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Abstract—Numerical solution schemes are constructed and justified for two singular integro-
differential equations containing an integral, understood in the sense of the Cauchy principal
value, over an interval of the real axis. An integral equation with logarithmic kernel of a special
form is studied and approximately solved. Uniform error estimates for the approximate solutions
are obtained.
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The present paper proposes a computational scheme for the numerical solution of the singular
integro-differential equation

u′(x) + γ(x)

√
1− x2

π

1∫

−1

u(t)√
1− t2

dt

t− x
= f(x), −1 ≤ x ≤ 1, (1)

u(x0) = 0, (2)

where x0 ∈ [−1, 1], γ(x) and f(x) are given functions of the class C[−1, 1], and u(x) is the unknown
function of the class C1[−1, 1]. This equation arises in some hydrodynamic problems [1, 2].

In addition to the numerical solution of Eq. (1), the paper presents a numerical solution of
the Prandtl integro-differential equation, which plays an important role in problems of continuum
mechanics. The boundary value problem for the Prandtl equation has the form [3]

Γ(x)

B(x)
− 1

π

1∫

−1

Γ′(t)

t− x
dt = f(x), −1 < x < 1, (3)

Γ(−1) = Γ(+1) = 0. (4)

Here B(x) and f(x) are given functions of the class C[−1, 1], Γ(x) is the unknown function of the
class C1[−1, 1], and Γ′(x) is a function of the Hölder class. The integrals in Eqs. (1) and (3) are
understood in the sense of the Cauchy principal value.

There are a tremendous number of papers where Eq. (3) is studied. It is only in rare special
cases that there is a known exact solution of this equation (e.g., see [4]). Hence a large part of
these papers deal with the development and justification of approximate solution methods, the most
common being the Multhopp method [5].

When constructing approximate solutions of Eqs. (1) and (3), a key role is played by the spectral
relations

1

π

1∫

−1

Tn(t)√
1− t2

dt

t− x
= Un−1(x), −1 < x < 1,

1

π

1∫

−1

√
1− t2Un−1(t)

dt

t− x
= −Tn(x), −1 < x < 1, n ∈ N,
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for singular integrals, where Tn(x) and Un−1(x) are the Chebyshev polynomials of the first and
second kind, respectively.

We will also use the interpolation polynomial on the Chebyshev nodes of the first kind for the
function f(x) [6],

f(x) ≈ fn(x) =
1

2
Cn

0 T0(t) +

n∑
j=1

Cn
j Tj(x), (5)

where

Cn
j =

2

n+ 1

n∑
k=0

f(xk)Tj(xk), j = 0, . . . , n, xk = cos
2k + 1

2n+ 2
π, k = 0, . . . , n.

Using the well-known identities

T0(x) = U0(x), 2T1(x) = U1(x), 2Tj(x) = Uj(x)− Uj−2(x), j ≥ 2,

we write the interpolation polynomial (5) in the form

fn(x) =

n∑
j=0

cnjUj(x), (6)

where cnj = Gn
j −Gn

j+2, j = 0, . . . , n− 2, cnn−1 = Gn
n−1, c

n
n = Gn

n, and

Gn
j =

1

n+ 1

n∑
k=0

Tj(xk)f(xk), j = 0, . . . , n, xk = cos
2k + 1

2n+ 2
π, k = 0, . . . , n.

The following lemmas hold for these interpolation polynomials [7].

Lemma 1. If the zeros of the Chebyshev polynomial of the first kind, i.e., the points xk =
cos((2k + 1)π/(2n + 2)), k = 0, . . . , n, are taken as interpolation nodes, then the Lebesgue con-
stants λn satisfy the estimate λn = O(ln n), n = 2, 3, . . .

Lemma 2. If a function f(x), x ∈ [a, b], belongs to the Hölder class H(α), i.e., satisfies
the Hölder condition with exponent α, then the best approximation polynomial En(f) satisfies the
estimate En(f) ≤ M/nα, 0 < α ≤ 1, where M is an absolute constant.

Proceeding to the construction of an approximate solution of Eq. (1), we integrate by parts in
the singular integral in this equation and obtain

√
1− x2

π

1∫

−1

u(t)√
1− t2

dt

t− x
=

1

π

1∫

−1

H(x, t)u′(t) dt, (7)

where

H(x, t) = ln
1− xt+

√
1− x2

√
1− t2

|t− x| , −1 ≤ x ≤ 1. (8)

Owing to identity (7), Eq. (1) is equivalent to the integral equation

u′(x) + γ(x)
1

π

1∫

−1

H(x, t)u′(t) dt = f(x), −1 ≤ x ≤ 1, (9)
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with logarithmic kernel. Note that Fredholm theory applies to Eq. (9). Obviously, the func-
tion H(x, t) is symmetric. Let us prove that it is nonnegative. Indeed,

H(x, t) = H(cos θ, cosσ) = ln
1− cos(θ + σ)

2 sin((θ + σ)/2)| sin((θ − σ)/2)|

= ln
sin((θ + σ)/2)

| sin((θ − σ)/2)| ≥ 0, 0 < σ, θ ≤ π.

Further, note that

1

π

1∫

−1

|H(x, t)| dt = 1

π

1∫

−1

√
1− t2

x∫

−1

(
1√

1− τ 2

dτ

t− τ

)
dt =

√
1− x2,

and hence one has the estimate

1

π

1∫

−1

|H(x, t)| dt ≤ 1. (10)

Next, we introduce a linear operator ψ �→ Kψ by setting

Kψ ≡ K(ψ;x) = γ(x)
1

π

1∫

−1

H(x, t)ψ(t) dt. (11)

Then the Cauchy problem (1), (2) reduces to the equations

ψ(x) +K(ψ;x) = f(x), ψ(x) = u′(x), u(x) =

x∫

x0

ψ(t) dt. (12)

By definition (11), taking into account the Plemelj–Privalov theorem, we conclude that the
operator K maps the space C[−1, 1] into itself provided that γ(x) ∈ C[−1, 1]. In addition, it follows
from the estimate (10) that

‖Kψ‖C ≤ ρ‖ψ‖C , (13)

where

ρ = max
|x|≤1

(
√
1− x2 |γ(x)|). (14)

By virtue of the contraction mapping theorem, this implies the following assertion.

Theorem 1. Let the function γ(x) in Eq. (12) satisfy the condition

ρ < 1, (15)

where the number ρ is defined by relation (14).

Then Eq. (12) in the space C[−1, 1] and hence the Cauchy problem (1), (2) in the space C1[−1, 1]
have a unique solution for each function f(x) ∈ C[−1, 1].
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CONSTRUCTION OF A COMPUTATIONAL SCHEME FOR PROBLEM (1), (2)

Considering the constructive properties of the operator (11), let us calculate the integral

1

π

1∫

−1

H(x, t)Uk(t) dt =
1

π

1∫

−1

√
1− t2 Uk(t)

x∫

−1

(
1√

1− τ 2

dτ

t− τ

)
dt

=

x∫

−1

1√
1− τ 2

(
1

π

1∫

−1

√
1− t2 Uk(t)

dt

t− τ

)
dτ

= −
x∫

−1

Tk+1(τ)√
1− τ 2

dτ =
√
1− x2

Uk(x)

k + 1
. (16)

It follows from the representation (16) that an approximate solution of problem (1), (2) can be
sought in the form of a polynomial. Further, let ψn(x) be the interpolation polynomial (6) of the
function ψ(x) on the Chebyshev nodes of the first kind,

ψn(x) =

n∑
k=0

cnkUk(x), (17)

where the cnk , k = 0, . . . , n, are yet unknown constants having the meaning of the constants indicated
in (6).

We find an approximate solution ψn(x) of problem (1), (2) as a solution of the auxiliary equation

ψn(x) + γ(x)
1

π

1∫

−1

H(x, t)ψn(t) dt = Fn(x) (18)

constructed from Eq. (12). Here Fn(x) is a function of the class C[−1, 1] with the property Fn(xj) =
f(xj), where xj = cos((2j + 1)π/(2n + 2)), j = 0, . . . , n.

It follows from the preceding formulas and (17) that

un(x)
�
=

x∫

x0

ψn(t) dt =

n∑
k=0

cnk

x∫

x0

Uk(t) dt =

n∑
k=0

cnk
k + 1

(Tk+1(x)− Tk+1(x0)). (19)

Obviously, an analog of Theorem 1 holds for Eq. (18) with the operator (11), and Eq. (18) is
solvable under condition (15) as well.

Let us simplify the expression for K(ψn;x) using the calculations in (16). We have

1

π

1∫

−1

H(x, t)ψn(t) dt =

x∫

−1

1√
1− τ 2

(
1

π

1∫

−1

√
1− t2

ψn(t)

t− τ
dt

)
dτ =

√
1− x2

n∑
k=0

cnk
1

k + 1
Uk(x). (20)

Therefore, based on the representation (20), the solvable integral equation (18) is equivalent to the
equation

n∑
k=0

cnk

(
γ(x)

√
1− x2

k + 1
+ 1

)
Uk(x) = Fn(x). (21)

Setting xj = cos((2j + 1)π/(2n + 2)), j = 0, . . . , n, in (21), we arrive at the system of linear
algebraic equations

n∑
k=0

cnk

(
γ(xj)

√
1− x2

j

k + 1
+ 1

)
Uk(xj) = f(xj), j = 0, . . . , n. (22)
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It follows from the preceding that system (22) has a unique solution. Having solved system (22),
we find the constants cnk , k = 0, . . . , n. Therefore, based on (19), we have

un(x) =

n∑
k=0

cnk
k + 1

(Tk+1(x)− Tk+1(x0)). (23)

Let us estimate the approximation order by studying the structural properties of the func-
tion u′(x). It is easily seen based on the Plemelj–Privalov theorem that if the functions γ(x)
and f(x) belong to the Hölder class H(μ), μ ≥ 1/2, then u′(x) ∈ H(1/2), −1 ≤ x ≤ 1 (e.g., see [8]).
Further, let Fn(x) be the interpolation polynomial (5) of the function f(x). Then

‖ψ(x)− ψn(x)‖C ≤
∥∥∥∥γ(x) 1π

1∫

−1

H(x, t)(ψ(t) − ψn(t)) dt

∥∥∥∥
C

+ ‖f(x)− Fn(x)‖C .

Hence it follows by Lemmas 1 and 2 that

‖ψ(x) − ψn(x)‖C
(
1−

∥∥∥∥γ(x) 1π
1∫

−1

H(x, t) dt

∥∥∥∥
C

)
= O

(
lnn√
n

)
.

Based on inequality (10), we obtain

‖ψ(x) − ψn(x)‖C = O

(
lnn√
n

)
.

Thus, the above argument proves the following assertion.

Theorem 2. Assume that the functions γ(x) and f(x) occurring in Eq. (1) belong to the
class H(μ), μ ≥ 1/2, and condition (15) is satisfied. Then system (22) is solvable for any positive
integer n, and the approximate solutions un(x) of problem (1), (2) constructed by formula (23)
converge to its exact solution un(x) at the rate

‖u(x)− un(x)‖C = O

(
lnn√
n

)
.

Example 1. Consider the integro-differential equation

u′(x) +

√
2(1− x2)

2(1 + x2)

1

π

1∫

−1

u(t)√
1− t2

dt

t− x
= − 3(x2 − 1)

2(1 + x2)2
, u(−1) = 0. (24)

One can readily verify that in this case the function

u(x) =
x

1 + x2
+

1

2

is the solution of problem (24).

Calculations performed in the MathCad 15 computer algebra system show that the approximate
solution of Eq. (24) can be determined rather accurately even for relatively small n.

Solving system (22) for n = 12, 24, and 36, we find that the exact solution u(x) differs
from the approximate solution un(x) calculated by formula (23) on the system of points x =
−0.99, −0.98, . . . , 0.99 by at most 6.7 · 10−6, 1.5 · 10−10, and 4.0 · 10−15, respectively. Moreover,
the condition number conde of the system matrices does not exceed 31, 84, and 153, respectively.
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CONSTRUCTION OF A COMPUTATIONAL SCHEME FOR PROBLEM (3), (4)

Let us reduce Eq. (3) to a Fredholm equation of the second kind with a logarithmic singularity.
Let

u(x) � − 1

π

1∫

−1

Γ′(t)

t− x
dt. (25)

We apply the singular integral inversion formula in the function class H∗ to (25) and obtain

Γ′(x) =
1√

1− x2

1

π

1∫

−1

√
1− t2u(t)

t− x
dt+

c√
1− x2

.

Here c is an arbitrary constant. Hence, taking into account the boundary conditions (4), we conclude
that

Γ(x) =

x∫

−1

Γ′(τ) dτ =

x∫

−1

1√
1− τ 2

(
1

π

1∫

−1

√
1− t2

u(t)

t− τ
dt+

c√
1− τ 2

)
dτ =

1

π

1∫

−1

H(x, t)u(t) dt+μ(x),

where the function

H(x, t) =
√
1− t2

x∫

−1

(
1√

1− τ 2

dτ

t− τ

)
= ln

1− xt+
√
1− x2

√
1− t2

|t− x|

is the same as in (8) and μ(x) = c(arcsin x+ π/2). Since H(−1, t) = H(1, t), we find the constant
c = 0.

Finally, we have

Γ(x) =
1

π

1∫

−1

H(x, t)u(t) dt.

We introduce a linear operator u �→ Ku by setting

K(u;x) =
1

B(x)

1

π

1∫

−1

H(x, t)u(t) dt. (26)

Then the boundary value problem (3), (4) reduces to the equation

u(x) +K(u;x) = f(x). (27)

Comparing definitions (11) and (26), we conclude by Theorem 1 that the following assertion
holds.

Theorem 3. Let the function B(x) in Eq. (3) satisfy the condition

ρ = max
|x|≤1

(
√
1− x2/|B(x)|) < 1. (28)

Then the boundary value problem (3), (4) has a unique solution in the class of functions Γ′(x) ∈ H∗

for each function f(x) ∈ C[−1, 1].

Recall that the class H∗ consists of functions satisfying the Hölder condition on the interval
[−1+ε1, 1−ε2] for any ε1 > 0 and ε2 > 0 and admitting an integrable singularity in a neighborhood
of the points −1 and 1.
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Based on the argument in the proof of Theorem 2, let us briefly dwell on the approximate
solution of Eq. (3).

Let un(x) be the interpolation polynomial (6) of the function u(x); i.e.,

un(x) = − 1

π

1∫

−1

Γ′
n(t)

t− x
dt =

n∑
k=0

cnkUk(x). (29)

We seek an approximate solution of Eq. (3) under condition (4) as a solution of the auxiliary
equation

un(x) +
1

B(x)

1

π

1∫

−1

H(x, t)un(t) dt = Fn(x), −1 < x < 1, (30)

where Fn(x) is a function of the class C[−1, 1] such that Fn(xj) = f(xj), xj = cos((2j+1)π/(2n+2)),
j = 0, . . . , n, which has a unique solution under condition (28).

Given (29), we simplify the expression for Γn(x). We have

Γn(x) =
1

π

1∫

−1

H(x, t)un(t) dt =
√
1− x2

n∑
k=0

cnk
1

k + 1
Uk(x). (31)

The representation (31) obviously implies that the conditions Γn(−1) = Γn(+1) = 0 are satisfied.

By analogy with Eq. (18), Eq. (30) can be written as

n∑
k=0

cnk

(√
1− x2

B(x)

1

k + 1
+ 1

)
Uk(x) = Fn(x). (32)

Scheme 1. We take the nodes xj = cos((2j+1)π/(2n+2)), j = 0, . . . , n, for the external nodes
in (32).

Then we arrive at the system of linear algebraic equations

n∑
k=0

ck

(√
1− x2

j

B(xj)

1

k + 1
+ 1

)
Uk(xj) = f(xj), j = 0, . . . , n. (33)

The approximate solution Γn(x) is calculated according to (31).

Theorem 4. Let the functions B(x) and f(x) occurring in Eq. (3) belong to the class H(μ),
μ ≥ 1/2, and let condition (28) be satisfied.

Then system (33) is solvable, and the approximate solutions Γn(x) of problem (3), (4) constructed
by formula (31) converge to the exact solution Γ(x) at the rate

‖Γ(x)− Γn(x)‖C = O

(
lnn√
n

)
.

Example 2. Consider the integro-differential equation

Γ(x)

B(x)
− 1

π

1∫

−1

Γ′(t)

t− x
dt =

1

B(x)

√
2

2
ln

( √
1 + x2

√
1− x2 +

√
2

)
− 1√

2

1

1 + x2
+ 1, −1 < x < 1. (34)
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Let B(x) =
√
1− x2(3 + x2)/(1 + 2x2). One can readily verify that the function

Γ(x) =

√
2

2
ln

( √
1 + x2

√
1− x2 +

√
2

)

is a solution of problem (34), (4) in this case.

Solving system (33) for n = 10 and 33, we find that the exact solution Γ(x) differs from the ap-
proximate solution Γn(x) computed by formula (31) on the system of points x = −0.99, −0.98, . . . ,
0.99 by at most 2.8 · 10−6 and 4.0 · 10−15, respectively. The condition number conde of the system
matrices does not exceed 26 and 140, respectively.

Scheme 2. Considering the case of the function B(x) = b
√
1− x2, b = const, we take the

interpolation polynomial (6) for Fn(x) in Eq. (32). Then Eq. (32) becomes

n∑
k=0

cnk

(
1

b

1

k + 1
+ 1

)
Uk(x) =

n∑
k=0

fn
k Uk(x), (35)

where the fn
k are calculated in accordance with (6). It follows that the numbers

cnk = fn
k

(
1

b

1

k + 1
+ 1

)−1

, k = 0, . . . , n,

are a solution of system (35). The approximate solution Γn(x) of problem (3), (4) is calculated
according to (31).

Comment. Note that in our paper [8] we present a computational scheme for the approximate
solution of the boundary value problem (3), (4) based on the approximation of the integral in
Eq. (27) by a quadrature sum.
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