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Abstract—We study a nonlinear integral equation arising from the parametric closure for
the third spatial moment in the Dieckmann–Law model of stationary biological communities.
The existence of a fixed point of the integral operator defined by this equation is analyzed.
The noncompactness of the resulting operator is proved. Conditions are stated under which the
equation in question has a nontrivial solution.
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INTRODUCTION

This paper continues the study of integral equations arising in the Dieckmann–Law model of
stationary biological communities initiated in [1–3]. One most important result in the cited papers
is the derivation of the system of integro-differential equations

Ṅ = (b− d)N − d′
∫

R

C(ξ)w(ξ) dξ,

Ċ(ξ) = bm(ξ)N +

∫

R

bm(ξ′)C(ξ + ξ′) dξ′ − (d+ d′ω(ξ))C(ξ)−
∫

R

d′ω(ξ′)T (ξ, ξ′) dξ′

describing the spatial moment dynamics. Here the constants b, d, and d′, as well as the functions
m and ω, are assumed to be known, while the functions N, C, and T (the first, second, and third
moments, respectively) are to be determined.

Considering this system to be at equilibrium (the moments do not change in time) and expressing
the third spatial moment via the first two moments [4], we arrive at various linear and nonlinear
integral equilibrium equations. The linear integral equilibrium equation

(b+ d′w(x))C(x) =

∫

R

bm(y)C(x+ y) dy +
b

b− d
m(x)

∫

R

d′w(y)C(y) dy

has been studied by many authors (e.g., see [5–8]), and it has been shown by now that it fails to
describe the biological system under study well enough. Therefore, the analysis of this equation is
not important when studying the operation of stationary biological communities.

The main object of study in the present paper is the nonlinear integral equilibrium equation

(
ω + b− α

2

(
b− d− d′(b− d)

Y

))
C =

Ym

b− d
− ω + [m ∗ C]

− α
b− d

2Y
((C + 2)[ω ∗ C] + [ωC ∗ C]), (1)
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APPLICATION OF THE LERAY–SCHAUDER PRINCIPLE 1165

where α ∈ [0, 1], m = bm, ω = d′ω, Y =
∫
R
(C(x) + 1)ω(x) dx, and ∗ stands for the operation of

convolution of functions.

The derivation of Eq. (1) is described in [9, 10]. It was indicated in these papers that the
analytical study of this equation is rather difficult, and so it was investigated numerically.

Let us write Eq. (1) in the operator form Af = f, where

Af =

(
Y m

b− d
−ω+[m∗f ]−α

b− d

2Y
((f +2)[ω ∗f ]+ [ωf ∗f ])

)(
ω+b− α

2

(
b−d− d′(b− d)

Y

))−1

. (2)

The difficulties associated with the analytical study of this nonlinear integral operator are primarily
due to the fact that it is neither compact nor contracting; this substantially complicates studying
the existence of a fixed point of this operator.

1. AUXILIARY ASSERTIONS

Let us present some assertions to be used in the paper.

Lemma 1. Let f be a measurable function, let g ∈ L1(R), and let the inequality |f(x)| ≤ g(x)
hold for almost all x ∈ R. Then f ∈ L1(R).

Corollary 1. If f ∈ L1(R) and g is a bounded measurable function, then fg ∈ L1(R).

Lemma 2. Let f ∈ C(R) and lim|x|→+∞ f(x) = 0. Then the function f is bounded.

Lemma 3. Let f ∈ C(R) and lim|x|→+∞ f(x) = 0. Then the function f is uniformly continuous
on R.

Lemma 4. If f ∈ L1(R), then for each ε > 0 there exists a δ = δ(ε) > 0 such that the estimate

∫

R

|f(x+ h)− f(x)| dx ≤ ε

holds for each h ∈ R satisfying the inequality |h| ≤ δ.

Lemma 5 (Riesz criterion). A set K ⊂ Lp(R) is precompact if and only if the following two
conditions are satisfied :

1. There exists a positive constant M such that ‖f‖p ≤ M for each f ∈ K.

2. For each ε > 0 there exists a δ = δ(ε) > 0 such that the estimate

(∫

R

|f(x+ h)− f(x)|p dx
)1/p

≤ ε

holds for any h ∈ R with |h| ≤ δ and any f ∈ K.

Theorem (Fubini). Let f : R × R → R be a measurable function such that the integral∫
R
|f(x, y)| dx = F (y) exists for almost all y ∈ R and

∫
R
F (y) dy < +∞. Then the integrals

∫

R×R

f(x, y) dx dy and

∫

R

(∫

R

f(x, y) dy

)
dx

exist , and one has

∫

R

(∫

R

f(x, y) dx

)
dy =

∫

R

(∫

R

f(x, y) dy

)
dx =

∫

R×R

f(x, y) dx dy.
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1166 NIKOLAEV, NIKITIN

Remark 1. We will use the following obvious assertion:∫

R

|f(x+ y)| dx = ‖f‖1

for any f ∈ L1(R) and y ∈ R. We will also take it for granted that a function is integrable if and
only if so is its absolute value [11, Sec. 9, item 111].

Remark 2. From now on, we assume that the functions ω and m belong to the space
C(R) ∩ L1(R) and are nonnegative and even and also that ‖m‖1 = ‖ω‖1 = 1 and lim|x|→∞m(x) =
lim|x|→∞ ω(x) = 0. Then ω and m are bounded and uniformly continuous on R by Lemmas 2 and 3.

Remark 3. In what follows, for R > 0, by B(R) we denote the closed ball of radius R centered
at zero in the space L1(R); i.e., B(R) = {f ∈ L1(R) : ‖f‖1 ≤ R}.

2. MAIN PROOF

Lemma 6. The operator Bωf = [ω ∗ f ] is compact from L1(R) to L1(R).

Proof. First, note that the properties of convolution readily imply that the operator indeed
maps L1(R) into itself.

Let M > 0. For each function f ∈ B(M),

‖Bωf‖1 =
∫

R

∣∣∣∣
∫

R

ω(x− y)f(y) dy

∣∣∣∣ dx ≤
∫

R

∫

R

|ω(x− y)f(y)| dy dx

=

∫

R

|f(y)|
∫

R

|ω(x− y)| dx dy = ‖ω‖1‖f‖1 ≤ M.

Changing the order of integration is justified by the Fubini theorem, which can be used here
because the convolution is an integrable function, and hence the inner integral exists for each x
and is integrable.

Further, let us estimate the expression
∫
R
|[Bωf ](x + h) − [Bωf ](x)| dx from above. Using the

Fubini theorem and Lemma 4, we obtain
∫

R

∣∣∣∣[Bωf ](x+ h)− [Bωf ](x)

∣∣∣∣ dx =

∫

R

∣∣∣∣
∫

R

[ω(x+ h− y)− ω(x− y)]f(y) dy

∣∣∣∣ dx

≤
∫

R

∫

R

|ω(x+ h− y)− ω(x− y)||f(y)| dy dx

=

∫

R

|f(y)|
∫

R

|ω(x+ h− y)− ω(x− y)| dx dy ≤ ε‖f‖1 ≤ εM.

Therefore, the expression to be estimated is small for sufficiently small h; i.e., the image of B(M)
under the operator Bω is uniformly bounded and equicontinuous in the sense of L1(R). By the Riesz
criterion, this set is precompact. Thus, the operator Bω takes bounded sets to precompact ones
and hence is compact. The proof of the lemma is complete.

Remark 4. It is obvious that the operator Bmf = [m ∗ f ] is compact as well.

Lemma 7. The operator

Cf = ϕ(x)

∫

R

ω(y)f(y) dx+ ψ(x),

where ϕ and ψ are continuous integrable functions, is compact from L1(R) to L1(R).
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APPLICATION OF THE LERAY–SCHAUDER PRINCIPLE 1167

Proof. By Lemmas 2 and 4, the functions ϕ and ψ are bounded and continuous in the sense
of L1 on R. Let us use the Riesz criterion. Let M > 0 and f ∈ B(M). Then

‖Cf‖ =

∫

R

|ϕ(x)| dx
∣∣∣∣
∫

R

ω(y)f(y) dy

∣∣∣∣ +
∫

R

|ψ(x)| dx ≤ M‖ϕ‖1‖ω‖C + ‖ψ‖1,

∫

R

∣∣∣∣[Cf ](x+ h)− [Cf ](x)
∣∣∣∣ dx ≤

∫

R

|ϕ(x + h)− ϕ(x)| dx
∫

R

|ω(y)f(y)| dy

+

∫

R

|ψ(x+ h)− ψ(x)| dx ≤ εM‖ω‖C + ε.

Hence the operator C is compact. The proof of the lemma is complete.

Now consider the operator A defined in (2). We represent this operator as the sum A = K+ S,
where

Kf =

(
Y m

b− d
− ω + [m ∗ f ]− α

b− d

Y
[ω ∗ f ]

)(
ω + b− α

2

(
b− d− d′(b− d)

Y

))−1

,

Sf = −α
b− d

2Y
(f [ω ∗ f ] + [ωf ∗ f ])

(
ω + b− α

2

(
b− d− d′(b− d)

Y

))−1

.

Theorem 1. Let b > d ≥ 0, d′ ≥ 0, and α ∈ [0, 1]. If R < 1/(‖ω‖C), then the operator K is well
defined as an operator from B(R) to L1(R) and is compact.

Proof. Consider the function

gs(x) =

(
ω(x) + b− α

2

(
b− d− d′(b− d)

s

))−1

.

Fix an x = x0 for which the denominator of this function is zero and express the parameter s from
the equation

ω(x0) + b− α

2

(
b− d− d′(b− d)

s

)
= 0.

Then

s =
αd′(b− d)

(α− 2)b− αd− 2ω(x0)
.

Since b > d and α ∈ [0, 1], we have s ≤ 0; in this case, the estimate

s ≤ αd′(b− d)

(α− 2)b− αd
= q

holds. It follows that the function gs(x) is continuous for s > q.

On the other hand, Y ≥ d′ − ‖ω‖C‖f‖1; thus, if ‖f‖1 < (d′ − q)/‖ω‖C , then Y > q. If we set
s = Y, then it is obvious that the function gY (x) is bounded and continuous; in particular, it is
measurable on R. It follows that the product of this function by any integrable function lies in the
class L1(R) (Corollary 1).

The operator K can be represented in the form

Kf = gY

(
C + Bm − α

b− d

Y
Bω

)
f,

where

Cf =
Y m

b− d
− ω, Bmf = [m ∗ f ], Bωf = −α

b− d

Y
[ω ∗ f ].
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1168 NIKOLAEV, NIKITIN

If

‖f‖1 ≤ R <
d′

‖ω‖C
=

1

‖ω‖C
,

then the expression

−α
b− d

2Y
= −α(b− d)

(
2

(∫

R

f(x)ω(x) dx+ d′
))−1

is uniformly bounded with respect to f. This condition is sufficient for the function gY (x) to be
bounded and measurable. In this case, the operators C, Bm, and Bω act on L1(R) and are compact
by Lemmas 6 and 7; therefore, the operator K is compact as well. The proof of the theorem is
complete.

Theorem (Leray–Schauder). If an operator A defined on a closed ball B in a Banach space is
compact and A[∂B] ⊂ B, then there exists an f ∈ B such that f = Af.

The proof of this theorem can be found, e.g., in the monograph [12, pp. 129–130]. We only note
that this proof is based on the notion of rotation of a mapping. In particular, if the rotation of
a compact operator on the boundary of a ball is nonzero, then such an operator has fixed points.

Theorem 2. Under the assumptions of Theorem 1, if ρ = 1−R‖ω‖C > 0 and α > 0, then there
exists a d′ ∈ (0, 3ρ/4) such that the operator K has a fixed point in B(R). If α = 0, then for a fixed
point to exist it suffices that d′ = 0.

Proof. Let us estimate the norm of the image of a function f ∈ B(R) under the operator K.
First, we establish an upper bound for Y. Since 0 < R‖ω‖C < 1, we have 1+R‖ω‖C < 2, and then

0 < d′ρ = d′(1 −R‖ω‖C) ≤ Y ≤ d′(1 +R‖ω‖C) < 2d′.

Thus,

1

d′ρ
≥ 1

Y
>

1

2d′
.

Hence the following estimate holds for the function gY (x) defined in the proof of Theorem 1:

|gY (x)| <
(
ω(x) +

α

2

d′(b− d)

2d′
+ b− α

2
(b− d)

)−1

<

(
3

4
α(b− d) + b

)−1

.

Let us estimate the norm of the convolutions occurring in the definition of the operator K.
We have ∥∥∥∥[m ∗ f ]

∥∥∥∥
1

=

∫

R

∣∣∣∣
∫

R

m(x− y)f(y) dy

∣∣∣∣ dx ≤
∫

R

∫

R

|m(x− y)||f(y)| dy dx

=

∫

R

|f(y)|
∫

R

|m(x− y)| dx dy = ‖m‖1‖f‖1 ≤ bR.

The order of integration can be changed by the Fubini theorem, because the convolution of inte-
grable functions is integrable. In a similar way, we obtain

‖[ω ∗ f ]‖1 ≤ d′R.
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APPLICATION OF THE LERAY–SCHAUDER PRINCIPLE 1169

As a result, we arrive at the estimates

‖Kf‖1 ≤
∫

R

∣∣∣∣ω(x) + b− α

2

(
1− d′

Y

)
(b− d)

∣∣∣∣
−1

×
(∣∣∣∣Y m(x)

b− d

∣∣∣∣+ |ω(x)| + |[m ∗ f ](x)|+
∣∣∣∣αb− d

Y
[ω ∗ f ](x)

∣∣∣∣
)
dx

≤
∫

R

(
b+

3

4
α(b− d)

)−1(
2bd′

b− d
|m(x)|+ |ω(x)|+

∣∣∣∣[m ∗ f ](x)
∣∣∣∣+ α

b− d

ρ

∣∣∣∣[ω ∗ f ](x)
∣∣∣∣
)
dx

≤
(
b+

3

4
α(b− d)

)−1(
2bd′

b− d
+ d′ + bR+ αd′

b− d

ρ
R

)

=

(
b+

3

4
α(b− d)

)−1(
d′
(

2bd′

b− d
+ 1

)
+

(
b+ αd′

b− d

ρ

)
R

)
.

Set

ξ = d′
(
b+

3

4
α(b− d)

)−1(
2bd′

b− d
+ 1

)
, η =

(
b+

3

4
α(b− d)

)−1(
b+

d′

ρ
α(b− d)

)
.

Then ‖Kf‖1 ≤ ξ + ηR. It is obvious that if d′ < 3ρ/4 and α > 0, then η < 1. Moreover, ξ → 0
as d′ → 0. These two facts imply the existence of a d′ ∈ (0, 3ρ/4) such that the inequality ‖Kf‖1 < R
holds for each function f ∈ B(R); i.e., Kf ∈ intB(R).

Thus, there exists a small number d′ ∈ (0, 3ρ/4) such that the operator K maps the ball B(R)
into the interior of B(R). Since this operator is compact in B(R), we see that it has a fixed point
in B(R) by the Leray–Schauder theorem.

If α = 0, then η = 1 and Kf ≤ R provided that d′ = 0. In a similar way, the operator K has
a fixed point in B(R) by the Leray–Schauder theorem.

Note that it is important in the subsequent theorems that for α > 0 the ball B(R) is taken by the
operator K into some closed subball B′ ⊂ B(R) such that d(∂B′, ∂B(R)) > 0. Here d(A,B) stands
for the distance between sets A and B in the metric generated by the norm of the space L1(R).
The proof of the theorem is complete.

Remark 5. Note that the operator S is also well defined as an operator from B(R) to L1(R),
where the condition imposed on R is the same as in Theorem 1, but is not compact.

Let us prove the assertions contained in this remark. Let f ∈ B(R). It follows from the properties
of the convolution that [ωf ∗ f ] ∈ L1(R); moreover,

|[ω ∗ f ](x)| =
∣∣∣∣
∫

R

ω(x− y)f(y) dy

∣∣∣∣ ≤ R‖ω‖C ;

i.e., according to the corollary of Lemma 1, we have the inclusion f [ω ∗ f ] ∈ L1(R). It follows from
the proof of Theorem 2 that, under the condition f ∈ B(R), the function

hY (x) = −α
b− d

2Y
gY (x) = −α

b− d

2Y

(
ω(x) + b− α

2

(
b− d− d′(b− d)

Y

))−1

is separated from infinity uniformly with respect to f. Thus, the operator S acts from B(R)
to L1(R).

To prove that this operator is noncompact, it suffices to find a sequence of functions fn ∈ B(R),
n ∈ N, that does not contain a Cauchy subsequence.

Since ω(x) is a nonnegative continuous function with unit norm, it follows that there exists
an x0 ∈ R and a δ > 0 such that the inequality ω(x0) ≥ μ > 0 holds for each x ∈ (x0 − δ;x0 + δ).
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Without loss of generality, we take x0 > 0, because the function ω is even. Let In = [nx0, (n+1)x0],
n ∈ N. Define the function fn by the relation

fn(x) =

⎧⎪⎨
⎪⎩
R/(2x0), x ∈ In,

0, x �∈ In.

Obviously, the fn, n ∈ N, lie in the ball B(R). Note also that since the function hY (x) is separated
from zero and infinity uniformly with respect to f , it suffices to prove that the operator Pf =
f [ω ∗ f ] + [ωf ∗ f ] is noncompact. In the subsequent computations, we take into account the fact
that

fn(x− y) = fm(x− y) = 0

for x ∈ (nx0, (n+ 1)x0) and y ∈ (mx0, (m+ 1)x0), m �= n.

Let n, p ∈ N. Then

‖Pfn+p − Pfn‖1

=

∫

R

|fn+p(x)[ω ∗ fn+p](x) + [ωfn+p ∗ fn+p](x)− fn(x)[ω ∗ fn](x)− [ωfn ∗ fn](x)| dx

≥
∫

In

|fn+p(x)[ω ∗ fn+p](x) + [ωfn+p ∗ fn+p](x)− fn(x)[ω ∗ fn](x)− [ωfn ∗ fn](x)| dx

=

∫

In

∣∣∣∣
∫

R

ω(y)fn+p(y)fn+p(x− y) dy − fn(x)[ω ∗ fn](x)− [ωfn ∗ fn](x)
∣∣∣∣ dx

=

∫

In

∣∣∣∣ R

2x0

∫

In+p

ω(y)fn+p(x− y) dy − fn(x)[ω ∗ fn](x)− [ωfn ∗ fn](x)
∣∣∣∣ dx

=

∫

In

|fn(x)[ω ∗ fn](x) + [ωfn ∗ fn](x)| dx.

Both terms in the last expression are nonnegative, because so are the functions fn and ω; therefore,∫

In

|fn(x)[ω ∗ fn](x) + [ωfn ∗ fn](x)| dx =

∫

In

(fn(x)[ω ∗ fn](x) + [ωfn ∗ fn](x)) dx

≥
∫

In

fn(x)[ω ∗ fn](x) dx =
R

2x0

∫

In

[ω ∗ fn](x) dx

=
R2

4x2
0

∫

In

∫

In

ω(x− y) dy dx ≥ R2δ2

4x2
0

μ > 0.

Thus, there exists an ε = R2δ2μ/(4x2
0) > 0 such that the estimate

‖Pfn+p − Pfn‖1 ≥ ε

holds for any positive integer n and p; this implies the noncompactness of the operator P and hence
of the operator S. The proof of the assertions in Remark 5 is complete.

Theorem (on fixed points of a perturbed compact operator). Suppose that a compact operator
with nonzero rotation on the boundary is defined on a domain G in a Banach space and that this
operator takes the domain G into some subdomain H ⊂ G such that

d(∂G, ∂H) = δ > 0.

If this operator is perturbed by a Lipschitz operator whose norm does not exceed δ, then the perturbed
operator has fixed points in G.

DIFFERENTIAL EQUATIONS Vol. 55 No. 9 2019
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The proof of this theorem can be found in the monograph [12, pp. 162–163].

Theorem 3. Let the assumptions of Theorems 1 and 2 be satisfied. If α > 0, then the operator A
has a fixed point in B(R) for sufficiently small d′.

Proof. Let us establish the Lipschitz property of the operator S. Let f ∈ B(R). By virtue of
the condition imposed on R, the expression

−α
b− d

2Y

(
ω + b− α

2

(
b− d− d′(b− d)

Y

))−1

is separated from zero and infinity uniformly with respect to f ; therefore, it suffices to prove the
Lipschitz property of the operator Pf = f [ω ∗ f ] + [ωf ∗ f ].

The following estimates hold:

‖f [ω ∗ f ]− g[ω ∗ g]‖1 = ‖f [ω ∗ f ]− f [ω ∗ g] + f [ω ∗ g]− g[ω ∗ g]‖1
= ‖f [ω ∗ (f − g)] + (f − g)[ω ∗ g]‖1 ≤ ‖f [ω ∗ (f − g)]‖1 + ‖(f − g)[ω ∗ g]‖1

=

∫

R

∣∣∣∣f(x)
∫

R

ω(x− y)[f(y)− g(y)] dy

∣∣∣∣ dx+

∫

R

∣∣∣∣[f(x)− g(x)]

∫

R

ω(x− y)g(y) dy

∣∣∣∣ dx

≤ ‖ω‖C
∫

R

|f(x)|
∫

R

|f(y)− g(y)| dy dx+ ‖ω‖C
∫

R

|f(x)− g(x)|
∫

R

|g(y)| dy dx

= ‖ω‖C‖f − g‖1(‖f‖1 + ‖g‖1) ≤ 2R‖ω‖C‖f − g‖1 < 2d′‖f − g‖1,
‖[ωf ∗ f ]− [ωg ∗ g]‖1 = ‖[ωf ∗ f ]− [ωf ∗ g] + [ωf ∗ g]− [ωg ∗ g]‖1

= ‖[ωf ∗ (f − g)] + [ω(f − g) ∗ g]‖1 ≤ ‖[ωf ∗ (f − g)]‖1 + ‖[ω(f − g) ∗ g]‖1

=

∫

R

∣∣∣∣
∫

R

ω(y)f(y)[f(x− y)− g(x− y)] dy

∣∣∣∣ dx+

∫

R

∣∣∣∣
∫

R

ω(y)[f(y)− g(y)]g(x − y) dy

∣∣∣∣ dx

≤ ‖ω‖C
∫

R

∫

R

|f(y)||f(x− y)− g(x− y)| dy dx+ ‖ω‖C
∫

R

∫

R

|f(y)− g(y)||g(x − y)| dy dx

= ‖ω‖C
∫

R

|f(y)|
∫

R

|f(x− y)− g(x− y)| dx dy + ‖ω‖C
∫

R

|f(y)− g(y)|
∫

R

|g(x − y)| dx dy

= ‖ω‖C‖f − g‖1(‖g‖1 + ‖f‖1) ≤ 2R‖ω‖C‖f − g‖1 < 2d′‖f − g‖1.

The Fubini theorem permits changing the order of integration. Thus, if f, g ∈ B(R), then

‖Pf − Pg‖1 ≤ 4d′‖f − g‖1.

Let us estimate the norm of the operator P. To this end, we separately consider the expressions
f [ω ∗ f ] and [fω ∗ f ],

‖f [ω ∗ f ]‖1 =
∫

R

∣∣∣∣f(x)
∫

R

ω(x− y)f(y) dy

∣∣∣∣ dx ≤
∫

R

|f(x)|
∫

R

|ω(x− y)||f(y)| dy dx

≤ ‖ω‖C
∫

R

|f(x)|
∫

R

|f(y)| dy dx = ‖ω‖C‖f‖21 ≤ ‖ω‖CR‖f‖1 < d′‖f‖1,
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‖[fω ∗ f ]‖1 =
∫

R

∣∣∣∣
∫

R

f(x− y)ω(x− y)f(y) dy

∣∣∣∣ dx

≤
∫

R

∫

R

|f(x− y)||ω(x− y)||f(y)| dy dx =

∫

R

|f(y)|
∫

R

|f(x− y)||ω(x− y)| dx dy

≤ ‖ω‖C
∫

R

|f(y)|
∫

R

|f(x− y)| dx dy = ‖ω‖C‖f‖21 ≤ d′‖f‖1.

Thus, the norm of the operator P does not exceed 2d′, and hence it tends to zero as d′ tends to
zero. This means that the norm of the operator S tends to zero as d′ tends to zero. It follows from
the proof of Theorem 2 that for α > 0 the quantity d(∂B(R), ∂K[B(R)]) is positive and independent
of d′. Thus, by the theorem on fixed points of a perturbed compact operator, the operator K+S = A
has a fixed point in B(R) for sufficiently small d′. The proof of the theorem is complete.

Corollary 2. The equilibrium equation of the form C = AC has a solution under the assump-
tions of Theorem 3.

CONCLUSIONS

Despite some progress in the analytical study of the well-posedness of the problem stated by
biologists, there remain many unanswered important questions related to Eq. (1). One of these
questions is that on the uniqueness of its solution. It is shown in the papers [5, 6] that for α = 0
and d = 0, in addition to the trivial solution C ≡ 0, this equation, subject to some conditions
imposed on the functions m and ω, also has a solution C that is not identically zero. Of interest is
also the stability of the solution to the problem posed.

Note that all the results in this paper can readily be carried over to multidimensional cases.
In particular, under conditions similar to those described in Theorem 3, the nonlinear equilibrium
equation has a solution in the two- and three-dimensional cases, which are of most interest from
the biological point of view.
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