, k = 0, . . . ,m− 1, j = 1, . . . , N, (5)

and λ is the variable separation constant.

We seek the eigenfunctions of problem (4), (5) in the form of the product

v(y) = X1(y1) · · ·XN(yN).

Then, to determine each of the functions Xi(yi), i = 1, . . . , N, instead of the spectral problem
in (4), (5), we arrive at one and the same one-dimensional spectral problem

X(4m)(x)− λX(x) = 0, 0 < x < l, (6)

X(4k)(0) = X(4k+1)(0) = X(4k)(l) = X(4k+2)(l) = 0, k = 0, . . . ,m− 1. (7)

Here the Xi(yi) are denoted by X(x) for simplicity.

By L we denote the differential operator generated by the differential expression �(X) ≡ X(4m)(x)
on the set W 4m

2 (0, l) ∩ C4m−1[0, l], of, generally speaking, complex-valued functions satisfying the
boundary conditions in (7).

The following assertion holds.

Lemma 1. The operator LX ≡ X(4m)(x) with domain

D(L) = {X(x) : X(x) ∈ W 4m
2 (0, l) ∩C4m−1[0, l],

X(4k)(0) = X(4k+1)(0) = X(4k)(l) = X(4k+2)(l) = 0, k = 0, . . . ,m− 1},
is a positive symmetric operator in the space L2(0, l).
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Proof. The positiveness of the operator L in the space L2(0, l) follows from the relations

(LX,X) =

l∫

0

LX ·X(x) dx =

l∫

0

X(4m)(x)X(x) dx

= X(4m−1)(x)X(x)|l0 −
l∫

0

X(4m−1)(x)X ′(x) dx

= X(4m−1)(x)X(x)|l0 −X(4m−2)(x)X ′(x)|l0 +
l∫

0

X(4m−2)(x)X ′′(x) dx = . . .

= X(4m−1)(x)X(x)|l0 −X(4m−2)(x)X ′(x)|l0 + · · · +X(2m+1)(x)X(2m−2)(x)|l0

−X(2m)(x)X(2m−1)(x)|l0 +
l∫

0

X(2m)(x)X(2m)(x) dx =

l∫

0

|X(2m)(x)|2 dx ≥ 0.

Consequently, each eigenvalue of the operator L is nonnegative.

Let us prove that the operator L is symmetric in the space L2(0, l). Indeed, since the functions f
and ḡ belong to the domain D(L), we have Lf ∈ L2(0, l) and Lḡ = Lg ∈ L2(0, l). Further,
the functions f and ḡ satisfy the boundary conditions

f (4k)(0) = f (4k+1)(0) = f (4k)(l) = f (4k+2)(l) = 0

and
g(4k)(0) = g(4k+1)(0) = g(4k)(l) = g(4k+2)(l) = 0

for k = 0, . . . ,m− 1. Then

(Lf, g) =

l∫

0

Lf · g(x) dx=
l∫

0

f (4m)(x)g(x) dx=f (4m−1)(x)g(x)|l0 −
l∫

0

f (4m−1)(x)g′(x) dx

= f (4m−1)(x)g(x)|l0 − f (4m−2)(x)g′(x)|l0 +
l∫

0

f (4m−2)(x)g′′(x) dx = · · · = f (4m−1)(x)g(x)|l0

−f (4m−2)(x)g′(x)|l0+ · · ·+f ′(x)g(4m−2)(x)|l0−f(x)g(4m−1)(x)|l0+
l∫

0

f(x)g(4m)(x) dx=(f, Lg)

for k = 0, . . . ,m − 1. Thus, (Lf, g) = (f, Lg) for any f, g ∈ D(L). The proof of the lemma is
complete.

It is easily seen that λ = 0 is not an eigenvalue of problem (6), (7). Indeed, for λ = 0 the general
solution of Eq. (6) has the form

X(x) = C1

x4m−1

(4m− 1)!
+ C2

x4m−2

(4m− 2)!
+ · · ·+ C4k

x4m−4k

(4m− 4k)!
+ · · · +C4m, (8)

where the Ci are arbitrary constants. The function (8) satisfies the first two conditions in (7) once
the relations

X(4k)(0) = C4(m−k) = 0, X(4k+1)(0) = C4(m−k)−1 = 0, k = 0, . . . ,m− 1,
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hold and the last two conditions in (7) once for each k = 0, . . . ,m − 1 we have the system of
equations

C1

l4(m−k)−1

(4(m− k)− 1)!
+ C2

l4(m−k)−2

(4(m− k)− 2)!
+ · · ·+ C4(m−k)−3

l3

3!
+ C4(m−k)−2

l2

2!
= 0,

C1

l4(m−k)−3

(4(m− k)− 3)!
+ C2

l4(m−k)−4

(4(m− k)− 4)!
+ · · ·+ C4(m−k)−3

l

1!
+ C4(m−k)−2 = 0. (9)

If k = m− 1, then from (9) we obtain

C1

l3

3!
+ C2

l2

2!
= 0, C1

l

1!
+ C2 = 0.

Since the determinant of this linear system is distinct from zero, the system has only the zero
solution C1 = C2 = 0. Taking this into account, it follows from (9) for k = m− 2 that

C5

l3

3!
+ C6

l2

2!
= 0, C5

l

1!
+ C6 = 0.

Hence, as above, C5 = 0, C6 = 0. In a similar way, continuing this process, we will successively
obtain C9 = 0, C10 = 0; C13 = 0, C14 = 0; . . . ; C4m−3 = 0, C4m−2 = 0. Thus, C4(m−k)−3 = 0,
C4(m−k)−2 = 0 for all k = 0, . . . ,m − 1. Hence X(x) ≡ 0; i.e., λ = 0 is not an eigenvalue of
problem (6), (7).

Let λ = b4m, b > 0. Then the set of roots of the characteristic equation μ4m−b4m = 0 for Eq. (6)
consists of the numbers

μj = beijπ/(2m), j = 0, . . . , 4m− 1.

The following factorization identity holds for the operator L:

L− b4mI =
d4m

dx4m
− b4mI =

4m−1∏

j=0

(
d

dx
− μjI

)
=

2m−1∏

j=0

(
d2

dx2
− μ2

jI

)

=

m−1∏

j=0

(
d4

dx4
− μ4

jI

)
=

(
d4

dx4
− b4I

)m−1∏

j=1

(
d4

dx4
− μ4

j

)
. (10)

Here I is the identity operator and the μ4
j = b4ei2jπ/m, j = 1, . . . ,m− 1, are nonpositive numbers.

It follows from identity (10) that the operator LX ≡ X(4m)(x) with domain D(L) has an eigen-
function X = X(x) if and only if the function X(x) is a nontrivial solution of the problem

X(4)(x) = b4X(x), 0 < x < l, (11)

X(0) = X ′(0) = X(l) = X ′′(l) = 0. (12)

Indeed, let X(4m)(x) = b4mX(x), X(x) ∈ D(L) and suppose that X(x) �≡ 0 is not a solution to
problem (11), (12). By virtue of (10), we have

m−1∏

j=1

(
d4

dx4
− μ4

jI

)(
d4

dx4
− b4I

)
X ≡ 0, X(x) ∈ D(L), X(x) �≡ 0.

Since the spectral problem (11), (12) has only positive eigenvalues, this identity amounts to the
identity

m−1∏

j=2

(
d4

dx4
− μ4

jI

)(
d4

dx4
− b4I

)
X ≡ 0, X(x) ∈ D(L), X(x) �≡ 0.
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In a similar way, we obtain

m−1∏

j=3

(
d4

dx4
− μ4

jI

)(
d4

dx4
− b4I

)
X ≡ 0, X(x) ∈ D(L), X(x) �≡ 0.

Continuing this process, we arrive at the identity
(

d4

dx4
− b4I

)
X ≡ 0, X(x) ∈ D(L), X(x) �≡ 0.

However, this is in contradiction with the assumption made.

Thus, the operator LX ≡ X(4m)(x) with domain D(L) has an eigenfunction X(x) if and only
if the function X(x) is a nontrivial solution of problem (11), (12). Consequently, instead of the
spectral problem (6), (7) we obtain the spectral problem (11), (12).

Let us find the eigenvalues and the corresponding eigenfunctions of the spectral prob-
lem (11), (12). We write the general solution of Eq. (11) in the form

X(x) = A cos(bx) +B sin(bx) + C cosh(bx) +D sinh(bx), (13)

where A, B, C, and D are arbitrary constants. The function (13) satisfies the first two conditions
in (12) once C = −A and D = −B. Then the function (13) acquires the form

X(x) = A(cos(bx)− cosh(bx)) +B(sin(bx)− sinh(bx)). (14)

The function (14) satisfies the last two boundary conditions in (12) once the system of equations

A(cos(bl)− cosh(bl)) +B(sin(bl)− sinh(bl)) = 0,

A(cos(bl) + cosh(bl)) +B(sin(bl) + sinh(bl)) = 0
(15)

takes place. Equating the determinant of this system with zero, i.e.,

Δ =

∣∣∣∣∣
cos(bl)− cosh(bl) sin(bl)− sinh(bl)

cos(bl) + cosh(bl) sin(bl) + sinh(bl)

∣∣∣∣∣ = 2(sinh(bl) cos(bl)− cosh(bl) sin(bl)) = 0,

we arrive at the transcendental equation

tan(lb) = tanh(lb) (16)

for the eigenvalues. It follows from the graphs of the functions tan(lb) and tanh(lb) than within
each of the intervals (πn/l, πn/l + π/(4l)), n ∈ Z+, there is exactly one root bn of Eq. (16), with
πn/l+π/(4l)−bn → 0 as n → ∞. Therefore, this equation has a countable set of roots (eigenvalues)

b0 < b1 < · · · < bn < . . . ,

and in this case, as n → ∞, we have the asymptotic formula

bn =
πn

l
+

π

4l
+O(e−2πn).

From system (15), with allowance for Eq. (16), we express B via A and substitute the resulting
expression into (14). As a result, we find the corresponding system of eigenfunctions

Xn(x) =
1√
l

(
sin(bn(l − x))

sin(bnl)
− sinh(bn(l − x))

sinh(bnl)

)
, n ∈ Z+. (17)

Thus, the eigenvalues of problem (6), (7) are determined using the formula λn = b4mn , n ∈ Z+,
where bn is the root of Eq. (16), and the eigenfunctions, by formula (17).
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The norm on the space W s
2 (0, l), where s ∈ N, is defined by the relation

‖f‖2W s
2 (0,l) = ‖f‖2L2(0,l)

+ ‖Dsf‖2L2(0,l)
.

Let

Xn(x) =
1√

1 + b4sn

1√
l

(
sin(bn(l − x))

sin(bnl)
− sinh(bn(l − x))

sinh(bnl)

)
, n ∈ Z+, (18)

be the corresponding system of eigenfunctions of problem (6), (7).

The eigenfunctions Xn(x) and Xk(x) of the symmetric operator L corresponding to distinct
eigenvalues λn and λk are known to be orthogonal in the space L2(0, l).

The following assertion holds.

Lemma 2. The eigenfunctions Xn(x) of the operator L that correspond to distinct eigenvalues
λn = b4mn , n ∈ Z+, are orthonormal in the class W 2s

2 (0, l).

Proof. Let Xn(x) and Xk(x) be the eigenfunctions of the operator L corresponding to the
eigenvalues λn and λk, respectively. This implies that

LXn = λnXn, LXk = λkXk.

By virtue of the relation X(4)
n = b4nXn, this means that

(X ′′
n(x),X

′′
k (x)) = X ′′

n(x)X
′
k(x)|l0 −X ′′′

n (x)Xk(x)|l0 + b4n(Xn(x),Xk(x))

= b4n(Xn(x),Xk(x)) = 0.

Further, we have the following relations

(X(4)
n ,X

(4)
k ) = b4nb

4
k(Xn,Xk) = 0, (X(6)

n ,X
(6)
k ) = b4nb

4
k(X

′′
n ,X

′′
k ) = 0.

In a similar way, (X(2s)
n ,X

(2s)
k ) = 0. Indeed, if s is even, s = 2q, then

(X(2s)
n ,X(2s)

k ) = b4qn b4qk (Xn,Xk) = 0.

If s is odd, s = 2q + 1, then

(X(2s)
n ,X

(2s)
k ) = b4qn b4qk (X ′′

n ,X
′′
k ) = 0.

Thus, (Xn,Xk)W 2s
2 (0,l) = 0 for n �= k.

Calculating the norm of the function Xn(x) in the Sobolev space W 2s
2 (0, l), we arrive at the

relation

‖Xn(x)‖2W 2s
2 (0,l) = ‖Xn(x)‖2L2(0,l)

+ ‖D2sXn(x)‖2L2(0,l)
=

1

1 + b4sn
+

b4sn
1 + b4sn

= 1.

The proof of the lemma is complete.

Theorem 1. The system of eigenfunctions (18) of the spectral problem (11), (12) is a complete
orthonormal system in the Sobolev class W 2s

2 (0, l).

Proof. As is known from the theory of differential operators [13, p. 91], the system of eigen-
functions Xn(x) of a self-adjoint operator is a complete orthogonal system in the space L2(0, l).
It follows from the relation X(4s)

n (x) = b4sn Xn(x) that

(X(4s)
n ,X

(4s)
k ) = 0.

Consequently, the system of functions (18) is a complete orthonormal system in the space W 4s
2 (0, l).
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If f(x) ∈ W 2s
2 (0, l), then there exists a sequence of functions gk(x) ∈ W 4s

2 (0, l), k ∈ N, such that

‖gk(x)− f(x)‖W 2s
2 (0,l) → 0 as k → ∞,

where the series gk(x) =
∑∞

n=0 b
(k)
n Xn(x) converges in the norm of the space W 4s

2 (0, l). This implies
that for each function f(x) ∈ W 2s

2 (0, l) and for each ε > 0 there exists a sequence of functions
gk(x) ∈ W 4s

2 (0, l), k ∈ N, for which we have the inequality

‖gk(x)− f(x)‖W 2s
2 (0,l) < ε/2.

Further, for each ε > 0 there exists a number Nk(ε) such that for all N ≥ Nk(ε) we have the
inequality ∥∥∥∥gk(x)−

N∑

n=0

b(k)n Xn(x)

∥∥∥∥
W 4s

2 (0,l)

<
ε

2
.

Let us introduce a Sobolev space Hs(0, l) with the norm

‖f(x)‖2Hs(0,l) =
∑

0≤k≤s

‖Dkf(x)‖2L2(0,l)
,

where s ∈ N. In view of the equivalence of norms in the spaces Hs(0, l) and W s
2 (0, l), the inequalities

c0‖f(x)‖W s
2 (0,l) ≤ ‖f(x)‖Hs(0,l) ≤ c1‖f(x)‖W s

2 (0,l) (19)

hold, where c0 and c1 are some positive constants. This implies that

∥∥∥∥gk(x)−
N∑

n=0

b(k)n Xn(x)

∥∥∥∥
H4s(0,l)

≤ c1

∥∥∥∥gk(x)−
N∑

n=0

b(k)n Xn(x)

∥∥∥∥
W 4s

2 (0,l)

< c1
ε

2
.

Using the embedding of the space H4s(0, l) in the space H2s(0, l), we have the estimate

∥∥∥∥gk(x)−
N∑

n=0

b(k)n Xn(x)

∥∥∥∥
H2s(0,l)

≤
∥∥∥∥gk(x)−

N∑

n=0

b(k)n Xn(x)

∥∥∥∥
H4s(0,l)

< c1
ε

2
.

Since
‖gk(x)− f(x)‖H2s(0,l) ≤ c1‖gk(x)− f(x)‖W 2s

2 (0,l) < c1
ε

2
,

by using the triangle inequality, we arrive at

∥∥∥∥f(x)−
N∑

n=0

b(k)n Xn(x)

∥∥∥∥
H2s(0,l)

≤ ‖f(x)− gk(x)‖H2s(0,l) +

∥∥∥∥gk(x)−
N∑

n=0

b(k)n Xn(x)

∥∥∥∥
H2s(0,l)

< c1
ε

2
+ c1

ε

2
= c1ε.

It follows that

‖f(x)−
N∑

n=0

b(k)n Xn(x)‖
W 2s

2 (0,l)

<
1

c0
‖f(x)−

N∑

n=0

b(k)n Xn(x)‖
H2s(0,l)

<
c1
c0
ε.

Hence the system of eigenfunctions {Xn(x)}∞n=0 is complete in the space W 2s
2 (0, l) and, by Lemma 2,

orthonormal in this space. The proof of the theorem is complete.

DIFFERENTIAL EQUATIONS Vol. 55 No. 10 2019



INITIAL–BOUNDARY VALUE PROBLEM FOR THE BEAM VIBRATION EQUATION 1343

Theorem 2. The system of eigenfunctions (18) of the spectral problem (11), (12) is a Riesz
basis in the Sobolev space Hs(0, l).

Proof. By Theorem 1, the system of eigenfunctions Xn(x) of the self-adjoint operator L is
a complete orthonormal system in the space W 2s

2 (0, l). Hence if f(x) ∈ Hs(0, l), then there exists
a sequence of functions gk(x) ∈ W 2s

2 (0, l) such that the following relation holds:

‖gk(x)− f(x)‖Hs(0,l) → 0 as k → ∞,

where gk(x) =
∑∞

n=0 b
(k)
n Xn(x) converges in the norm of the space W 2s

2 (0, l), i.e., for each ε > 0
there exits a positive integer M(ε) such that for all k ≥ M(ε) we have the inequality

‖gk(x)− f(x)‖Hs(0,l) < ε/2.

Further, for a given ε > 0 there exists a number Nk(ε) such that for all N ≥ Nk(ε) we have the
inequality ∥∥∥∥gk(x)−

N∑

n=0

b(k)n Xn(x)

∥∥∥∥
W 2s

2 (0,l)

<
ε

2
.

Taking into account the latter inequality, by virtue of the right estimate in (19), we conclude that

∥∥∥∥gk(x)−
N∑

n=0

b(k)n Xn(x)

∥∥∥∥
H2s(0,l)

≤ c1

∥∥∥∥gk(x)−
N∑

n=0

b(k)n Xn(x)

∥∥∥∥
W 2s

2 (0,l)

< c1
ε

2
.

Using the embedding of the space H2s(0, l) in the space Hs(0, l), we will have

∥∥∥∥gk(x)−
N∑

n=0

b(k)n Xn(x)

∥∥∥∥
Hs(0,l)

≤
∥∥∥∥gk(x)−

N∑

n=0

b(k)n Xn(x)

∥∥∥∥
H2s(0,l)

< c1
ε

2
.

Using this fact and the triangle inequality, we obtain

∥∥∥∥f(x)−
N∑

n=0

b(k)n Xn(x)

∥∥∥∥
Hs(0,l)

≤ ‖f(x)− gk(x)‖Hs(0,l) +

∥∥∥∥gk(x)−
N∑

n=0

b(k)n Xn(x)

∥∥∥∥
Hs(0,l)

< (1 + c1)
ε

2
,

with this inequality holding for each permutation of functions in the system {Xn(x)}∞n=0; i.e.,
the system of eigenfunctions {Xn(x)}∞n=0 is a permutation basis in the class Hs(0, l). It follows
that the system of eigenfunctions {Xn(x)}∞n=0 forms a Riesz basis in the Sobolev space Hs(0, l).
The proof of the theorem is complete.

The inner product is introduced in the space W s1,s2
2 ((0, l) × (0, l)) as follows:

(f(x, y), g(x, y))W s1,s2
2 ((0,l)×(0,l)) = (f(x, y), g(x, y))L2((0,l)×(0,l))

+ (Ds1
x f(x, y),Ds1

x g(x, y))L2((0,l)×(0,l)) + (Ds2
y f(x, y),Ds2

y g(x, y))
L2((0,l)×(0,l))

+ (Ds1,s2
x,y f(x, y),Ds1,s2

x,y g(x, y))
L2((0,l)×(0,l))

. (20)

Accordingly, the norm in this space is given by the relation

‖f(x, y)‖2W s1 ,s2
2 ((0,l)×(0,l)) = ‖f(x, y)‖2L2((0,l)×(0,l)) + ‖Ds1

x f(x, y)‖2L2((0,l)×(0,l))

+ ‖Ds2
y f(x, y)‖2L2((0,l)×(0,l)) + ‖Ds1,s2

x,y f(x, y)‖2L2((0,l)×(0,l)).

Lemma 3. If {ϕk(x)} and {ψn(z)} are complete orthonormal systems in the spaces W s1
2 (0, l)

and W s2
2 (0, l), respectively, then the system of all products fkn(x, z) = ϕk(x)ψn(z) is a complete

orthonormal system in the space W s1,s2
2 ((0, l) × (0, l)).
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Proof. By the Fubini theorem, we have

‖fkn(x, z)‖2W s1 ,s2
2 ((0,l)×(0,l)) = ‖ϕk(x)‖2L2(0,l)

‖ψn(z)‖2L2(0,l)
+ ‖Ds1

x ϕk(x)‖2L2(0,l)
‖ψn(z)‖2L2(0,l)

+ ‖ϕk(x)‖2L2(0,l)
‖Ds2

z ψn(z)‖2L2(0,l)
+ ‖Ds1

x ϕk(x)‖2L2(0,l)
‖Ds2

z ψn(z)‖2L2(0,l)

= (‖ϕk(x)‖2L2(0,l)
+ ‖Ds1

x ϕk(x)‖2L2(0,l)
)‖ψn(z)‖2L2(0,l)

+ (‖ϕk(x)‖2L2(0,l)
+ ‖Ds1

x ϕk(x)‖2L2(0,l)
)

× ‖Ds2
z ψn(z)‖2L2(0,l)

=(‖ϕk(x)‖2L2(0,l)
+‖Ds1

x ϕk(x)‖2L2(0,l)
)(‖ψn(z)‖2L2(0,l)

+‖Ds2
z ψn(z)‖2L2(0,l)

)=1.

If k �= k1 or n �= n1 then, by virtue of the same theorem, we derive

(fkn(x, z), fk1n1
(x, z))W s1,s2

2 ((0,l)×(0,l))

= (fkn(x, z), fk1n1
(x, z))L2((0,l)×(0,l)) + (Ds1

x fkn(x, z),D
s1
x fk1n1

(x, z))L2((0,l)×(0,l))

+ (Ds2
z fkn(x, z),D

s2
z fk1n1

(x, z))L2((0,l)×(0,l)) + (Ds1,s2
x,z fkn(x, z),D

s1,s2
x,z fk1n1

(x, z))
L2((0,l)×(0,l))

= (ϕk(x), ϕk1
(x))L2(0,l)

(ψn(z), ψn1
(z))L2(0,l)

+ (Ds1
x ϕk(x),D

s1
x ϕk1

(x))L2(0,l)
(ψn(z), ψn1

(z))L2(0,l)

+ (ϕk(x), ϕk1
(x))L2(0,l)

(Ds2
z ψn(z),D

s2
z ψn1

(z))L2(0,l)

+ (Ds1
x ϕk(x),D

s1
x ϕk1

(x))L2(0,l)
(Ds2

z ψn(z),D
s2
z ψn1

(z))L2(0,l)

= ((ϕk(x), ϕk1
(x))L2(0,l)

+ (Ds1
x ϕk(x),D

s1
x ϕk1

(x))L2(0,l)
)(ψn(z), ψn1

(z))L2(0,l)

+ (((ϕk(x), ϕk1
(x))L2(0,l)

+ (Ds1
x ϕk(x),D

s1
x ϕk1

(x))L2(0,l)
)(Ds2

z ψn(z),D
s2
z ψn1

(z))L2(0,l)

= ((ϕk(x), ϕk1
(x))L2(0,l)

+ (Ds1
x ϕk(x),D

s1
x ϕk1

(x))L2(0,l)
)

× ((ψn(z), ψn1
(z))L2(0,l)

+ (Ds2
z ψn(z),D

s2
z ψn1

(z))L2(0,l)
) = 0.

Since the inner product (20) is defined for functions given on Π = (0, l)× (0, l), we will prove the
completeness of the system {fkn(x, z)}. Suppose that in W s1,s2

2 (Π) there exists a function f(x, z)
orthogonal to all functions fkn(x, z). We set

Fk(z) = (f(x, z), ϕk(x))W s1
2 (0,l).

It can be easily seen that the function Fk(z) belongs to the class W s2
2 (0, l). Then we have

(Fk(z), ψn(z))W s2
2 (0,l) = (f(x, z), fkn(x, z))W s1,s2

2 ((0,l)×(0,l)) = 0.

In view of the completeness of the system {ψn(z)}, it follows that for almost all z and each k the
relations Fk(z) = 0 hold. However, then for almost each z we have the relations

(f(x, z), ϕk(x))W s1
2 (0,l) = 0

for all k. In view of the completeness of the system {ϕk(x)}, this implies that for almost each z
the set of those x for which f(x, z) �= 0 has the measure zero. By the Fubini theorem, this implies
that on Π = (0, l) × (0, l) the function f(x, z) is zero almost everywhere. The proof of the lemma
is complete.

The inner product is introduced in the space W s1,s2,...,sN
2 (Π) as follows:

(f(x), g(x))W s1,s2,...,sN
2 (Π) = (f(x), g(x))L2(Π)

+

N∑

j1=1

(D
sj1
xj1

f(x),D
sj1
xj1

g(x))
L2(Π)

+
∑

1≤j1<j2≤N

(D
sj1
xj1

D
sj2
xj2

f(x),D
sj1
xj1

D
sj2
xj2

g(x))
L2(Π)

+ . . .

+
∑

1≤j1<j2<···<jN≤N

(D
sj1
xj1

D
sj2
xj2

· · ·DsjN
xjN

f(x),D
sj1
xj1

D
sj2
xj2

· · ·DsjN
xjN

g(x))
L2(Π)

.
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Accordingly, the norm in this space is given by the relation

‖f(x)‖2
W

s1,s2,...,sN
2 (Π)

= ‖f(x)‖2L2(Π) +

N∑

j1=1

‖Dsj1
xj1

f(x)‖2L2(Π)

+
∑

1≤j1<j2≤N

‖Dsj1
xj1

D
sj2
xj2

f(x)‖2L2(Π) + · · ·+
∑

1≤j1<j2<···<jN≤N

‖Dsj1
xj1

D
sj2
xj2

· · ·DsjN
xjN

f(x)‖2L2(Π).

By induction, using the assertion in Lemma 3 as the base case, we arrive at the following
assertion.

Lemma 4. If {ϕn1
(x1)}, . . . , {ϕnN

(xN)} are complete orthonormal systems in the spaces
W 2s1

2 (0, l), . . . ,W 2sN
2 (0, l), respectively, then the system of all products

fn(x) = fn1···nN
(x1, . . . , xN) = ϕn1

(x1) · · ·ϕnN
(xN)

is a complete orthonormal system in the space W 2s1,2s2,...,2sN
2 (Π).

Let us apply Lemma 4 to our orthonormal systems. In the space W 2s1,2s2,...,2sN
2 (Π) of functions

of N variables f(x) = f(x1, . . . , xN ), a complete orthonormal system is formed by all possible
products

vn1···nN
(x1, . . . , xN) = Xn1

(x1) · · ·XnN
(xN),

where

Xnj
(x) =

1√
1 + b4snj

1√
l

(
sin(bnj

(l − x))

sin(bnj
l)

−
sinh(bnj

(l − x))

sinh(bnj
l)

)
, nj ∈ Z+,

bnj
is the root of Eq. (16).

Thus, the following assertion holds.

Theorem 3. The system of eigenfunctions

{vn1···nN
(x1, . . . , xN)}(n1,...,nN )∈ZN

+
=

{ N∏

j=1

Xnj
(xj)

}

(n1,...,nN )∈ZN
+

(21)

of the spectral problem in (4), (5) is a complete orthonormal system in the Sobolev class
W 2s1,2s2,...,2sN

2 (Π).

The following assertion can be proved by analogy with Theorem 2.

Theorem 4. The system of eigenfunctions (21) of the spectral problem in (4), (5) is a Riesz
basis in the Sobolev space Hs1,s2,...,sN (Π).

Corollary 1. If sj > k +N/2, k ∈ Z+ then the Fourier series of the function

f(x) ∈ Hs1,s2,...,sN (Π) ∩Ck(Π)

in the system of eigenfunctions (21) of the spectral problem (4), (5) converges in the norm of the
space Ck(Π) to the function f(x).

Proof. Let sj > k +N/2, k ∈ Z+. Then, by the Sobolev theorem, the embedding of the space
Hs1,s2,...,sN (Π) in the space Ck(Π) takes place and the following estimate holds:

‖f(x)‖Ck(Π) ≤ c‖f(x)‖Hs1 ,s2,...,sN (Π), c = const > 0. (22)

According to Theorem 4, each sequence of partial sums Sn(x) ∈ Hs1,s2,...,sN (Π) of the Fourier
series for the function f(x) ∈ Hs1,s2,...,sN (Π) converges to the function f(x) ∈ Hs1,s2,...,sN (Π) in the
norm of the space Hs1,s2,...,sN (Π); i.e., we have the relation

‖Sn(x)− f(x)‖Hs1,s2,...,sN (Π) → 0 as n → ∞.
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Therefore, making use of the estimate in (22), we conclude that for each function f(x) ∈
Hs1,s2,...,sN (Π) ∩ Ck(Π) we have the convergence

‖Sn(x)− f(x)‖Ck(Π) → 0 as n → ∞.

This implies that the Fourier series of the function f(x) ∈ Hs1,s2,...,sN (Π)∩Ck(Π) in the system
of eigenfunctions (21) of the spectral problem in (4), (5) converges in the norm of the space Ck(Π)
to the function f(x). The proof of Corollary 1 is complete.

3. EXISTENCE AND UNIQUENESS OF SOLUTION
OF THE INITIAL–BOUNDARY VALUE PROBLEM

Since the system of eigenfunctions (21) of the spectral problem in (4), (5) is a Riesz basis
in the Sobolev space Hs1,s2,...,sN (Π), it follows that each function in this class can be represented
in the form of a convergent Fourier series in this system. For each t > 0 we expand the solution
u(y, t) of problem (1), (3) in a Fourier series in the system of eigenfunctions (21) of the spectral
problem (4), (5),

u(y, t) =

∞∑

n1=0

· · ·
∞∑

nN=0

Tn1···nN
(t)vn1···nN

(y), (23)

where Tn1···nN
(t) = (u(y, t), vn1···nN

(y)), vn1···nN
(y)) =

∏N

j=1 Xnj
(yj), and bnj

is the root of Eq. (16).

By virtue of (1), (2), the unknown functions Tn(t) = Tn1···nN
(t) satisfy the equations

Dα
0tTn1···nN

(t) + λn1···nN
Tn1···nN

(t) = fn1...nN
(t), p− 1 < α ≤ p, p ∈ N, (24)

with the initial conditions

lim
t→0

Dα−i
0t Tn1···nN

(t) = ϕi,n1···nN
, i = 1, . . . , p, nj ∈ N. (25)

The solution of the Cauchy problem in (24), (25) is known (e.g., see [14, pp. 601–602; 15,
pp. 221–223; 16, pp. 16–17]) and has the form

Tn1...nN
(t) =

p∑

i=1

ϕi,(n1···nN )t
α−iEα,α−i+1(μn1···nN

tα)

+

t∫

0

(t− τ)
α−1

Eα,α[μn1···nN
(t− τ)

α
]fn1···nN

(τ) dτ, (26)

where the coefficients are determined as follows:

μn1···nN
= −λn1···nN

= −a2

N∑

j=1

λnj
= −a2

N∑

j=1

b4nnj
, (27)

Eα,α−i+1(μn1···nN
tα) =

∞∑

q=0

(μn1···nN
tα)

q

Γ(αq + α− i+ 1)
, (28)

Eα,α(μn1···nN
(t− τ)

α
) =

∞∑

q=1

(μn1···nN
)
q−1

(t− τ)
α(q−1)

Γ(αq)
, (29)

f(y, t) =

∞∑

n1=0

· · ·
∞∑

nN=0

fn1···nN
(t)vn1···nN

(y1, . . . , yN), (30)

ϕi(y) =

∞∑

n1=0

· · ·
∞∑

nN=0

ϕi,(n1···nN )vn1···nN
(y1, . . . , yN), i = 1, . . . , p. (31)
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After substituting the solution (26) into the expansion (23), we arrive at the unique solution of
problem (1)–(3) in the form of the series

u(y, t) =

∞∑

n1=0

· · ·
∞∑

nN=0

[ p∑

i=1

ϕi,(n1···nN )t
α−iEα,α−i+1(μn1···nN

tα)

+

t∫

0

(t− τ)
α−1

Eα,α[μn1···nN
(t− τ)

α
]fn1···nN

(τ) dτ

]
vn1···nN

(y1, . . . , yN). (32)

We have thus proved the following assertion, central to this paper.

Theorem 5. There exists a unique solution of problem (1)–(3), which can be represented in the
form of the series (32) with coefficients determined using formulas (27)–(31).

In structural mechanics, of most interest are the cases where α = 2, n = 1, N = 2, 3, i.e.,
respectively, the equations

utt + a2(uy1y1y1y1
+ uy2y2y2y2

) = f(y1, y2, t),

utt + a2(uy1y1y1y1
+ uy2y2y2y2

+ uy3y3y3y3
) = f(y1, y2, y2, t).

If α = 2, n = 1, and N = 2, then the solution (32) has the form

u(y1, y2, t) =

∞∑

n1=0

∞∑

n2=0

[
ϕ1,n1n2

sin (a
√

b4n1
+ b4n2

t)

a
√

b4n1
+ b4n2

+ ϕ2,n1n2
cos(a

√
b4n1

+ b4n2
t)

+

t∫

0

sin(a
√

b4n1
+ b4n2

(t− τ))

a
√

b4n1
+ b4n2

fn1n2
(τ) dτ

]
vn1n2

(y1, y2),

where the coefficients are determined using the formulas

ϕi(y1, y2) =

∞∑

n1=0

∞∑

n2=0

ϕi,n1n2
vn1n2

(y1, y2), ϕi,n1n2
= (ϕi(y1, y2), vn1n2

(y1, y2)), i = 1, 2,

fn1n2
(t) = (f(y1, y2, t), vn1n2

(y1, y2)), vn1n2
(y1, y2)) =

2∏

j=1

Xnj
(yj).

In the case where α = 2, n = 1, and N = 3, the solution of problem (1)–(3) based on (32) is
determined by the formula

u(y1, y2, y3, t) =

∞∑

n1=0

∞∑

n2=0

∞∑

n3=0

[
ϕ1,n1n2n3

sin(a
√

b4n1
+ b4n2

+ b4n3
t)

a
√

b4n1
+ b4n2

+ b4n3

+ ϕ2,n1n2n3
cos(a

√
b4n1

+ b4n2
+ b4n3

t)

+

t∫

0

sin(a
√

b4n1
+ b4n2

+ b4n3
(t− τ))

a
√

b4n1
+ b4n2

+ b4n3

fn1n2n3
(τ) dτ

]
vn1n2n2

(y1, y2, y3),

where the coefficients are found using the formulas

ϕi(y1, y2, y3) =

∞∑

n1=0

∞∑

n2=0

∞∑

n3=0

ϕi,n1,n2,n3
vn1n2n3

(y1, y2, y3),

ϕi,n1,n2,n3
= (ϕi(y1, y2, y3), vn1n2n3

(y1, y2, y3)), i = 1, 2,

fn1,n2,n3
(t) = (f(y1, y2, y3, t), vn1n2n3

(y1, y2, y3)), vn1n2n3
(y1, y2, y3)) =

3∏

j=1

Xnj
(yj).
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