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Abstract—In a finite-dimensional Euclidean space, we consider the pursuit problem with one
evader and a group of pursuers described by a system of the form D(α)zi = azi + ui − v,
where D(α)f is the Caputo derivative of order α ∈ (1, 2) of a function f. The set of admissible
solutions ui and v is a convex compact set, the objective set is the origin, and a is a real number.
In addition, it is assumed that the evader does not leave a convex polyhedral cone with nonempty
interior. We obtain sufficient conditions for the solvability of the pursuit problem in terms of
the initial positions and the game parameters.
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INTRODUCTION

An important trend in the evolution of modern theory of differential games is related to the de-
velopment of methods for solving pursuit–evasion game problems with several players [1–5]. Here
not only classical solution methods are refined, but also new problems to which these methods ap-
ply are widely sought. For example, a pursuit problem with two evaders described by a fractional
differential equation was considered in [6–8], where sufficient conditions for capture were obtained.
A group pursuit problem and a problem about an evader escaping a group of pursuers in a differ-
ential game with state constraints and fractional derivatives of order α ∈ (0, 1) were studied in [9]
and [10], respectively. A problem about multiple capture of the evader with no state constraints in
a differential game with fractional derivatives of order α ∈ (1, 2) was studied in [11].

The present paper deals with a group pursuit problem with one evader in which the motion of
all players is described by equations with Caputo fractional derivatives and the evader never leaves
a convex polyhedral set. Sufficient conditions for capture are obtained. The paper continues the
research initiated in [12–14].

1. STATEMENT OF THE PROBLEM

Definition 1 [15]. Let f : [0,∞) → R
k be a function whose derivative f ′ is absolutely continuous

on [0,+∞). The function D(α)f , α ∈ (1, 2), defined by the rule

(D(α)f)(t) =
1

Γ(2− α)

t∫

0

f ′′(s)

(t− s)α−1
ds, where Γ(β) =

∞∫

0

e−ssβ−1 ds,

is called the Caputo derivative of order α of the function f .

In the space R
k, k ≥ 2, consider a differential game with n + 1 players, namely, n pursuers

P1, . . . , Pn and an evader E. The law of motion for each of the pursuers Pi has the form

D(α)xi = axi + ui, xi(0) = x0
i , ẋi(0) = x1

i , ui ∈ V, (1)

841



842 PETROV

and the law of motion for the evader E is

D(α)y = ay + v, y(0) = y0, ẏ(0) = y1, v ∈ V. (2)

Here α ∈ (1, 2); xi, y, ui, v ∈ R
k; V is a strictly convex compact set in R

k; and a is a real number.
In addition, it is assumed that the evader E never leaves the convex polyhedral cone Ω

Ω = {y ∈ R
k : (pj , y) ≤ 0, j = 1, . . . , r}

with nonempty interior, where p1, . . . , pr are unit vectors in R
k. If Ω = R

k, then we assume
that r = 0.

Let zi = xi − y and, along with systems (1) and (2), consider the system

D(α)zi = azi + ui − v, zi(0) = z0i = x0
i − y0, żi(0) = z1i = x1

i − y1, ui, v ∈ V. (3)

From now on, i ∈ In = {1, . . . , n}. We denote the vector of initial positions by z0 = {z0i ; z1i } and
assume that z0i �= 0 for all i ∈ In.

Definition 2. A quasistrategy Ui of the pursuer Pi is a mapping Ui that takes any initial
positions z0, time t, and control prehistory vt(·) of the evader E to a measurable function ui(t)
ranging in V.

Definition 3. We say that capture occurs in the game if there exists a time T (z0) and quasi-
strategies U1, . . . , Un of the pursuers P1, . . . , Pn such that for each measurable function v(·) satisfying
the conditions v(t) ∈ V and y(t) ∈ Ω, t ∈ [0, T (z0)], there exists a time τ ∈ [0, T (z0)] and a number
q ∈ In such that zq(τ) = 0.

Let us introduce the following notation: IntA and coA are the interior and the convex hull,
respectively, of a set A; Eρ(z, μ) =

∑∞
k=0 z

k/Γ(kρ−1 + μ) is the generalized Mittag-Leffler function;

fi(t) =

⎧⎨
⎩
tα−1E1/α(at

α, 1)z0i + tαE1/α(at
α, 2)z1i if a �= 0,

z0i /t+ z1i if a = 0,

λ(z, v) = sup{λ ≥ 0 : −λz ∈ V − v}, γ = −aΓ(2− α), d = max{‖v‖ : v ∈ V },

E(t, s, α) = (t− s)α−1E1/α(a(t− s)α, α), E(t) =

t∫

0

|E(t, s, α)| ds,

r(t, s) =

⎧⎨
⎩
1 if E1/α(a(t− s)α, α) ≥ 0,

−1 if E1/α(a(t− s)α, α) < 0,

δ+0 =min
v∈V

max
{
max
i∈In

λ(z1i /γ, v),max
l∈Ir

(pl, v)
}
, δ−0 =min

v∈V
max

{
max
i∈In

λ(−z1i /γ, v),max
l∈Ir

(−pl, v)
}
,

δ+t =min
v∈V

max
{
max
i∈In

λ(fi(t), v),max
l∈Ir

(pl, v)
}
, δ−t =min

v∈V
max

{
max
i∈In

λ(−fi(t), v),max
l∈Ir

(−pl, v)
}
,

δ0 = min{δ+0 , δ−0 }, δt = min{δ+t , δ−t },
y0(t) = E1/α(at

α, 1)y0 + tE1/α(at
α, 2)y1, Dε(b) = {z : ‖z − b‖ ≤ ε}.

Lemma 1 [11]. Let a < 0 and δ0 > 0. Then there exists a time T > 0 such that δt > 0.5δ0 for
all t > T .

Lemma 2. Let p ∈ R
k and a < 0. Then the function μ(t) = tα−1(p, y0(t)) is bounded on [0,∞).

Proof. The following asymptotic estimates hold as t → +∞ [16, p. 12]:

E1/α(at
α, 1) = − 1

atαΓ(1− α)
+O

(
1

t2α

)
, E1/α(at

α, 2) = − 1

atαΓ(2− α)
+O

(
1

t2α

)
. (4)
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The function μ(t) can be represented as

μ(t) = tα−1E1/α(at
α, 1)(p, y0) + tαE1/α(at

α, 2)(p, y1).

It follows from the estimates (4) that

μ(t) = − (p, y0)

atΓ(1− α)
− (p, y1)

aΓ(2− α)
+O

(
1

tα

)
(5)

as t → +∞. Now the boundedness of the function μ(t) on [0,∞) follows from its continuity,
the representation (5), and the condition α > 1. The proof of the lemma is complete.

Lemma 3. Let r = 1, a < 0, and δ0 > 0. Then there exists a time T0 such that for each
admissible function v(·) (v(t) ∈ V and y(t) ∈ Ω, t ∈ [0, T0]) there exists a number q ∈ In such that
the inequality

Tα−1
0

T0∫

0

|E(T0, s, α)|λ(fq(T0)r(T0, s), v(s)) ds ≥ 1

is satisfied.

Proof. Lemma 1 implies that there exists a time T1 > 0 such that δt > 0.5δ0 for all t > T1. Let
T > T1, and let v(·) be an arbitrary admissible function. Consider the functions

hi(t, T, v(·)) = tα−1

t∫

0

|E(t, s, α)|λ(fi(T )r(T, s), v(s)) ds, t ∈ [0, T ]. (6)

Since the control v(·) of the evader E is admissible, we have (p1, y(t)) ≤ 0 for all t ≥ 0. According
to [17], the solution of problem (2) has the form

y(t) = y0(t) +

t∫

0

E(t, s, α)v(s) ds.

It follows that
t∫

0

E(t, s, α)(p1, v(s)) ds ≤ μ0(t) ≡ (−p1, y0(t)). (7)

Let us define the sets

T+(t) = {s : s ∈ [0, t], E(t, s, α) ≥ 0}, T−(t) = {s : s ∈ [0, t], E(t, s, α) < 0},
T+
1 (t) = {s : s ∈ T+(t), (p1, v(s)) ≥ δ1 = 0.5δ0}, T+

2 (t) = {s : s ∈ T+(t), (p1, v(s)) < δ1},
T−
1 (t) = {s : s ∈ T−(t), (−p1, v(s)) ≥ δ1}, T−

2 (t) = {s : s ∈ T−(t), (−p1, v(s)) < δ1}.

Then

t∫

0

E(t, s, α)(p1, v(s)) ds =

∫

T+(t)

E(t, s, α)(p1, v(s)) ds +

∫

T−(t)

E(t, s, α)(p1, v(s)) ds

=

∫

T+
1 (t)

E(t, s, α)(p1, v(s)) ds +

∫

T+
2 (t)

E(t, s, α)(p1, v(s)) ds

+

∫

T−
1 (t)

(−E(t, s, α))(−p1, v(s)) ds +

∫

T−
2 (t)

(−E(t, s, α))(−p1, v(s)) ds.
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In view of the obvious inequalities∫

T+
1 (t)

E(t, s, α)(p1, v(s)) ds ≥ δ1

∫

T+
1 (t)

E(t, s, α) ds,

∫

T+
2 (t)

E(t, s, α)(p1, v(s)) ds ≥ −d

∫

T+
2 (t)

E(t, s, α) ds,

∫

T−
1 (t)

(−E(t, s, α))(−p1, v(s)) ds ≥ δ1

∫

T−
1 (t)

(−E(t, s, α)) ds,

∫

T−
2 (t)

(−E(t, s, α))(−p1, v(s)) ds ≥ −d

∫

T−
2 (t)

(−E(t, s, α)) ds,

we conclude that

t∫

0

E(t, s, α)(p1, v(s)) ds ≥ δ1

∫

T+
1 (t)∪T−

1 (t)

|E(t, s, α)| ds − d

∫

T+
2 (t)∪T−

2 (t)

|E(t, s, α)| ds.

Hence

δ1

∫

T+
1 (t)∪T−

1 (t)

|E(t, s, α)| ds − d

∫

T+
2 (t)∪T−

2 (t)

|E(t, s, α)| ds ≤ μ0(t)

by virtue of inequality (7). It follows from the definitions of the sets T±
i (t), i = 1, 2, and the

function E(t) that ∫

T+
1 (t)∪T−

1 (t)

|E(t, s, α)| ds +
∫

T+
2 (t)∪T−

2 (t)

|E(t, s, α)| ds = E(t).

The last two relations imply that
∫

T+
2 (t)∪T−

2 (t)

|E(t, s, α)| ds ≥ δ1E(t)− μ0(t)

d+ δ1

for all t ∈ [0, T ], whence it follows that

max
i∈In

hi(t, T, v(·)) ≥
1

n

∑
i∈In

hi(t, T, v(·)) =
tα−1

n

t∫

0

|E(t, s, α)|
∑
i∈In

λ(fi(T )r(T, s), v(s)) ds

≥ tα−1

n

t∫

0

|E(t, s, α)|max
i∈In

λ(fi(T )r(T, s), v(s)) ds

≥ tα−1

n

∫

T+
2 (t)∪T−

2 (t)

|E(t, s, α)|max
i∈In

λ(fi(T )r(T, s), v(s)) ds

≥ δ1
n(d+ δ1)

[δ1t
α−1E(t)− tα−1μ0(t)]

for all t ∈ [0, T ]. Hence

max
i∈In

hi(T, T, v(·)) ≥
δ1

n(d+ δ1)
[δ1T

α−1E(T )− Tα−1μ0(T )]
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for all T > T1. Since [18, p. 120]

t∫

0

E(t, s, α) ds = tαE1/α(at
α, α+ 1), (8)

we have

tα−1E(t) = tα−1

t∫

0

|E(t, s, α)| ds ≥ tα−1

t∫

0

E(t, s, α) ds = t2α−1E1/α(at
α, α+ 1). (9)

It follows from [16, p. 12] that

E1/α(at
α, α+ 1) = − 1

atα
+O

(
1

t2α

)
(10)

as t → +∞. By Lemma 2, there exists a c > 0 such that |tα−1μ0(t)| ≤ c for all t ≥ 0. Therefore,

max
i∈In

hi(T, T, v(·)) ≥
δ1

n(d+ δ1)

[
− δ1T

α−1

a
− c+O

(
1

T

)]

as T → +∞. Since a < 0 and α − 1 > 0, it follows that there exists a time T0 such that
max i∈In hi(T0, T0, v(·)) ≥ 1 for each admissible function v(·). The proof of the lemma is complete.

Lemma 4. Let Ω = R
k, a < 0, and δ0 > 0. Then there exists a time T0 such that for each

admissible function v(·) (v(t) ∈ V, t ∈ [0, T0]) there exists a number q ∈ In such that

Tα−1
0

T0∫

0

|E(T0, s, α)|λ(fq(T0)r(T0, s), v(s)) ds ≥ 1.

Proof. It follows from Lemma 1 that there exists a time T1 > 0 such that δt > 0.5δ0 for
all t > T1. Let T > T1, and let v(·) be an arbitrary admissible function. Consider the functions (6).
Then

max
i∈In

hi(t, T, v(·)) ≥
1

n

∑
i∈In

hi(t, T, v(·)) =
tα−1

n

t∫

0

|E(t, s, α)|
∑
i∈In

λ(fi(T )r(T, s), v(s)) ds

≥ tα−1

n

t∫

0

|E(t, s, α)|max
i∈In

λ(fi(T )r(T, s), v(s)) ds ≥ δ1t
α−1

n

t∫

0

|E(t, s, α)| ds

for all t ∈ [0, T ]. It follows from relations (8)–(10) that

max
i∈In

hi(T, T, v(·)) ≥
δ1
n

(
−Tα−1

a
+O

(
1

T 2α

))

for all T > T1. Since a < 0 and α − 1 > 0, we see that there exists a time T0 such that
max i∈In hi(T0, T0, v(·)) ≥ 1 for each admissible function v(·). The proof of the lemma is complete.

By Lemmas 3 and 4,

T̂ = min

{
t : inf

v(·)
max
i∈In

tα−1

t∫

0

|E(t, s, α)|λ(fi(t)r(t, s), v(s)) ds ≥ 1

}
< ∞.
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Theorem 1. Let r = 1, a < 0, and δ0 > 0. Then the game ends in a capture.

Proof. Let v(s), s ∈ [0, T̂ ], be an arbitrary control of the evader. Consider the function

H(t) = 1−max
i∈In

T̂α−1

t∫

0

|E(T̂ , s, α)|λ(fi(T̂ )r(T̂ , s), v(s)) ds

and denote its least positive root by T0. Note that T0 exists by Lemma 3 and the definition of T̂ .
Moreover, T0 ≤ T̂ . In addition, there exists a number l ∈ In such that

1− T̂α−1

T0∫

0

|E(T̂ , s, α)|λ(fl(T̂ )r(T̂ , s), v(s)) ds ≤ 0.

Therefore, there exists a time τl such that

1− T̂α−1

τl∫

0

|E(T̂ , s, α)|λ(fl(T̂ )r(T̂ , s), v(s)) ds = 0. (11)

For i �= l, by τi we denote the times—if any—such that relation (11) is satisfied. Let us define the
controls ui(s) of the pursuers Pi by setting

ui(s) =

⎧⎨
⎩
v(s)− λ(fi(T̂ )r(T̂ , s), v(s))fi(T̂ )r(T̂ , s), s ∈ [0,min{τi, T̂ }],

v(s), s ∈ [min{τi, T̂}, T̂ ].

The solution of system (3) can be represented in the form [17]

zi(t) = E1/α(at
α, 1)z0i + tE1/α(at

α, 2)z1i +

t∫

0

E(t, s, α)(ui(s)− v(s)) ds.

Hence we obtain

T̂α−1zl(T̂ ) = fl(T̂ ) + T̂α−1

T̂∫

0

E(T̂ , s, α)(ul(s)− v(s)) ds

= fl(T̂ )

(
1− T̂α−1

τl∫

0

|E(T̂ , s, α)|λ(fl(T̂ )r(T̂ , s), v(s) ds
)

= 0.

The proof of the theorem is complete.

Theorem 2. Let Ω = R
k, a < 0, and δ0 > 0. Then the game ends in a capture.

This theorem is a corollary of Theorem 1 in [11] under the condition of a single capture.

Lemma 5. Let the following conditions be satisfied for vectors b1, . . . , bn ∈ R
k :

1. min v∈V max{max i∈In λ(bi, v),max j∈Ir (pj , v)} > 0.

2. min v∈coV1
max j∈Ir (pj , v) > 0, where V1 = {v : λ(bi, v) = 0 for all i ∈ In}.

Then there exists a vector p ∈ R
k such that

(a) Ω ⊂ Ω1 = {y : (p, y) ≤ 0};
(b) δ+0 (p) > 0, where δ+0 (p) = min v∈V max{max i∈In λ(bi, v), (p, v)}.
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Proof. By the Bohnenblust–Karlin–Shapley theorem [19, p. 33 of the Russian translation],
there exist nonnegative numbers γ1, . . . , γr, γ1 + · · ·+ γr = 1, such that

inf
v∈coV1

(γ1(p1, v) + · · ·+ γr(pr, v)) > 0.

Set p = γ1p1 + · · · + γrpr. Then Ω ⊂ Ω1 = {y : (p, y) ≤ 0} and (p, v) > 0 for all v ∈ coV1. Hence
δ+0 (p) > 0. The proof of the lemma is complete.

Lemma 6. Let V = D1(0). Then δ+0 > 0 if and only if δ−0 > 0.

Proof. The inequality δ+0 > 0 is equivalent to the inclusion [5, p. 36]

0 ∈ Int co {z11 , . . . , z1n, p1, . . . , pr},

which is obviously equivalent to the inclusion

0 ∈ Int co {−z11 , . . . ,−z1n,−p1, . . . ,−pr},

which, in turn, is equivalent to the inequality δ−0 > 0. The proof of the lemma is complete.

Theorem 3. Let a < 0, V = D1(0), δ0 > 0, and min v∈coV1
max j∈Ir(pj , v) > 0, where

V1 = {v : λ(z1i , v) = 0 for all i ∈ In}.

Then the game ends in a capture.

Proof. It follows from the assumptions of the theorem that there exists a vector p ∈ R
k such

that properties (a) and (b) in Lemma 5 are satisfied. Therefore, δ+0 (p) > 0. It follows from Lemma 6
that δ−0 (p) > 0, where

δ+0 (p) = min
v∈V

max{max
i∈In

(z1i , v), (p, v)}, δ−0 (p) = min
v∈V

max{max
i∈In

(−z1i , v), (−p, v)}.

Consequently, δ0(p) > 0. It follows that capture occurs in the game with the state constraints Ω1.
Therefore, the original game ends in a capture as well. The proof of the theorem is complete.

Corollary. Let a < 0, V = D1(0), n ≥ k, and

0 ∈ Int co {z11 , . . . , z1n, p1, . . . , pr}. (12)

Then the game ends in a capture.

Proof. It follows from the inclusion (12) that there exists an ε > 0 such that

0 ∈ Int co {w1, . . . , wn, p1, . . . , pr}

for all wi, i ∈ In, satisfying the inequality ‖z1i − wi‖ < ε. Therefore, we can assume that the
vectors z11 , . . . , z

1
k are linearly independent, because otherwise the pursuers P1, . . . , Pk can choose

their controls on a sufficiently small time interval [0, τ ] to ensure that, at time τ , the vectors
z11(τ), . . . , z

1
k(τ) are linearly independent and

0 ∈ Int co {z11(τ), . . . , z1n(τ), p1, . . . , pr}.

In addition, it follows from the inclusion (12) that the vectors z11 , . . . , z
1
n, p1, . . . , pr form a positive

basis of the space R
k [20]. Therefore, there exist positive numbers α1, . . . , αn, β1, . . . , βr such that

0 = α1z
1
1 + · · ·+ αnz

1
n + β1p1 + · · ·+ βrpr. (13)

Consider the vector p0 = β1p1 + · · · + βrpr, and let us show that 0 ∈ Int co {z11 , . . . , z1n, p0}. Let
x ∈ R

k. Since the vectors z11 , . . . , z
1
k form a basis of the space R

k, we have x = γ1z
1
1 + · · · + γkz

1
k.

By (13),
x = γ1z

1
1 + · · · + γkz

1
k + μ(α1z

1
1 + · · ·+ αnz

1
n + β1p1 + · · ·+ βrpr).
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Taking a sufficiently large μ, we obtain x = γ0
1z

1
1 + · · · + γ0

nz
1
n + μp0, where all the coefficients

are nonnegative. According to [20], the vectors z11 , . . . , z
1
n, p0 form a positive basis, and therefore,

0 ∈ Int co {z11 , . . . , z1n, p0}. It follows that δ+0 (p0) > 0. Hence δ−0 (p0) > 0, and consequently,
δ0(p0) > 0.

Consider the set Ω1 = {x : x ∈ R
k, (p0, x) ≤ 0}. Then Ω ⊂ Ω1. By Theorem 1, the game with

the state constraints Ω1 ends in a capture. Therefore, the game with the state constraints Ω ends
in a capture as well. The proof of the corollary is complete.

Remark. The case of a = 0 can be considered in a similar way.
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