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Abstract—We consider the initial–boundary value problem for quasilinear parabolic equation
with mixed derivatives and an unbounded nonlinearity. We construct unconditionally mono-
tone and conservative finite-difference schemes of the second-order accuracy for arbitrary sign
alternating coefficients of the equation. For the finite-difference solution, we obtain a two-sided
estimate completely consistent with similar estimates for the solution of the differential problem,
and also obtain an important a priori estimate in the uniform C-norm. These estimates are
used to prove the convergence of finite-difference schemes in the grid L2-norm. All theoretical
results are obtained under the assumption that some conditions imposed only on the input data
of the differential problem are satisfied.
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INTRODUCTION

The maximum principle is successfully used to prove the existence and uniqueness of the solutions
of initial–boundary value problems for parabolic and elliptic equations. In contrast to the method of
energy inequalities, it permits establishing a priori estimates of the solution in the strongest uniform
norm for problems of arbitrary dimension with a nonself-adjoint elliptic operator [1, p. 500].

A similar mathematical apparatus is also used in the theory of finite-difference schemes [2, p. 226;
3, p. 140; 4, p. 296]. In particular, it is used to study the stability and convergence of the finite-
difference solution in the uniform norm. Computational methods satisfying the grid maximum
principle are usually said to be monotone [2, p. 228; 4, p. 296]. Monotone finite-difference schemes
play an important role, because there do not arise nonphysical oscillations in the computer simu-
lation of applied problems described by partial differential equations [5].

The lower estimates of solutions of differential-difference problems or, in general, their two-
sided estimates are no less important. This is especially important when studying the theoretical
properties of computational methods approximating the problems with unbounded nonlinearity
when it is necessary to prove that the grid solution lies in a neighborhood of the values of the exact
solution [6–8]. As an example, one can consider the gamma equation [9] obtained by transforming
the nonlinear Black–Scholes equation for option pricing into the quasilinear parabolic equation
for the second derivative of the option price in financial mathematics.

In the case of linear problems, two-sided estimates of the desired solution are used to determine
its range in terms of input data of the problem (the coefficients of the equation, the right-hand side,
and the initial and boundary conditions). In the nonlinear case, such estimates allow one to prove
the nonnegativity of the exact solution, which is important in physical problems, and determine the
conditions on the output data under which the problem is parabolic or elliptic. Of course, it is
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desirable in this case that the estimates be as sharp as possible. To this end, starting from the
classical monograph [10, p. 22], there is a special technique related to the change of variables and
minimization or maximization of some functions with respect to a parameter.

Of course, such estimates are also required for computational algorithms approximating the
problem data. We also note that, to state the grid maximum principle, it is usually required that
the input data of the problem be of constant sign. But in [7, 8], to write a general finite-difference
scheme in canonical form, a two-sided estimate of the grid solution was proved in terms of input data
of the problem without the assumption that they are of constant sign. We also note the paper [11],
where the technique proposed in O.A. Ladyzhenskaya’s pioneering paper [12] was developed and
used to obtain two-sided estimates of the solution of grid schemes completely consistent with the
differential problem. Based on the application of such estimates, the convergence of a linearized
finite-difference scheme approximating the quasilinear heat equation with unboundedly increasing
nonlinearities and generalized solution satisfying the balance equation in the nonstationary case
was studied in [6].

When developing higher-order finite-difference schemes, it is important to preserve both the
monotonicity property and the conservativeness, because the systems of linear algebraic equations
obtained by applying such methods are well conditioned [13, p. 64]. The iteration methods con-
verge much better in the case of diagonally dominating matrices. The problems of developing
finite-difference schemes for equations with mixed derivatives were studied in [14–16]. Note that
equations with mixed derivatives arise in the construction of computational methods already for
the classical equations (Laplace, Poisson, and others) on arbitrary nonorthogonal grids. For el-
liptic and parabolic equations with mixed derivatives, monotone and conservative finite-difference
schemes were proposed in [17–19], but these schemes can be used only in the case of sign-constant
coefficients. If the coefficient of mixed derivatives changes sign, then the differential equations can
be written in nondivergence form with the first derivatives, and monotone schemes are constructed
for it by using the regularization principle [2–4]. But the conservativeness property is lost after such
a transformation. For elliptic equations with mixed derivatives, new monotone and conservative
finite-difference schemes were developed in [20] for both sign-constant and sign-alternating coeffi-
cients. The main idea of these schemes is based on the use of standard functionals with absolute
values of the coefficients of mixed derivatives. For a nonlinear problem with mixed derivatives in
nondivergence form, a finite-difference scheme and an iteration process implementing it were con-
structed and investigated in [21]. The convergence of this iteration process was rigorously studied,
and this process was used to prove the existence and uniqueness of the solution of a nonlinear finite-
difference scheme approximating the original differential problem. The estimates consistent with
the smoothness of the desired solution were obtained for the rate of convergence of finite-difference
schemes in the grid W 2

2,0(ω)-norm.

In the present paper, we consider the initial–boundary value problem for a quasilinear parabolic
equation with mixed derivatives and unbounded nonlinearity. Based on the combination of two
known finite-difference schemes of the second order of approximation [18, 19], we construct and
investigate unconditionally monotone and conservative finite-difference schemes of the second-order
accuracy for arbitrary sign-alternating coefficients of the mixed derivatives. The results of [7, 8] are
used to obtain a two-sided estimate for the finite-difference solution, which is completely consistent
with a similar estimate for the solution of the differential problem, and an a priori estimate is proved
in the uniform C-norm. These estimates are used to prove the convergence of finite-difference
schemes in the grid L2-norm. All theoretical results are proved under the only assumption that
some conditions are satisfied by the input data of the differential problem.

1. AUXILIARY RESULTS

Assume that Ωh is a finite set of nodes (grid) in some bounded domain of the n-dimensional
Euclidean space, and x ∈ Ωh is a point of the grid Ωh. Consider the equation

A(x)y(x) =
∑

ξ∈M′(x)

B(x, ξ)y(ξ) + F (x), x ∈ Ωh, (1)

which is called the canonical form of the finite-difference scheme [2, p. 226]. HereM′(x) = M(x)\x,
and M(x) is the grid stencil. Since any finite-difference scheme can be written as (1), monotonicity
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is understood as the following conditions saying that the coefficients of Eq. (1) are positive:

A(x) > 0, B(x, ξ) > 0 for all ξ ∈ M′(x), (2)

D(x) = A(x)−
∑

ξ∈M′(x)

B(x, ξ) > 0 for all ξ ∈ M′(x). (3)

To obtain a two-sided estimate of the solution of a finite-difference scheme, it is most convenient
to use the following lemma.

Lemma [7, 8]. Assume that conditions (2), (3) that the coefficients are positive are satisfied.
Then the maximum and minimum values of the solution of the finite-difference scheme (1) belong
to the range of the input data,

min
x∈Ωh

F (x)

D(x)
≤ y(x) ≤ max

x∈Ωh

F (x)

D(x)
, x ∈ Ωh. (4)

Corollary [2, p. 231]. Assume that conditions of the lemma are satisfied. Then in the grid
analog of the C-norm, the solution of finite-difference problem (1) satisfies the estimate

‖y‖C = max
x∈Ωh

|y(x)| ≤ ‖F/D‖C . (5)

2. STATEMENT OF THE PROBLEM AND TWO-SIDED ESTIMATE
OF THE EXACT SOLUTION

Let Ḡ = {x = (x1, x2) : 0 ≤ xα ≤ lα, α = 1, 2} be a rectangle whose boundary is denoted
by Γ. It is required to obtain a continuous function u(x, t) in Q̄T = Ḡ × [0, T ] satisfying the
initial–boundary value problem for the quasilinear parabolic equation with mixed derivatives

∂u

∂t
= Lu+ f(x, t), x ∈ G, t ∈ (0, T ], u(x, 0) = u0(x), u|Γ = μ(x, t), (6)

Lu =

2∑

α,β=1

Lαβu, Lαβu =
∂

∂xα

(
kαβ(u)

∂u

∂xβ

)
. (7)

It is assumed that the following ellipticity conditions are satisfied:

c1

2∑

α=1

ξ2α ≤
2∑

α,β=1

kαβ(u)ξαξβ ≤ c2

2∑

α=1

ξ2α for any u ∈ D̄u, (8)

where D̄u = {u(x, t) : m1 ≤ u(x, t) ≤ m2, (x, t) ∈ Q̄T , m1,m2 are constants}, c1 > 0, c2 > 0 are
constants, and ξ = (ξ1, ξ2) is an arbitrary vector. In particular, it follows from inequalities (8) that,

0 < c1 ≤ kαα(u) ≤ c2 for any u ∈ [m1,m2], α = 1, 2.

We assume in what follows that there exists a unique solution of problem (6)–(8) and all coef-
ficients in Eq. (6) and the desired function have continuous bounded derivatives of order that is
required as the presentation proceeds.

Let Qt1 = {(x, t) ∈ QT : t ≤ t1}. Then the following assertion holds.

Theorem 1 [10, p. 22]. The following two-sided estimates hold for the solution u(x, t) of
problem (6)–(8) at any point (x, t1) ∈ Q̄T :

u(x, t1) ≥ m1 = sup
λ>0

min

{
0,min

Qt1

{μ(x, t), u0(x)}eλ(t1−t), λ−1 min
Qt1

(f(x, t)eλ(t1−t))

}
, (9)

u(x, t1) ≤ m2 = inf
λ>0

max

{
0,max

Qt1

{μ(x, t), u0(x)}eλ(t1−t), λ−1 max
Qt1

(f(x, t)eλ(t1−t))

}
. (10)
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Remark 1. In the finite-element method, the estimates of solutions in terms of the func-
tions depending on the minimization or maximization with respect to auxiliary functions of some
functionals containing the input data were widely developed by Repin (e.g., see [22]).

3. FINITE-DIFFERENCE SCHEME

On the interval [0, T ], we introduce the grid ω̄τ = {tn = nτ : n = 0, . . . , N0, τN0 = T} = ωτ

⋃
T

uniform in time with step τ , and in the rectangle Ḡ we introduce the grid ω̄h = ωh

⋃
γh, where γh

is the set of boundary nodes uniform in each direction xα,

ω̄h = {xi = (x(i1)
1 , x(i2)

2 ) : x(iα)
α = iαhα, iα = 0, . . . , Nα, hαNα = lα, α = 1, 2}.

For simplicity, we use the notation without indices for the independent variables x = xi,
xα = xiα

α , t = tn, t̂ = tn+1 and for the grid functions:

g = g(xi1
1 , x

i2
2 , tn) = g(x, t), g±11 = gi1±1,i2 , g±12 = gi1,i2±1,

ĝ = gn+1 = g(x, tn+1), gx̄α
=

g − g(−1α)

hα

, gxα
=

g(+1α) − g

hα

.

On the uniform grid ω = ωh × ωτ , we approximate the differential problem (6) by the purely
implicit finite-difference scheme

yt =

2∑

α=1

Λααŷ +

2∑

α,β=1
α�=β

Λαβ ŷ + ϕ, (11)

y(x, 0) = u0(x), x ∈ ωh, ŷ|γh
= μ(x, t), x ∈ γh, (12)

where

Λααŷ = (aαα(y)ŷx̄α
)xα

=
a(+1α)
αα (y)(ŷ(+1α) − y)− aαα(y)(y − ŷ(−1α))

h2
α

,

Λαβ ŷ = 0.5[(k−
αβ(y)ŷx̄β

)
xα

+ (k−
αβ(y)ŷxβ

)
x̄α

+ (k+
αβ(y)ŷxβ

)
xα

+ (k+
αβ(y)ŷx̄β

)
x̄α
], α �= β,

a(+1α)
αα (y) =

kαα(y
(+1α)) + kαα(y)

2
, aαα(y) =

kαα(y
(−1α)) + kαα(y)

2
,

k+
αβ = 0.5(kαβ + |kαβ |) ≥ 0, k−

αβ = 0.5(kαβ − |kαβ|) ≤ 0, α �= β,

k+
αβ + k−

αβ = kαβ , k+
αβ − k−

αβ = |kαβ|, ϕ = f̂ , yt = (yn+1 − yn)/τ.

Approximation error. The approximation error of the scheme (11), (12) is calculated by the
formula

ψ = −ut +

2∑

α=1

Λααû+

2∑

α,β=1
α�=β

Λαβû+ ϕ. (13)

With regard to the relations

ut =
∂û

∂t
+O(τ), a(+1α)

αα (u)ûxα
= kαα(û)

∂û

∂xα

+
hα

2

∂

∂xα

(
kαα(û)

∂û

∂xα

)
+O(h2

α + τ),

aαα(u)ûx̄α
= kαα(û)

∂û

∂xα

− hα

2

∂

∂xα

(
kαα(û)

∂û

∂xα

)
+O(h2

α + τ),

we have

Λααû = (aαα(u)ûx̄α
)xα

=
∂

∂xα

(
kαα(û)

∂û

∂xα

)
+O(h2

α + τ ). (14)
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Now let us show that the operator Λαβ û, α �= β has the second order of approximation. Consider
the term (k−

αβ(u)ûx̄β
)xα

. Substituting the expansions

ux̄β
=

∂u

∂xβ

− hβ

2

∂2u

∂x2
β

+
h2
β

6

∂3u

∂x3
β

(xα, x̄β), x̄β ∈ [xβ − hβ, xβ], vxα
=

∂v

∂xα

+
hα

2

∂2v

∂x2
α

+O(h2
α)

into it for v = k−
αβ(u)ûx̄β

, we obtain

(k−
αβ(u)ûx̄β

)xα
= L−

αβû+
hα

2

∂

∂xα

L−
αβû− hβ

2
L−

αβ

∂û

∂xβ

+O(h2
1 + h2

2 + τ).

In a similar way, we obtain

(k−
αβ(u)ûxβ

)x̄α
= L−

αβû− hα

2

∂

∂xα

L−
αβû+

hβ

2
L−

αβ

∂û

∂xβ

+O(h2
1 + h2

2 + τ),

(k+
αβ(u)ûxβ

)xα
= L+

αβû+
hα

2

∂

∂xα

L+
αβû+

hβ

2
L+

αβ

∂û

∂xβ

+O(h2
1 + h2

2 + τ),

(k+
αβ(u)ûx̄β

)x̄α
= L+

αβû− hα

2

∂

∂xα

L+
αβû− hβ

2
L+

αβ

∂û

∂xβ

+O(h2
1 + h2

2 + τ).

It follows that

Λαβ û = L+
αβû+ L−

αβû+O(h2
1 + h2

2 + τ) = Lαβû+O(|h|2 + τ), α �= β. (15)

Then we have ψ = O(|h|2 + τ) from (13)–(15). Thus, we have proved the following theorem.

Theorem 2. The finite-difference scheme (11), (12) has the second order of approximation with
respect to the spatial variables and the first order with respect to the time variable.

4. MONOTONICITY, TWO-SIDED ESTIMATES, AND A PRIORI ESTIMATES

To apply the maximum principle, we reduce the scheme (11) to the canonical form (1) and verify
the sufficient conditions (2), (3) on the coefficients.

In the case of sign alternating coefficients kαβ(u), the grid has a 9-point stencil and consists of
the nodes shown in the figure. The stencil nodes are numbered as shown in the figure. Then for the
scheme (11) we have

∑

ξ∈M′(x)

Bn(x, ξ) =

9∑

j=2

Bn
j .

9-point stencil.
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To write the coefficients An, Bn, F n, it is necessary to write the scheme (11) in index form.
After elementary transformations, we obtain

Bn
2 = τ

(
k11(y

n
1 ) + k11(y

n
2 )

2h2
1

− |k12(yn
2 )|+ |k21(yn

1 )|
2h1h2

)
,

Bn
3 = τ

(
k11(y

n
1 ) + k11(y

n
3 )

2h2
1

− |k12(yn
3 )|+ |k21(yn

1 )|
2h1h2

)
,

Bn
4 = τ

(
k22(y

n
1 ) + k22(y

n
4 )

2h2
2

− |k12(yn
1 )|+ |k21(yn

4 )|
2h1h2

)
,

Bn
5 = τ

(
k22(y

n
1 ) + k22(y

n
5 )

2h2
2

− |k12(yn
1 )|+ |k21(yn

5 )|
2h1h2

)
, Bn

6 = τ
k+
12(y

n
2 ) + k+

21(y
n
5 )

2h1h2

≥ 0,

Bn
7 =−τ

k−
12(y

n
2 ) + k−

21(y
n
4 )

2h1h2

≥ 0, Bn
8 =τ

k+
12(y

n
3 ) + k+

21(y
n
4 )

2h1h2

≥ 0, Bn
9 =−τ

k−
12(y

n
3 ) + k−

21(y
n
5 )

2h1h2

≥ 0,

An = 1 + τ

(
kn +

k11(y
n
1 )

h2
1

− |k12(yn
1 )|+ |k21(yn

1 )|
h1h2

+
k22(y

n
1 )

h2
2

)
= 1 +

9∑

j=2

Bn
j ,

kn =
k11(y

n
2 ) + k11(y

n
3 )

2h2
1

+
k22(y

n
4 ) + k22(y

n
5 )

2h2
2

, Dn = An −
9∑

j=2

Bn
j = 1, F n = yn

1 + τϕ.

Assume that the following conditions are satisfied for the grid steps h1 and h2 which are expressed
in terms of input data of the problem:

c3 + c4
2c1

≤ h1

h2

≤ 2c1
c3 + c4

, c3 = max
u∈D̄u

|k21(u)|, c4 = max
u∈D̄u

|k12(u)|. (16)

Let us prove that yn
i1i2

∈ [m1,m2] for all iα = 1, . . . , N − 1, α = 1, 2, n = 0, . . . , N0. We take
an auxiliary grid function z(x, t) = zni1i2 = yn

i1i2
e−λtn , λ �= 0. The function z(x, t) satisfies the

finite-difference equation

ẑeλτ − z

τ
= eλτ

2∑

α=1

Λααẑ + eλτ
2∑

α,β=1
α�=β

Λαβ ẑ + e−λtn f̂ .

We write this equation in the canonical form (1),

An
(∗)z

n+1
1 =

9∑

j=2

Bn
(∗)jz

n+1
j +Kn

1 z
n
1 + F n

(∗), (17)

where

Bn
(∗)j = eλτBn

j , j = 2, . . . , 9, Kn
1 = 1, An

(∗) = eλτ +

9∑

j=2

Bn
(∗)j , F n

(∗) = τfn+1e−λtn .

We introduce the coefficients Dn
(∗) as follows:

Dn
(∗) = An

(∗) −
9∑

j=2

Bn
(∗)j −Kn

1 = eλτ − 1 > 0 for all λτ > 0.

Take an arbitrary tn ∈ ωτ . The following three cases are possible for the function z(x, t).

1. maxωtn
z(x, t) is nonpositive (i.e., z(x, t) ≤ 0, (x, t) ∈ ωtn).

2. maxωtn
z(x, t) is located on the base t = 0 or on the boundary (i.e., the inequality z(x, t) ≤

maxωtn
e−λt{μ(x, t), u0(x)}, (x, t) ∈ ωtn , holds).

3. A positive maximum is attained at some interior point (x0, t0), z(x, t) ≤ z(x0, t0) = max
ωtn

z(x, t).
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Obviously, for n = 0 we have y0
i1i2

= u0
0i1i2

∈ [m1,m2] for all iα = 1, . . . , N − 1, α = 1, 2.
Assume that, for an arbitrary n, the inclusion yn

i1i2
∈ [m1,m2] is also true. Then we have Bn

j ≥ 0,
j = 6, . . . , 9, kn > 0, and

An
+ = 1 + τ

(
kn +

k11(y
n
1 )

h2
1

− k12(y
n
1 ) + k21(y

n
1 )

h1h2

+
k22(y

n
1 )

h2
2

)
, kαβ ≥ 0, α �= β,

An
− = 1 + τ

(
kn +

k11(y
n
1 )

h2
1

+
k12(y

n
1 ) + k21(y

n
1 )

h1h2

+
k22(y

n
1 )

h2
2

)
, kαβ ≤ 0, α �= β.

Using the ellipticity condition (8) and assuming that ξ− = (1/h1, 1/h2) and ξ+ = (−1/h1, 1/h2),
we see that the coefficients An

± are positive. The other coefficients Bn
j , j = 2, . . . , 5, are positive if

the following conditions are satisfied:

max
m=4,5

|k12(yn
1 )|+ |k21(yn

m)|
k22(yn

1 ) + k22(yn
m)

≤ h1

h2

≤ min
m=2,3

k11(y
n
1 ) + k11(y

n
m)

|k21(yn
1 )|+ |k12(yn

m)|
. (18)

Indeed, since

min
m=2,3

k11(y
n
1 ) + k11(y

n
m)

|k21(yn
1 )|+ |k12(yn

m)|
≥

2min
u∈D̄u

k11(u)

max
u∈D̄u

|k21(u)|+ max
u∈D̄u

|k12(u)|
=

2c1
c3 + c4

,

max
m=4,5

|k12(yn
1 )|+ |k21(yn

m)|
k22(yn

1 ) + k22(yn
m)

≤
max
u∈D̄u

|k21(u)|+ max
u∈D̄u

|k12(u)|

2min
u∈D̄u

k11(u)
=

c3 + c4
2c1

,

we see that the system of inequalities (18) is satisfied; i.e., Bn
j ≥ 0, j = 2, . . . , 5. Then at the point

of maximum (x0, t0), by the estimate (4) and Eq. (17), we obtain

z(x, t) ≤ z(x0, t0) ≤ τ

eλτ − 1
f(x0, t0)e−λt0 ≤ τ

eλτ − 1
max
ωtn

f(x, t)e−λt, λ > 0.

Then, in all cases 1–3, the function z(x, t) satisfies the estimate

z(x, t) ≤ max

{
0,max

ωtn+1

e−λt{μ(x, t), u0(x)},
τ

eλτ − 1
max
ωtn+1

f(x, t)e−λt

}
,

which implies that

y(x, tn+1)≤mn+1
2 = inf

λ>0
max

{
0,max

ωtn+1

eλ(tn+1−t){μ(x, t), u0(x)},
τ

eλτ−1
max
ωtn+1

f(x, t)eλ(tn+1−t)

}
. (19)

In a similar way, we obtain the lower bound

y(x, tn+1) ≥ mn+1
1 = sup

λ>0

min

{
0, min

ωtn+1

eλ(tn+1−t){μ(x, t), u0(x)},
τ

eλτ−1
min
ωtn+1

f(x, t)eλ(tn+1−t)

}
. (20)

Since
τ

eλτ − 1
≤ 1

λ
for all λ, τ > 0,

we see that the estimates (9), (10) and (19), (20) imply the inequalities

m1 ≤ mn+1
1 , mn+1

2 ≤ m2;

i.e., yn+1
i1i2

∈ [m1,m2], iα = 1, . . . , N−1, α = 1, 2. In this sense, the finite-difference estimates inherit
the properties of the differential problem.
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Thus, we have proved the following theorem.

Theorem 3. Assume that conditions (16) are satisfied. Then the finite-difference scheme (11),
(12) is unconditionally monotone (without constraints on the steps τ and hα, α = 1, 2), and its
solution satisfies the two-sided estimate (19), (20) at any point (x, tn+1) ∈ ω.

Remark 2. The upper and lower bounds of the two-sided estimate (19), (20) are independent
of the diffusion coefficients kαβ(u), α, β = 1, 2.

Remark 3. If the coefficient matrix of Eq. (6) has diagonal predomination with respect to
rows and columns: kαα(u) ≥ |kαβ(u)| for any u ∈ [m1,m2], α, β = 1, 2, α �= β, then one can set
h1 = h2 = h, and then condition (16) is always satisfied.

Based on the maximum principle, we in a standard way obtain the following important a priori
estimate in the strong C-norm.

Theorem 4. Assume that conditions (16) are satisfied. Then the solution of the finite-difference
scheme (11), (12) satisfies the following a priori estimate for any tn ∈ ωτ :

‖y(tn+1)‖C̄ ≤ max

{
‖u0‖C̄ , max

1≤k≤n+1
‖μ(tk)‖Cγ

}
+ tn+1 max

1≤k≤n+1
‖f(tk)‖C . (21)

Proof. Since the assumptions of the corollary are satisfied, we have

‖y(tn+1)‖C̄ ≤ max{‖μ(tn+1)‖Cγ
, ‖F n‖C}

based on the a priori estimate (5). Note that

‖F n‖C = ‖y(tn) + τf(tn+1)‖C ≤ ‖y(tn)‖C̄ + τ‖f(tn+1)‖C .

Substituting this estimate into the preceding inequality, we obtain the chain of relations

‖y(tn+1)‖C̄ ≤ max{‖μ(tn+1)‖Cγ
, ‖y(tn)‖C̄ + τ‖f(tn+1)‖C}

≤ max{‖μ(tn+1)‖Cγ
, ‖μ(tn)‖Cγ

+ τ‖f(tn+1)‖C , ‖y(tn−1)‖C̄ + τ(‖f(tn)‖C + ‖f(tn+1)‖C)} ≤ · · ·

≤ max

{
max

1≤k≤n+1
‖μ(tk)‖Cγ

+

n∑

k=0

τ‖f(tk+1)‖C , ‖u0‖C̄ +

n∑

k=0

τ‖f(tk+1)‖C
}
.

Taking into account the inequality

n∑

k=0

τ‖f(tk+1)‖C ≤
n∑

k=0

τ max
1≤k≤n+1

‖f(tk)‖C = tn+1 max
1≤k≤n+1

‖f(tk)‖C ,

we obtain the desired estimate (21). The proof of the theorem is complete.

Remark 4. The results obtained above can naturally be generalized to p-dimensional parabolic
equations with mixed derivatives where p ≥ 2 is an arbitrary integer.

5. CONVERGENCE OF THE FINITE-DIFFERENCE SCHEME
IN THE GRID L2-NORM

If one succeeds in obtaining a two-sided estimate of the solution of the finite-difference scheme,
then the study of the convergence reduces to linear computational algorithms.

For simplicity, consider the case in which kαβ(u) ≤ 0, u ∈ D̄u, and α �= β. Then the finite-
difference scheme (11) becomes

yt =

2∑

α,β=1

Λαβ ŷ + ϕ, y(x, 0) = u0(x), x ∈ ωh, ŷ|γh
= μ(x, t), x ∈ γh, (22)
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where
Λαβ ŷ = 0.5[(kαβ(y)ŷx̄β

)
xα

+ (kαβ(y)ŷxβ
)
x̄α
].

Here we note that

Λααŷ = 0.5[(kαα(y)ŷx̄α
)xα

+ (kαα(y)ŷxα
)x̄α

] = (aαα(y)ŷx̄α
)xα

,

which implies an equation of the following form for the discrepancy:

ut =

2∑

α,β=1

Λαβû+ ϕ− ψ. (23)

Subtracting the corresponding equation (22) from Eq. (23), we obtain the following problem for
the method error z = y − u :

zt =

2∑

α,β=1

(Λαβ ŷ − Λαβû) + ψ, z(x, 0) = 0, x ∈ ωh, ẑ|γh
= 0, x ∈ γh. (24)

We define the following inner products and the corresponding norms:

(u, v) =

N1−1∑

i1=1

N2−1∑

i2=1

h1h2ui1i2vi1i2 , ‖u‖ =
√

(u, u),

(u, v]α =

Nα∑

iα=1

N3−α−1∑

i3−α=1

h1h2ui1i2vi1i2 , ||u]|α =
√

(u, u]α,

[u, v)α =

Nα−1∑

iα=0

N3−α−1∑

i3−α=1

h1h2ui1i2vi1i2 , |[u||α =
√

[u, u)α, α = 1, 2.

The following assertion holds.

Theorem 5. Assume that conditions (16) are satisfied. Then the solution of the finite-difference
scheme (22) converges to the exact solution of differential problem (6), and the following estimate
of the method accuracy holds :

‖ẑ‖ ≤ C(h2
1 + h2

2 + τ), C = const > 0.

Proof. Taking the inner product of Eq. (24) by 2τ ẑ, we obtain

2τ(zt, ẑ) = 2τ

(
ẑ,

2∑

α,β=1

(Λαβ ŷ − Λαβû)

)
+ 2τ(ẑ, ψ). (25)

Taking into account the fact that

Λαβ ŷ − Λαβû = 0.5[(kαβ(y)ẑx̄β
)
xα

+ ((kαβ(y)− kαβ(u))ûx̄β
)
xα

+ (kαβ(y)ẑxβ
)
x̄α

+ ((kαβ(y)− kαβ(u))ûxβ
)
x̄α
],

and applying the summation by parts formula [2, p. 98] to the first term on the right-hand side
in (25), we obtain

LHS ≡ 2τ

(
ẑ,

2∑

α,β=1

(Λαβ ŷ − Λαβû)

)
= −τ(θ + η),
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where

θ =

2∑

α,β=1

(ẑx̄α
, kαβ(y)ẑx̄β

]
α
+

2∑

α,β=1

[ẑxα
, kαβ(y)ẑxβ

)
α
,

η =

2∑

α,β=1

(ẑx̄α
, (kαβ(y)− kαβ(u))ûx̄β

]
α
+

2∑

α,β=1

[ẑxα
, (kαβ(y)− kαβ(u))ûxβ

)
α
.

Since
∑2

α,β=1 kαβ(y)ξαξβ ≥ c1
∑2

α=1 ξ
2
α for all y ∈ D̄u and any vector ξ = (ξ1, ξ2), we have the

inequality
2∑

α,β=1

kαβ(y)ẑx̄α
ẑx̄β

≥ c1

2∑

α=1

(ẑx̄α
)
2
,

which implies that

Nα∑

iα=1

N3−α−1∑

i3−α=1

h1h2

2∑

α,β=1

kαβ(yi1i2)ẑx̄α,i1i2 ẑx̄β ,i1i2 ≥ c1

Nα∑

iα=1

N3−α−1∑

i3−α=1

h1h2

2∑

α=1

(ẑx̄α,i1i2)
2
.

In the last inequality, we replace the outer summation symbols by the inner product and arrive at
the estimate

2∑

α,β=1

(ẑx̄α
, kαβ(y)ẑx̄β

]
α
≥ c1

2∑

α=1

(ẑx̄α
, ẑx̄α

]α = c1

2∑

α=1

||ẑx̄α
]|2α.

In a similar way, we obtain

2∑

α,β=1

[ẑxα
, kαβ(y)ẑxβ

)
α
≥ c1

2∑

α=1

[ẑxα
, ẑxα

)α = c1

2∑

α=1

|[ẑxα
||2α,

which implies that

θ ≥ c1

2∑

α=1

(||ẑx̄α
]|2α + |[ẑxα

||2α) = 2c1

2∑

α=1

||ẑx̄α
]|2α.

Further, for the functions kαβ, α, β = 1, 2, there exist positive constants Lαβ, α, β = 1, 2, such that
the estimates |kαβ(y)− kαβ(u)| ≤ Lαβ|z|α,(0.5) are satisfied, where

|zi1i2 |1,(0.5) =
|zi1i2 |+ |zi1−1,i2 |

2
, |zi1i2 |2,(0.5) =

|zi1i2 |+ |zi1,i2−1|
2

.

It follows that

2∑

α,β=1

(|ẑx̄α
|, |kαβ(y)− kαβ(u)||ûx̄β

|]
α
≤

2∑

α,β=1

Lαβ(|ẑx̄α
|, |z|α,(0.5)|ûx̄β

|]
α
.

The solution of problem (6), (7) is sufficiently smooth, and hence

|ûx̄α
| ≤ 1

hα

xiα
α∫

xiα−1
α

∣∣∣∣
∂û

∂xα

∣∣∣∣dxα ≤ c5, α = 1, 2.

Then, applying the ε-inequality, we obtain the estimate

2∑

α,β=1

Lαβ(|ẑx̄α
|, |z|α,(0.5)|ûx̄β

|]
α
≤ c5

2∑

α,β=1

(
εαβLαβ||ẑx̄α

]|2α +
Lαβ

4εαβ
‖z‖2

)
;
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i.e.,
2∑

α,β=1

(|ẑx̄α
|, |kαβ(y)− kαβ(u)||ûx̄β

|]
α
≤ c5

2∑

α,β=1

(
εαβLαβ||ẑx̄α

]|2α +
Lαβ

4εαβ
‖z‖2

)
. (26)

Here and below, εαβ > 0, α, β = 1, 2, εi > 0, i = 3, 4. In a similar way, we obtain the estimate

2∑

α,β=1

[|ẑxα
|, |kαβ(y)− kαβ(u)||ûxβ

|)
α
≤ c5

2∑

α,β=1

(
εαβLαβ|[ẑxα

||2α +
Lαβ

4εαβ
‖z‖2

)
. (27)

The estimates (26) and (27) imply that

|η| ≤ 2c5

2∑

α,β=1

εαβLαβ||ẑx̄α
]|2α + c5

2∑

α,β=1

Lαβ

2εαβ
‖z‖2.

Note that LHS ≤ −τ min θ+ τ max |η|. Therefore, for the first term on the right-hand side in (25),
we have the estimate

LHS ≤ −2τ

2∑

α=1

(
c1 − c5

2∑

β=1

εαβLαβ

)
||ẑx̄α

]|2α + τc5

2∑

α,β=1

Lαβ

2εαβ
‖z‖2, (28)

and the second term satisfies the following estimate:

2τ(ẑ, ψ) = 2τ(τzt + z, ψ) ≤ 2τ 2ε3‖zt‖2 +
τ 2

2ε3
‖ψ‖2 + 2τε4‖z‖2 +

τ

2ε4
‖ψ‖2. (29)

On the other hand, using the identity ẑ = 0.5(ẑ + z) + 0.5τzt, we write the left-hand side of (25)
as

2τ(zt, ẑ) = ‖ẑ‖2 − ‖z‖2 + τ 2‖zt‖2. (30)

Thus, from the results (25) and (28)–(30) we derive the estimate

‖ẑ‖2 + τ 2(1− 2ε3)‖zt‖2 + 2τ

2∑

α=1

(
c1 − c5

2∑

β=1

εαβLαβ

)
||ẑx̄α

]|2α

≤
(
1 + τ

(
2ε4 + c5

2∑

α,β=1

Lαβ

2εαβ

))
‖z‖2 + τ

(
1

2ε3
+

1

2ε4

)
‖ψ‖2.

We take the values ε3, εαβ , α, β = 1, 2, sufficiently small, namely, such that the inequalities

1 − 2ε3 > 0 and c1 − c5
∑2

β=1 εαβLαβ > 0, α = 1, 2, are satisfied. Then we arrive at the final
estimate

‖ẑ‖2 ≤ (1 + τc6)‖z‖2 + τc7(h
2
1 + h2

2 + τ)2 ≤ eτc6‖z‖2 + τc7(h
2
1 + h2

2 + τ)2.

Applying the finite-difference analog of the Gronwall lemma [2, p. 273] to the last inequality,
we obtain the desired estimate. The proof of the theorem is complete.

6. FINITE-DIFFERENCE SCHEMES FOR EQUATIONS
OF GENERAL FORM

To complete the discussion of the above results, it is necessary to consider problems with lower-
order derivatives. We again consider the initial–boundary value problem (6) with operator L of
the form

Lu =

2∑

α,β=1

∂

∂xα

(
kαβ(u)

∂u

∂xβ

)
+

2∑

α=1

rα(u)
∂u

∂xα

− q(x)u, (31)
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where q(x) ≥ c0 > 0 and the coefficients kαβ(u), α, β = 1, 2, satisfy the ellipticity conditions (8).
Then, by the results of [10, p. 22], we have the following assertion.

Theorem 6 [10, p. 22]. The solution u(x, t) of problem (6), (31), (8) at any point (x, t1) ∈ Q̄T

satisfies the two-sided estimate

u(x, t1) ≥ m3 = sup
λ>λ0

min

{
0,min

Qt1

{μ(x, t), u0(x)}eλ(t1−t),min
Qt1

f(x, t)eλ(t1−t)

λ+ q(x)

}
, (32)

u(x, t1) ≤ m4 = inf
λ>λ0

max

{
0,max

Qt1

{μ(x, t), u0(x)}eλ(t1−t),max
Qt1

f(x, t)eλ(t1−t)

λ+ q(x)

}
, (33)

where λ0 = maxx∈Ḡ{−q(x)} = −minx∈Ḡ q(x).

To construct the corresponding monotone scheme of the second order of local approximation with
respect to the spatial variables O(h2

1 + h2
2 + τ) for the equations containing lower-order derivatives,

we use an idea due to Samarskii [2]. In the operator (31), we replace the derivatives on the uniform
grid ω = ωh × ωτ by the finite-difference relations

∂

∂xα

(
kαα(û)

∂û

∂xα

)
+ rα(û)

∂û

∂xα

= κα(u)(aαα(u)ûx̄α
)xα

+ b+α (u)ûxα
+ b−α (u)ûx̄α

+O(h2
α + τ),

κα(u) = (1 +Rα(u))
−1, Rα = 0.5|rα(u)|hα/kαα(u), b±α (u) = r±α (u)/kαα(u),

r±α (u) = 0.5(rα(u)± |rα(u)|),
2∑

α,β=1
α�=β

∂

∂xα

(
kαβ(û)

∂û

∂xβ

)
=

2∑

α,β=1
α�=β

Λαβû+O(h2
1 + h2

2 + τ).

As a result, we obtain the following finite-difference scheme of the second order of approximation
with respect to the spatial variables:

yt =

2∑

α=1

(κα(y)(aαα(y)ŷx̄α
)xα

+ b+α (y)ŷxα
+ b−α (y)ŷx̄α

) +

2∑

α,β=1
α�=β

Λαβ ŷ − dy + ϕ, (34)

y(x, 0) = u0(x), x ∈ ωh, ŷ|γh
= μ(x, t), x ∈ γh, (35)

where d and ϕ are some stencil functionals which, in particular, can be taken in the form d(x) =
q(x), ϕ(x, t) = f(x, t), (x, t) ∈ ω. For the scheme (34), (35) to be monotone (and hence satisfy
the maximum principle), it suffices to require that the following condition be satisfied: the double
inequality

(c3 + c4)(1 +Rmax,2)

2c1
≤ h1

h2

≤ 2c1
(c3 + c4)(1 +Rmax,1)

, Rmax,α = 0.5hα max
u∈D̄u

|rα(u)|
kα(u)

, (36)

must hold for all x ∈ ωh and t ∈ ωτ .

The following theorem can be proved in a similar way.

Theorem 7. Assume that conditions (36) are satisfied for all x ∈ ωh and t ∈ ωτ . Then the
finite-difference scheme (34), (35) is unconditionally monotone (without restrictions on the steps τ
and hα, α = 1, 2), and its solution satisfies the two-sided estimate

y(x, tn) ≥ mn
3 = sup

λ>0

min

{
0,min

ωtn

eλ(tn−t){μ(x, t), u0(x)},min
ωtn

τf(x, t)eλ(tn−t)

(1 + τq)eλτ − 1

}
, (37)

y(x, tn) ≤ mn
4 = inf

λ>0
max

{
0,max

ωtn

eλ(tn−t){μ(x, t), u0(x)},max
ωtn

τf(x, t)eλ(tn−t)

(1 + τq)eλτ − 1

}
(38)

at any point (x, tn) ∈ ω.
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Remark 5. Since
τ

(1 + τq)eλτ − 1
≤ 1

λ+ q
for all λ, τ > 0,

we see that the estimates (32), (33) and (37), (38) imply that m3 ≤ mn
3 and mn

4 ≤ m4, and in
this sense, one can say that the finite-difference estimates inherit the properties of the differential
problem.

Remark 6. In the case without mixed derivatives, the estimates (19)–(21) and (37), (38) are
satisfied without restrictions (16), (36) on the grid steps h1 and h2.
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