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Abstract—We consider the problems of optimal control of a dynamical system whose right-
hand side is discontinuous in the state variable and is linear in the control with sufficiently
smooth coefficients in each of the half-spaces into which the space is divided by the switching
hyperplane. The main attention is paid to the situation where there exist intervals on which
the optimal trajectory lies on the switching surface. New nondegenerate necessary conditions
for optimality are stated and proved in the maximum principle form. The obtained optimality
conditions are compared with the already known conditions.
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1. INTRODUCTION. STATEMENT OF THE PROBLEM

In the present paper, we study the problems of optimal control of the solutions of systems with
discontinuous dynamics, i.e., of systems whose velocity vector determining their dynamics can be
a discontinuous function of the variable determining the state of the system. Dynamical systems
with discontinuous dynamics arise in the mathematical description of real systems (e.g., see [1–5]
and the references therein).

In the present paper, we consider the following problem of optimal control with discontinuous
dynamics:

min
(x,u)

F0(x(T )),

ẋ(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F+(x(t), u(t)) if r(x(t)) > 0,

F−(x(t), u(t)) if r(x(t)) < 0,

F+(x(t), u(t)) ∨ F−(x(t), u(t)) if r(x(t)) = 0,

u(t) ∈ [−1, 1], t ∈ T , x(0) = x0, h(x(T )) = 0,

(1.1)

where x ∈ R
n, u ∈ R, t ∈ T = [0, T ], r(x) = d′x, d ∈ R

n is a given vector, the symbols
“∨” and “′” respectively denote the logic “or” and the transposition operation, and the functions
F±(x, u) = a±(x) + b±(x)u, h(x) ∈ R

m̄, F0(x) ∈ R, a±(x) ∈ R
n, and b±(x) ∈ R

n are sufficiently
smooth. Here and below, the sufficient smoothness of a function is understood as follows: the
function itself and all of its partial derivatives used in the paper exist and are continuous.

Since the right-hand side is discontinuous, it may happen that the classical solution of this
system of differential equations does not exist and problem (1.1) must be restated. There exist
several methods for completing the definition of the solutions for systems of differential equations
with discontinuous right-hand side. The most popular of them is the redefinition by the Filippov
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rule [3]. The use of this rule results in the generalized problem which, in terms of differential
inclusions, is stated as follows:

min
x

F0(x(T )), ẋ(t) ∈ U(x(t)), x(0) = x0, h(x(T )) = 0, (1.2)

where the mapping U(x), x ∈ R
n, is defined by the relations

U(x) := {v ∈ R
n : v = F+(x, u), u ∈ [−1, 1]} if r(x) > 0,

U(x) := {v ∈ R
n : v = F−(x, u), u ∈ [−1, 1]} if r(x) < 0,

U(x) := {v ∈ R
n : v = αF+(x, u) + (1− α)F−(x, u), α ∈ [0, 1], u ∈ [−1, 1]} if r(x) = 0.

(1.3)

Note that, in the general case, the set U(x) in definition (1.3) is nonconvex.

There are few results of studies of the optimality conditions for problems of optimal control of
systems of differential equations with discontinuous right-hand side. As a rule (see, e.g., [6–11]),
the original problem (1.1) is replaced by the generalized problem (1.2) and attention is mainly paid
to the cases where there are no parts of the trajectories lying on the switching surface r(x) = 0,
x ∈ R

n [6, 7, 11].

It was shown in [12] that, in the case where there are parts of trajectories lying on the switching
surface, the necessary conditions for optimality stated in [6–11] degenerate and become nonin-
formative. In this paper, the degeneration of necessary conditions for optimality is understood
as follows: they are satisfied for admissible controls. Such a phenomenon is known for optimal
control problems with state constraints (see, e.g., [13]).

In the general case, in problem (1.2), the set of velocities U(x) is nonconvex. The nonconvexity
of the set of velocities leads to the following difficulties: first, in the problem (1.2) under study,
the optimal control need not exist, and second, even if it exists, the problem itself can be ill posed,
which means that arbitrarily small variations in the problem conditions may result in significant
variations in the solution and the optimal value of the performance criterion. Therefore, along with
problem (1.2), one usually (see [14]) considers the weakened problem where the set U(x) is replaced
by its convex hull convU(x)

min
x

F0(x(T )), ẋ(t) ∈ convU(x(t)), x(0) = x0, h(x(T )) = 0. (1.4)

Note that now, in problem (1.4), the set of velocities convU(x) is convex for a fixed x ∈ R
n

but the mapping x �→ convU(x), x ∈ R
n, does not satisfy the Lipschitz conditions introduced

in [15–17]. Therefore, the results in these papers cannot be used to study the optimality conditions in
problem (1.4).

The goal on this paper is to obtain nondegenerate (informative) necessary conditions for opti-
mality for weakened problem (1.4) and construct a control process in original problem (1.1) based
on the use of the solution of the weakened problem.

Note that all results given below can be generalized to the case where the switching surface
in problem (1.1) is given by a sufficiently smooth scalar function r(x), x ∈ R

n. To simplify the
calculations, we here assume that this function is linear.

2. MAXIMUM PRINCIPLE

Consider the set U(x) defined by relations (1.3). One can readily show that

convU(x) = {v ∈ R
n : v = f(x, α, u+, u−), α ∈ [0, 1], |u+| ≤ α, |u−| ≤ 1− α},

where

f(x, α, u+, u−) := αa+(x) + (1− α)a−(x) + u+b
+(x) + u−b

−(x)

= Δa(x)α+ a−(x) + b+(x)u+ + b−(x)u−, Δa(x) := a+(x)− a−(x). (2.1)
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Then the weakened problem (1.4) can be written as the following optimal control problem:

min
α,u+,u−

F0(x(T )),

ẋ(t) = f(x(t), α(t), u+(t), u−(t)), x(0) = x0, h(x(T )) = 0,

|u+(t)| ≤ α(t), |u−(t)| ≤ 1− α(t), α(t)r(x(t)) ≥ 0, (1− α(t))r(x(t)) ≤ 0, t ∈ T .

(2.2)

Note that the equations of dynamics in problem (2.2) are linear in the control (α, u+, u−).

Assume that (α0(t), u0
+(t), u

0
−(t)) and x0(t), where t ∈ T , are the optimal control and the

corresponding trajectory in problem (2.2). On the control interval, we distinguish three sets,

Ta = {t ∈ T : d′x0(t) = 0}, T + = {t ∈ T : d′x0(t) > 0}, T − = {t ∈ T : d′x0(t) < 0}.

In the general case, if the set Ta (i.e., the set of t ∈ T for which the trajectory x0(t) lies on the
switching surface) is nonempty, it consists of intervals and/or isolated points whose number may
be infinite. If τ ∈ Ta is an isolated point, then one says that the trajectory of the system intersects
the switching surface at this point or is tangent to it. If [τ, τ̄ ] ⊂ Ta, τ < τ̄ , then one says that the
trajectory lies on the switching surface on the interval [τ, τ̄ ]. Such an interval is called a singular
arc [10]. The cases where the set Ta is either empty or consists only of isolated points have been
sufficiently well studied in the literature. Therefore, to simplify the presentation, we (without loss
of generality) assume in what follows that the set Ta consists only of singular arcs.

Further, we assume that the following assumptions are satisfied.

(A) rank
∂h(x0(T ))

∂x
= m̄.

(B) The optimal control (α0(t), u0
+(t), u

0
−(t)), t ∈ T , is piecewise smooth.

(C) The set Ta = {t ∈ T : d′x0(t) = 0} consists of finitely many singular arcs,

Ta = T1

⋃
T2

⋃
. . .

⋃
Tp, Tk = [τk, τ

k]; 0 < τ1 < τ 1 < τ2 < · · · < τ p < T,

and the following inequalities are satisfied: d′ẋ0(τk − 0) 	= 0, d′ẋ0(τk + 0) 	= 0, k = 1, . . . , p.

(D) For each singular arc Tk = [τk, τ
k], there exists a number ε = ε(k) > 0, time instants μi(k),

i = 1, . . . , p(k), p(k) ≥ 2, satisfying the inequalities

τk = μ1(k) < μ2(k) < · · · < μp(k)−1(k) < μp(k)(k) = τk,

and a partition of the set I(k) = {1, 2, . . . , p(k)−1} into nonintersecting subsets (some of them can
be empty) I+(k), I−(k), I∗(k), I∗+(k), I

∗
−(k) such that, on the subintervals Ti(k) := (μi(k), μi+1(k)),

i = 1, . . . , p(k)− 1, the following relations1 are satisfied:

α0(t) = 1, |u0
+(t)| ≤ 1− ε, |d′b+(x0(t))| > ε, t ∈ Ti(k), i ∈ I+(k),

α0(t) = 0, |u0
−(t)| ≤ 1− ε, |d′b−(x0(t))| > ε, t ∈ Ti(k), i ∈ I−(k),

α0(t) ∈ [ε, 1 − ε], |u0
+(t)|+ |u0

−(t)| = 1, |d′b∗(x0(t), u0
+(t), u

0
−(t))| > ε, t ∈ Ti(k), i ∈ I∗(k),

α0(t) ∈ [ε, 1 − ε], |u0
+(t)| ≤ α0(t)− ε, |d′b+(x0(t))| > ε, t ∈ Ti(k), i ∈ I∗+(k),

α0(t) ∈ [ε, 1 − ε], |u0
−(t)| ≤ (1− α0(t))− ε, |d′b−(x0(t))| > ε, t ∈ Ti(k), i ∈ I∗−(k),

(2.3)
where

b∗(x, u+, u−) := Δa(x) + b+(x) sgn u+ − b−(x) sgn u−. (2.4)

Note that the function (u0
+(t), u

0
−(t)) is continuous on the intervals Ti(k), i ∈ I±(k). If the

function (u0
+(t), u

0
−(t)) is discontinuous at a certain point t̄ ∈ Ti(k), i ∈ I∗(k)

⋃
I∗±(k), then rela-

tions (2.3) are assumed to be satisfied at this point if they are satisfied for t̄− 0 and t̄+ 0.

1 Such a partition of the set Tk into subsets can be nonunique. Therefore, we further consider the partition for which
the number p(k) is minimal.
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Theorem 1 (maximum principle). Let assumptions (A)–(D) be satisfied for the optimal con-
trol (α0(t), u0

+(t), u
0
−(t)), t ∈ T , and the corresponding trajectory x0(t), t ∈ T , of problem (2.2).

Then there exists a vector y ∈ R
m̄, numbers y0 ≥ 0, γk, γ

k, k = 1, . . . , p, a piecewise continuous
function ξ(t), t ∈ T , and a piecewise continuous solution ψ(t), t ∈ T , of the adjoint system

ψ̇′(t) = −ψ′(t)
∂f(x0(t), α0(t), u0

+(t), u
0
−(t))

∂x
+ d′ξ(t),

ψ′(T ) = −y′∂h(x
0(T ))

∂x
− y0

∂F0(x
0(T ))

∂x

(2.5)

with the jump conditions

ψ(τk − 0) = ψ(τk + 0) + dγk, ψ(τk − 0) = ψ(τk + 0) + dγk, k = 1, . . . , p, (2.6)

such that the following conditions are satisfied :

p∑

k=1

(|γk|+ |γk|) + y0 + ‖y‖ > 0, (2.7)

ψ′(t− 0)ẋ0(t− 0) = ψ′(t+ 0)ẋ0(t+ 0), t = τk, t = τk, k = 1, . . . , p, (2.8)

ξ(t) ≤ 0 if d′x0(t) = 0, α0(t) = 0,

ξ(t) ≥ 0 if d′x0(t) = 0, α0(t) = 1,

ξ(t) = 0 if d′x0(t) 	= 0, t ∈ T ; (2.9)

ψ′(t)f(x0(t), α0(t), u0
+(t), u

0
−(t)) = max

α
|u+|≤α

|u−|≤1−α

ψ′(t)f(x0(t), α, u+, u−) for a.a. t ∈ Ta, (2.10)

ψ′(t)F±(x
0(t), u0

±(t)) = max
|u|≤1

ψ′(t)F±(x
0(t), u) for a.a. t ∈ T ±. (2.11)

To verify the above-formulated optimality conditions, it is necessary to know a finite set of
parameters, namely, the numbers γk, γ

k, k = 1, . . . , p, y0 ≥ 0 and the vector y, as well as the
function ξ(t), t ∈ T . We restate the assertions of Theorem 1 so as not to use the functions ξ(t),
t ∈ T , explicitly in them. To this end, we analyze the maximum conditions (2.10) on singular arcs.

We write

a1 = a1(t) := ψ′(t)Δa(x0(t)), a2 = a2(t) := ψ′(t)b+(x0(t)), a3 = a3(t) := ψ′(t)b−(x0(t)).

Then the maximum condition (2.10) can be written as the linear programming problem

max
α,u+,u−

(a1α+ a2u+ + a3u−), α ∈ [0, 1], |u+| ≤ α, |u−| ≤ 1− α. (2.12)

Let (α0, u0
+, u

0
−) be an optimal solution of problem (2.12). The optimality of this solution implies

the relations

−a1 − |a2|+ |a3| ≤ 0 if α0 = 1; −a1 − |a2|+ |a3| ≥ 0 if α0 = 0;

−a1 − |a2|+ |a3| = 0 if α0 ∈ (0, 1);

if |a2| > 0, then |u0
+| = α0; if |a2| = 0, then |u0

+| ≤ α0;

if |a3| > 0, then |u0
−| = 1− α0; if |a3| = 0, then |u0

−| ≤ 1− α0.

Taking into account these relations and the maximum conditions (2.10), we conclude that the
following assertions hold for a.a. t ∈ Ta.
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1. If α0(t) = 1, then

ψ′(t)Δa(x0(t)) ≥ −|ψ′(t)b+(x0(t))| + |ψ′(t)b−(x0(t))|, |u0
+(t)| ≤ 1, u0

−(t) = 0.

Moreover, if |u0
+(t)| < 1, then ψ′(t)b+(x0(t)) = 0.

2. If α0(t) = 0, then

ψ′(t)Δa(x0(t)) ≤ −|ψ′(t)b+(x0(t))| + |ψ′(t)b−(x0(t))|, |u0
−(t)| ≤ 1, u0

+(t) = 0. (2.13)

Moreover, if |u0
−(t)| < 1, then ψ′(t)b−(x0(t)) = 0.

3. If α0(t) ∈ (0, 1), then

ψ′(t)Δa(x0(t)) = −|ψ′(t)b+(x0(t))|+ |ψ′(t)b−(x0(t))|, |u0
+(t)| ≤ α0(t), |u0

−(t)| ≤ 1− α0(t).

Moreover, if |u0
+(t)| < α0(t), then ψ′(t)b+(x0(t)) = 0, and if |u0

−(t)| < 1− α0(t), then

ψ′(t)b−(x0(t)) = 0.

These relations, assumptions (A)–(D), and the assertions of Theorem 1 imply that

ψ′(t)b±(x0(t)) = 0, t ∈ Ti(k), i ∈ I±(k)
⋃

I∗±(k);

ψ′(t)b∗(x0(t), u0
+(t), u

0
−(t)) = 0, t ∈ Ti(k), i ∈ I∗(k), k = 1, . . . , p.

We differentiate the last relations with respect to t with (2.2) and (2.5) taken into account and
obtain the following relations for the function ξ(t), t ∈ Ta :

ξ(t) = ψ′(t)q0±(t), t ∈ Ti(k), i ∈ I±(k)
⋃

I∗±(k);

ξ(t) = ψ′(t)q0∗(t), t ∈ Ti(k), i ∈ I∗(k), k = 1, . . . , p.
(2.14)

Here the function b∗(x, u+, u−) is defined by formula (2.4), and

q±(x, α, u+, u−) =
1

d′b±(x)

[
∂f(x, α, u+, u−)

∂x
b±(x)− ∂b±(x)

∂x
f(x, α, u+, u−)

]

,

q∗(x, α, u+, u−) =
1

d′b∗(x, u+, u−)

[
∂f(x, α, u+, u−)

∂x
b∗(x, u+, u−)−

∂b∗(x, u+, u−)

∂x
f(x, α, u+, u−)

]

,

q0±(t) = q±(x
0(t), α0(t), u0

+(t), u
0
−(t)), q0∗(t) = q∗(x

0(t), α0(t), u0
+(t), u

0
−(t)), t ∈ Ta. (2.15)

Note that, by assumptions (A) and (D), we have the inequalities

d′b±(x0(t)) 	= 0, t ∈ Ti(k), i ∈ I±(k)
⋃

I∗±(k);

d′b∗(x0(t), α0(t), u0
+(t), u

0
−(t)) 	= 0, t ∈ Ti(k), i ∈ I∗(k), k = 1, . . . , p.

It follows from relations (2.14) that the adjoint system (2.5) can be written as

ψ̇′(t) = −ψ′(t)S0(t), t ∈ T , ψ′(T ) = −y′∂h(x
0(T ))

∂x
− y0

∂F0(x
0(T ))

∂x
, (2.16)

where

S0(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q(x0(t), α0(t), u0
+(t), u

0
−(t)), t ∈ T \ Ta,

Q∗(x
0(t), α0(t), u0

+(t), u
0
−(t)), t ∈ Ti(k), i ∈ I∗(k),

Q±(x
0(t), α0(t), u0

+(t), u
0
−(t)), t ∈ Ti(k), i ∈ I±(k)

⋃
I∗±(k),

k = 1, . . . , p, (2.17)

Q(x, α, u+, u−) =
∂f(x, α, u+, u−)

∂x
, Q∗(x, α, u+, u−) = Q(x, α, u+, u−)− q∗(x, α, u+, u−)d

′,

Q±(x, α, u+, u−) = Q(x, α, u+, u−)− q±(x, α, u+, u−)d
′. (2.18)
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With the resulting relations taken into account, we can state Theorem 1 as follows.

Theorem 2. Let the optimal control (α0(t), u0
+(t), u

0
−(t)), t ∈ T , and the corresponding tra-

jectory x0(t), t ∈ T , of problem (2.2) satisfy assumptions (A)–(D). Then there exists a vector
y ∈ R

m̄, numbers y0 ≥ 0, γk, γ
k, k = 1, . . . , p, satisfying condition (2.7), and a piecewise contin-

uous solution ψ(t), t ∈ T , of the adjoint system (2.16) with the jump conditions (2.6) such that
relations (2.8), (2.10), (2.11) and the following conditions are satisfied :

ψ′(t)q0+(t) ≤ 0, t ∈ Ti(k), i ∈ I+(k);

ψ′(t)q0−(t) ≥ 0, t ∈ Ti(k), i ∈ I−(k), k = 1, . . . , p.

Proof. To simplify the computations, we assume that

p = 1, Ta(1) = [τ1(1), τ
1(1)], 0 < τ1 = τ1(1) < τ 1 = τ 1(1) < T ;

p(1) = 4, I+(1) = ∅, I−(1) = {1}, I∗(1) = {2}, I∗+(1) = ∅, I∗−(1) = {3}.
(2.19)

It follows from (2.19) and assumptions (A)–(D) that, for some μi, i = 0, . . . , 5, and ε > 0, the
following relations hold:

μ0 = 0 < μ1 = τ1 < μ2 < μ3 < μ4 = τ 1 < T = μ5, T+ := [μ0, μ1), T− := (μ4, μ5],

d′x0(t) > 0, t ∈ T+; d′x0(t) < 0, t ∈ T−; d′x0(t) = 0, t ∈ Ta := [μ1, μ4];

α0(t) = 0, |u0
+(t)| = 0, u0

−(t) ≤ 1− ε, t ∈ (μ1, μ2);

ε ≤ α0(t) ≤ 1− ε, |u0
+(t)|+ |u0

−(t)| = 1, t ∈ (μ2, μ3);

ε ≤ α0(t) ≤ 1− ε, |u0
−(t)| ≤ 1− α0(t)− ε, t ∈ (μ3, μ4);

d′ẋ0(μ1 − 0) < 0, d′ẋ0(μ4 + 0) < 0. (2.20)

We introduce the vector of parameters

γ = (y0, y, γ1, γ
1), (2.21)

where y0 ≥ 0, γ1, γ
1 ∈ R, y ∈ R

m̄, and let ψ(t | γ), t ∈ T , denote the piecewise continuous solution
of the system

ψ̇′(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ψ′(t)Q(x0(t), α0(t), u0
+(t), u

0
−(t)), t ∈ [μ0, μ1)

⋃
(μ4, μ5];

−ψ′(t)Q−(x
0(t), α0(t), u0

+(t), u
0
−(t)), t ∈ [μ1, μ2)

⋃
[μ3, μ4),

−ψ′(t)Q∗(x
0(t), α0(t), u0

+(t), u
0
−(t)), t ∈ [μ2, μ3),

ψ′(T ) = −y′∂h(x
0(T ))

∂x
− y0

∂F0(x
0(T ))

∂x

(2.22)

with the jump conditions

ψ(μ1 − 0) = ψ(μ1 + 0) + dγ1, ψ(μ4 − 0) = ψ(μ4 + 0) + dγ1. (2.23)

The following lemma is proved in Appendix B (see below).

Lemma. Assume that (α0(t), u0
+(t), u

0
−(t)) and x0(t), t ∈ T , are an optimal control and a trajec-

tory of problem (2.2) for which assumptions (A)–(D) are satisfied and relations (2.20) hold. Then
for any m ∈ N, m ≥ 2, and any set of points t̄1, t̄2, . . . , t̄2m+1 satisfying the inequalities

μ1 = t̄1 < t̄2 < · · · < t̄2m−1 = μ2 < t̄2m = μ4 < t̄2m+1 = μ5,
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there exists a vector γ, ‖γ‖ = 1, of the form (2.21) such that the following relations are satisfied
along the corresponding solution ψ(t) = ψ(t|γ), t ∈ T , of system (2.22), (2.23) :

ψ′(t− 0)ẋ∗(t− 0) = ψ′(t+ 0)ẋ∗(t+ 0), t = μ1, t = μ4,

ψ′(t)b±(x0(t))u0
±(t) = max

|u|≤1
ψ′(t)b±(x0(t))u for a.a. t ∈ T±,

ψ′(t)f(x0(t), α0(t), u0
+(t), u

0
−(t)) = max

α∈[0,1],|u+|≤α,|u−|≤1−α
ψ′(t)f(x0(t), α, u+, u−)

for a.a. t ∈ [t̄2i−1, t̄2i], i = 1, . . . ,m;

ψ′(t)q0−(t) ≥ 0, ψ′(t)b−(x0(t))u0
−(t) = max

|u|≤1
ψ′(t)b−(x0(t))u

for a.a. t ∈ [t̄2i, t̄2i+1], i = 1, . . . ,m− 1. (2.24)

For each m ∈ N, m ≥ 2, consider the set of points

t
(m)
i = τ1 + (i− 1)

τ0 − τ1
2m− 2

, i = 1, . . . , 2m− 1, t
(m)
2m = τ 1. (2.25)

Recall that, by assumption, α0(t) = 0, t ∈ (μ1, μ2). Then it follows from Lemma 1 with regard
to assumption (D) and relations (2.13) that there exists a vector

γ(m) = (y0(m), y(m), γ1(m), γ1(m)), ‖γ(m)‖ = 1,

such that the following relations are satisfied:

ψ′(t− 0|γ(m))ẋ∗(t− 0) = ψ′(t+ 0|γ(m))ẋ∗(t+ 0), t = μ1, t = μ4, (2.26)

ψ′(t|γ(m))b±(x0(t))u0
±(t) = max

|u|≤1
ψ′(t|γ(m))b±(x0(t))u for a.a. t ∈ T±, (2.27)

ψ′(t|γ(m))f(x0(t), α0(t), u0
+(t), u

0
−(t))

= max
α,|u+|≤α,|u−|≤1−α

ψ′(t|γ(m))f(x0(t), α, u+, u−), t ∈ [μ2, μ4], (2.28)

ψ′(t|γ(m))b−(x0(t)) = 0, t ∈ [μ1, μ2]; (2.29)

ψ′(t|γ(m))Δa(x0(t)) ≤ −|ψ′(t|γ(m))b+(x0(t))|, t ∈ [t
(m)
2i−1, t

(m)
2i ],

ψ′(t|γ(m))q0−(t) ≥ 0, t ∈ [t
(m)
2i , t

(m)
2i+1], i = 1, . . . ,m− 1. (2.30)

Consider the sequence of vectors γ(m), m = 2, 3, . . . Since ‖γ(m)‖ = 1, m = 2, 3, . . . , we can
choose a converging subsequence from this sequence. Without loss of generality, we assume that the
sequence γ(m), m = 2, 3, . . . , itself converges. We write γ∗ = limm→∞ γ(m). Obviously, ‖γ∗‖ = 1.

It follows from definition (2.25) that, for any point t ∈ [μ1, μ2], there exists a sequence of indices

i(m) = i(m | t) ∈ {2, 3, . . . , 2m− 1}, m = 2, 3, 4, . . . , such that t
(m)

i(m) → t as m → ∞. Bearing this

in mind, we pass to the limit as m → ∞ in relations (2.30). As a result, we obtain

ψ′(t|γ∗)Δa(x0(t)) ≤ −|ψ′(t|γ∗)b+(x0(t))|, ψ′(t|γ∗)q0−(t) ≥ 0, t ∈ [μ1, μ2].

As a result of passing to the limit as m → ∞, the last inequalities and the relations obtained
from (2.26)–(2.29) coincide with the assertions of Theorem 2 for the considered type of the structure
of solution (2.19) of original problem (2.2).

For other types of the structure of the solution, the theorem can be proved in a similar way.
The proof of the theorem is complete.
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3. CONSTRUCTION OF CONTROL ACTIONS
IN THE ORIGINAL PROBLEM (1.1)

BASED ON SOLUTION OF WEAKENED PROBLEM (2.2)

Let us show how the solution of the weakened problem (2.2) can be used to construct a control
in the original problem (1.1), where the velocity vector on the switching surface can have the form
F+(x(t), u(t)) or F−(x(t), u(t)).

Let (α0(t), u0
+(t), u

0
−(t)) and x0(t), t ∈ T , be the optimal control and the trajectory of prob-

lem (2.2) satisfying assumptions (A)–(D). By construction, |u0
+(t)| ≤ 1, u0

−(t) = 0 if t ∈ T̄1 =
{t ∈ T : α0(t) = 1}, u0

+(t) = 0, |u0
−(t)| ≤ 1 if t ∈ T̄0 = {t ∈ T : α0(t) = 0}, and |u0

+(t)| ≤ α0(t),

|u0
−(t)| ≤ 1− α0(t) if t ∈ T∗ = T \ (T̄0

⋃
T̄1). We set

u1(t) = u0
+(t), u2(t) = 0, t ∈ T̄1; u1(t) = 0, u2(t) = u0

−(t), t ∈ T̄0,

u1(t) = u0
+(t)/α

0(t), u2(t) = u0
−(t)/(1 − α0(t)), t ∈ T∗.

Obviously, the functions u1(t), u2(t), t ∈ T , are piecewise continuous and |u1(t)| ≤ 1, |u2(t)| ≤ 1,
t ∈ T . We write g1(t, x) = a+(x) + b+(x)u1(t), g2(t, x) = a−(x) + b−(x)u2(t), t ∈ T , and consider
the multivalued mappings F(t, x) : T × R

n → R
n and convF(t, x) : T × R

n → R
n defined by the

relations

F(t, x) = {g1(t, x), g2(t, x)},
convF(t, x) = {z ∈ R

n : there exists α ∈ [0, 1] such that z = αg1(t, x) + (1− α)g2(t, x)}.

The mapping F(t, x) : T × R
n → R

n is piecewise continuous in t and satisfies assumptions (A1)
and (A2) in [15]. Therefore, by Theorem 4.1 in [15], the set of absolutely continuous solutions of
the system of differential inclusions

x(t) ∈ F(t, x(t)), t ∈ T , x(0) = x0, (3.1)

is everywhere dense with respect to the norm of the space C(T ,Rn) in the set of absolutely con-
tinuous solutions of the system of differential inclusions

x(t) ∈ convF(t, x(t)), t ∈ T , x(0) = x0. (3.2)

Thus, for any absolutely continuous solution x̄(t), t ∈ T , of the inclusion (3.2), there exists a se-
quence of absolutely continuous solutions xs(t), t ∈ T , of the inclusion (3.1), s = 1, 2, . . . , such that
lims→∞ max t∈T ‖x̄(t)− xs(t)‖ = 0.

By construction, the optimal trajectory x0(t), t ∈ T , of problem (2.2) satisfies the system of dif-
ferential inclusions (3.2). Therefore, there exists a sequence of measurable functions αs(t) ∈ {0, 1},
t ∈ T , s = 1, 2, . . . , such that, for the corresponding trajectories xs(t), t ∈ T , of the systems of
differential equations

ẋs(t) = αs(t)g1(t, x
s(t)) + (1− αs(t))g2(t, x

s(t)), xs(0) = x0, (3.3)

we have
lim
s→∞

max
t∈T

‖x0(t)− xs(t)‖ = 0. (3.4)

Assume that the functions αs(t), t ∈ T , s = 1, 2, . . . , are piecewise continuous. For a fixed s,
the control process in the original problem (1.1) can be realized by the control actions us(t), t ∈ T :

us(t) = u0
+(t), t ∈ T̄+(s), us(t) = u0

+(t), t ∈ T̄−(s),

where T̄+(s) = {t ∈ T : αs(t) = 1}, T̄−(s) = T \T̄+(s). The corresponding trajectory is a continuous
solution of the system of differential equations

ẋs(t) = F+(x
s(t), us(t)), t ∈ T̄+(s); ẋs(t) = F−(x

s(t), us(t)), t ∈ T̄−(s), xs(0) = x0. (3.5)

By construction, the solutions of systems (3.3) and (3.5) coincide.
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Note that, in the general case for a fixed s, the constructed control and the trajectory us(t),
xs(t), t ∈ T , are not admissible in problem (1.1), because in system (3.5) the switching from
the function F+(x, u) to the function F−(x, u) can be realized in a neighborhood of the switching
surface d′x = 0. But by (3.4), as s → ∞, the trajectory xs(t), t ∈ T , converges to an admissible
trajectory of problem (2.2). Therefore, for sufficiently large s � 1, in system (3.5), the switching
from the function F+(x, u) to the function F−(x, u) can be realized in the ε(s)-neighborhood of the
switching surface, where ε(s) → 0 as s → ∞. This allows one to call the constructed control us(t)
and the trajectory xs(t), t ∈ T , ε(s)-admissible controls in the original problem (1.1).

4. COMPARISON OF THE RESULTS WITH THE KNOWN ONES. EXAMPLE

The specific case of problem (1.1) where b−(x) = b+(x) was studied in [18]. In this case, we have
convU(x) = U(x), and hence it is unnecessary to consider the weakened problem (1.4). Note that,
in [18], the condition b−(x) = b+(x) is significant, and hence the results of this paper cannot be
used in problem (1.1) with b−(x) 	= b+(x).

When considering optimal control problems for dynamical systems with discontinuous right-
hand side, the Filippov rule was used in [7–9, 12] to redefine the solution on the switching surface,
which leads to problem (1.2). In [10], the behavior of the dynamical system on the discontinuity
surface is described by an arbitrary prescribed function.

It was shown in [12] that, in the case where there are parts of the trajectory on the switching
surface, the optimality conditions stated in [7–10] are noninformative (degenerate), because they
are realized for any admissible control. The main distinction of this paper from [12] is that, in [12],
the control of original system (1.1) is constructed based on the solution of problem (1.2), and in the
present paper, based on the solution of problem (2.2). The use of the solution of problem (2.2)
instead of the solution of problem (1.2) has several significant advantages. We point out two of
them:

(a) in problem (1.2), the dynamic equations are nonlinear in the control (α, u), and in prob-
lem (2.2), the dynamic equations are linear in the control (α, u+, u−);

(b) in the general case, the problem (1.2) may have no solution, and in the case where it has
an optimal control, the optimal value of the performance criterion in this problem cannot be better
than in problem (2.2).

Let us illustrate this with an example of problem (1.1) with the following data:

x ∈ R
3, F±(x, u) = Ax+ b±u, h(x) = x1 − x2 + 1, x(0) = (2, 1, 0), T = 4,

d =

⎛

⎜
⎝

1

−1

0

⎞

⎟
⎠, b+ =

⎛

⎜
⎝

−1

0

0

⎞

⎟
⎠, b− =

⎛

⎜
⎝

0

1

0

⎞

⎟
⎠, A =

⎛

⎜
⎝

0 0 0

0 0 0

1 1 0

⎞

⎟
⎠. (4.1)

For this problem, the weakened problem (2.2) becomes

x3(4) → min,

ẋ(t) = Ax(t) + b+u+(t) + b−u−(t), x(0) = (2, 1, 0)′, x1(4) − x2(4) = −1,

|u+(t)| ≤ α(t), |u−(t)| ≤ 1− α(t), α(t) ∈ [0, 1],

α(t) d′x(t) ≥ 0, (1− α(t)) d′x(t) ≤ 0, t ∈ [0, 4].

(4.2)

In problem (4.2), there exist many admissible controls, for example, the controls of the form

α∗(t) = 1, u∗
+(t) = 1, u∗

−(t) = 0, t ∈ [0, 1),

α∗(t) = 1, u∗
+(t) = 0, u∗

−(t) = 0, t ∈ [1, 3), (4.3)

α∗(t) = 0, u∗
+(t) = 0, u∗

−(t) = 1, t ∈ [3, 4],

ᾱ(t) = 1, ū+(t) = 1, ū−(t) = 0, t ∈ [0, 1),

ᾱ(t) = 0, ū+(t) = 0, ū−(t) = 1, t ∈ [1, 3), (4.4)

ᾱ(t) = 0, ū+(t) = 0, ū−(t) = −1, t ∈ [3, 4].
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One can show the following.

1. In problem (4.2), the optimal control and the trajectory have the form

α0(t) = 1, u0
+(t) = 1, u0

−(t) = 0, t ∈ [0, 1),

α0(t) = 0.5, u0
+(t) = 0.5, u0

−(t) = −0.5, t ∈ [1, 3),

α0(t) = 0, u0
+(t) = 0, u0

−(t) = 1, t ∈ [3, 4],

x0
1(t) = 2− t, x0

2(t) = 1, t ∈ [0, 1], x0
1(t) = 1.5− t/2, x0

2(t) = 1.5− t/2, t ∈ [1, 3],

x0
1(t) = 0, x0

2(t) = −3 + t, t ∈ [3, 4], x0
3(t) =

t∫

0

(x0
1(τ) + x0

2(τ)) dτ, t ∈ [0, 4],

(4.5)

and the optimal value of the performance criterion is F0(x
0(T )) = 5.

2. The optimal control (4.5) in problem (4.2) satisfies the necessary (nondegenerate) optimality
conditions stated in Theorem 2 with the following data:

y0 = 1, y = 2, γ1 = 2, γ1 = 0, S0(t) = A, t ∈ [0, 4],

ψ(t) = (t− 4− y, t− 4 + y,−1)′, t ∈ (3, 4], ψ(t) = (t− 4, t− 4,−1)′, t ∈ [0, 3].

3. The admissible but nonoptimal controls (4.3), (4.4) in problem (4.2) do not satisfy the nec-
essary conditions for optimality stated in Theorem 2.

4. For problem (1.1) with the data (4.1), necessary conditions for optimality given in [7–10] are
degenerate, because they are satisfied for any admissible control provided that there are trajectory
parts lying on the switching surface. One can readily verify that these conditions are, in particular,
satisfied by all controls (4.3)–(4.5).

5. For problem (1.1) with the data (4.1) and the corresponding problem (1.2), the optimal con-
trol and the trajectory x∗(t), t ∈ T , exist and can readily be constructed from the control (4.3)
admissible in problem (4.2). In this case, the optimal value of the performance criterion in prob-
lems (1.1) and (1.2) is F0(x

∗(T )) = 9, i.e., is greater by four units than the optimal value of the
performance criterion F0(x

0(T )) = 5 in the corresponding problem (2.2).

6. For each s = 1, 2, . . . , using the optimal control (4.5) of weakened problem (4.2) and the rules
described in the preceding section, we can readily construct ε(s)-admissible controls us(t) and the
trajectories xs(t), t ∈ T , for which

lim
s→∞

ε(s) = 0, lim
s→∞

F0(x
s(T )) = F0(x

0(T )) = 5 < F0(x
∗(T )) = 9.

Obviously, from the practical standpoint, it is preferable to use (for sufficiently large s > 0)
the ε(s)-admissible control us(t) and the trajectory xs(t), t ∈ T , than the admissible optimal
solution u∗(t), x∗(t), t ∈ T , but with a significantly worse performance criterion.

The above arguments show that the use of problem (2.2) as a problem approximating the original
problem (1.1) is justified, and the necessary conditions for optimality obtained in this paper in the
form of the nondegenerate maximum principle lead to some advance in studying and solving this
problem.

5. APPENDIX A.
NONDEGENERATE MAXIMUM PRINCIPLE

FOR OPTIMAL CONTROL PROBLEMS WITH STATE CONSTRAINTS

First, we consider several auxiliary assertions necessary to prove the above-formulated lemmas.

Consider the optimal control problem with state constraints-equalities and constraints-inequal-
ities

min c(z(1)),

ż(t) = f(z(t), v(t)), Φ(z(0), z(1)) = 0,

G0(z(t)) = 0, G∗(z(t)) ≤ 0, Dv(t) ≤ b̃, t ∈ [0, 1].

(5.1)
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Here z ∈ R
n̄ is the state vector, v is the control vector, c(z) ∈ R, G0(z) ∈ R

m0 , G∗(z) ∈ R
m∗ ,

f(z, v) ∈ R
n̄, and Φ(z, y) ∈ R

m are given sufficiently smooth functions, the function f(z, v) is linear

in v; D = (d(i), i ∈ I)′, d(i) ∈ R
s, i ∈ I; b̃ = (b̃i, i ∈ I)′.

A pair (v(t), z(t)), t ∈ [0, 1], consisting of a control and the corresponding trajectory is called
an admissible process in problem (5.1) if they satisfy all restrictions of this problem. We say that
the admissible process (v0(t), z0(t)), t ∈ [0, 1], realizes a strong local minimum in problem (5.1)
if there exists an ε > 0 such that, for any admissible process (v(t), z(t)), t ∈ [0, 1], satisfying the
condition max t∈[0,1] ‖z0(t)− z(t)‖ ≤ ε, the inequality c(z0(1)) ≤ c(z(1)) holds.

Assume that the process (v0(t), z0(t)), t ∈ [0, 1], realizes a strong local minimum in problem (5.1).
By some causes related to the proof of the lemma, it is necessary to consider a degenerate situation,
namely, the situation where all constraints-inequalities of problem (5.1) are active on the trajec-
tory z0(t), t ∈ [0, 1]. In this situation, the conditions of the classical maximum principle degenerate
and become noninformative.

The aim of this section is to show that, in the situation under study, for problem (5.1) one can
prove the nondegenerate maximum principle, using Theorems 3 and 5 in [13].

Assume that the following conditions are satisfied for the process (v0(t), z0(t)), t ∈ [0, 1].

(I) The control v0(t), t ∈ [0, 1], is a piecewise smooth function.

(II) For all t ∈ [0, 1], G∗(z
0(t)) = 0 and

rank

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂G0(z
0(t))

∂z
B(z0(t))

∂G∗(z
0(t))

∂z
B(z0(t))

Da(v)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= m0 +m∗ + |Ia(v)| for a.a. v ∈ V∗(t),

where V∗(t) = {v0(t− 0), v0(t+ 0)}, t ∈ (0, 1), V∗(0) = {v0(+0)}, V∗(1) = {v0(1− 0)}, and

Ia(v) = {i ∈ I : d′(i)v = b̃i}, Da(v) =

(

d′(i)

i ∈ Ia(v)

)

.

(III) The following relations hold for the terminal and state constraints:

rank

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂Φ(z0(0), z0(1))

∂z(0)

∂Φ(z0(0), z0(1))

∂z(1)

∂G0(z
0(0))

∂z
O

O
∂G0(z

0(1))

∂z

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= m+ 2m0, rank

⎛

⎜
⎜
⎝

∂G0(z
0(t))

∂z

∂G∗(z
0(t))

∂z

⎞

⎟
⎟
⎠ = m0 +m∗,

where t ∈ [0, 1], and there exists a number ε0 > 0 such that

{(z, y) ∈ R
2n̄ : Φ(z, y) = 0, G0(z) = G0(y) = 0, ‖(z, y) − (z0(0), z0(1))‖ ≤ ε0}

⊂ {(z, y) ∈ R
2n̄ : G∗(z) ≤ 0, G∗(y) ≤ 0}.

Obviously, problem (5.1) is equivalent to the problem

min c(z(1)),

ż(t) = f(z(t), v(t)), Φ̃(z(0), z(1)) = 0,

G0(z(t)) = 0, G∗(z(t)) ≤ 0, Dv(t) ≤ b̃, t ∈ [0, 1],

(5.2)

where Φ̃(z, y) = (Φ′(z, y), G′
0(z), G

′
0(y))

′, z ∈ R
n̄, and y ∈ R

n̄.
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It follows from assumptions (I)–(III) that all assumptions of Theorems 3 and 5 in [13] are satisfied
for problem (5.2) and clUR(z

0(t)) = U(z0(t)) for any t ∈ [0, 1], where

U(z) :=

{

v : Dv ≤ b̃,
∂G0(z)

∂z
f(z, v) = 0

}

and UR(z) is the set of regular points of the set U(z) (see Definition 4 in [13]).

The above considerations and Theorems 3 and 5 in [13] imply the following theorem.

Theorem 3. Assume that the process (v0(t), z0(t)), t ∈ [0, 1], realizes a strong local minimum
in problem (5.1) and conditions (I)–(III) are satisfied for it. Then there exists a number y0 ≥ 0,
vectors θ ∈ R

m, ρ∗ ∈ R
m0 , ρ∗ ∈ R

m0 , and piecewise continuous functions ν0(t) ∈ R
m0 , ν∗(t) ∈ R

m∗ ,
ν∗(t) ≥ 0, t ∈ [0, 1], such that, along a solution φ(t) ∈ R

n̄, t ∈ [0, 1], of the boundary value problem

φ̇′(t) = −φ′(t)
∂f(z∗(t), v∗(t))

∂z
− ν ′

0(t)
∂G0(z

∗(t))

∂z
+ ν ′

∗(t)
∂G∗(z

∗(t))

∂z
,

φ′(1) = −y0
∂c(z∗(1))

∂z
− θ′

∂Φ(z∗(0), z∗(1))

∂z(1)
− ρ∗′

∂G0(z
∗(1))

∂z
,

φ′(0) = θ′
∂Φ(z∗(0), z∗(1))

∂z(0)
+ ρ′∗

∂G0(z
∗(0))

∂z
,

(5.3)

the following conditions are satisfied :

y0 > 0 or M({t ∈ [0, 1] : ‖φ(t)‖ > 0}) > 0, (5.4)

max
Dv≤b̃

φ′(t)f(z0(t), v) = φ′(t)f(z0(t), v0(t)) = 0 for a.a. t ∈ [0, 1]. (5.5)

Here and below, M(A) denotes the Lebesgue measure of the set A ⊂ R.

6. APPENDIX B. PROOF OF THE LEMMA

For a fixed m ≥ 2, we introduce the parameter vector (t1, t2, . . . , t2m) and consider the optimal
control problem for the hybrid system

min
α(·),u+(·),u−(·),t1,t2,...,t2m

F0(x(T )),

ẋ(t) = f(x(t), 1, u+(t), 0), |u+(t)| ≤ 1, d′x(t) ≥ 0, t ∈ [0, t1[,

ẋ(t)=f(x(t), α(t), u+(t), u−(t)), |u+(t)| ≤ α(t), |u−(t)| ≤ 1− α(t), d′x(t)=0, t∈ [t2i−1, t2i[,

ẋ(t) = f(x(t), 0, 0, u−(t)), |u−(t)| ≤ 1, d′x(t) ≤ 0, t ∈ [t2i, t2i+1[, i = 1, . . . ,m,

x(0) = x0, h(x(T )) = 0, 0 = t0 ≤ t1 ≤ · · · ≤ t2m ≤ t2m+1 = T. (6.1)

Let t01, t
0
2, . . . , t

0
2m+1 be the set of points satisfying the inequalities

μ1 = t01 < t02 < · · · < t02m−1 = μ2 < t02m = μ4 < t02m+1 = μ5 (6.2)

and let (α0(t), u0
+(t), u

0
−(t)) and x0(t), t ∈ T , be an optimal control and a trajectory of problem (2.2).

One can readily show that (t01, t
0
2, . . . , t

0
2m+1), α

0(·) := (α0(t), t∈T ), u0
+(·) :=(u0

+(t), t∈T ), u0
−(·) :=

(u0
−(t), t ∈ T ), and x0(·) := (x0(t), t ∈ T ) form on optimal solution of problem (6.1).

Let us now describe the main steps of the rather “technical” proof.

Step 1. We reduce problem (6.1) to the form (5.1). To this end, we divide the control inter-
val [0, T ] into subintervals by points t0 ≤ t1 ≤ · · · ≤ t2m ≤ t2m+1 = T .
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We write J = {1, 2, . . . , 2m+ 1}, J∗ = {2i+ 1 : i = 1, . . . ,m}; Jβ = J \ (J∗ ∪ {1}),

zi(τ) = x(ti−1 + τ(ti − ti−1)), i ∈ J ; vi(τ) = u+(ti−1 + τ(ti − ti−1)), i ∈ J \ J∗;

wi(τ) = u−(ti−1 + τ(ti − ti−1)), i ∈ J \{1}; βi(τ) = α(ti−1 + τ(ti − ti−1)), i ∈ Jβ ;
(6.3)

and form the extended state vector

Z(τ) = (zi(τ), i = 1, . . . , 2m+ 1; ti(τ), i = 1, . . . , 2m) ∈ R
n(2m+1)+2m, τ ∈ [0, 1], (6.4)

and the extended control vector

V (τ) = (v1(τ), wi(τ), i ∈ J∗, Vi(τ), i ∈ Jβ) ∈ R
1+|J∗|+3|Jβ|,

Vi(τ) = (vi(τ), wi(τ), βi(τ)) ∈ R
3, i ∈ Jβ, τ ∈ [0, 1].

(6.5)

We use this notation to rewrite problem (6.1) as

min
Z,V

F0(z2m+1(1)),

Ż(τ) = F(Z(τ), V (τ)), Φ(Z(0), Z(1)) = 0,

G′
1Z(τ) ≥ 0, G′

2iZ(τ) = 0, G′
2i+1Z(τ) ≤ 0, i = 1, . . . ,m;

|v1(τ)| ≤ 1, |wi(τ)| ≤ 1, i ∈ J∗; DVi(τ) ≤ b, i ∈ Jβ,

ti(τ) ≤ ti+1(τ), i = 0, . . . , 2m, τ ∈ [0, 1].

(6.6)

Here t0(τ) ≡ 0, t2m+1(τ) ≡ T ,

F ′(Z, V ) = ((t1 − t0)f
+(z1, v1), (t2i − t2i−1)f(z2i, β2i, v2i, w2i),

(t2i+1 − t2i)f
−(z2i+1, w2i+1), i = 1, . . . ,m, 0, . . . , 0

︸ ︷︷ ︸
2m

),

f+(z, v) := (a+(z) + b+(z)v) = f(z, 1, v, 0), f−(z, w) := a−(z) + b−(z)w = f(z, 0, 0, w),

the function f(z, β, v, w) is defined by formula (2.1),

Φ(Z(0), Z(1)) =

⎛

⎜
⎝

−z1(0) + x0

zi(1) − zi+1(0), i = 1, . . . , 2m

h(z2m+1(1)),

⎞

⎟
⎠, D =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 −1

−1 0 −1

0 1 1

0 −1 1

⎞

⎟
⎟
⎟
⎟
⎠
, b =

⎛

⎜
⎜
⎜
⎜
⎝

0

0

1

1

⎞

⎟
⎟
⎟
⎟
⎠
,

G′
i = (O′, . . . ,O′,

︸ ︷︷ ︸
i−1

d′,O′, . . . ,O′,
︸ ︷︷ ︸

2m+1−i

0, . . . , 0
︸ ︷︷ ︸

2m

), i = 1, . . . , 2m+ 1,

where O ∈ R
n is a zero vector.

We consider the set of points t01, t
0
2, . . . , t

0
2m+1 satisfying inequalities (6.2) and let Z0(τ), V 0(τ),

τ ∈ [0, 1], denote the functions (6.3)–(6.5) constructed by using this set and the optimal control
(α0(t), u0

+(t), u
0
−(t)) and the optimal trajectory x0(t), t ∈ T , of problem (2.2).

It is obvious that V 0(τ) and Z0(τ), τ ∈ [0, 1], are the optimal control and the optimal trajectory
of problem (6.6). By assumption (see (2.20)), we have

G′
1Z

0(τ) > 0, τ ∈ [0, 1), G′
1Z

0(1) = 0, G′
1Ż

0(1− 0) 	= 0,

G′
2m+1Z

0(τ) < 0, τ ∈ (0, 1], G′
2m+1Z

0(0) = 0, G′
2m+1Ż

0(+0) 	= 0.

Therefore, the process (V 0(τ), Z0(τ)), τ ∈ [0, 1], also realizes a strong local minimum in the problem
obtained from problem (6.6) by eliminating the state constraints G′

1Z(τ) ≥ 0, G′
2m+1Z(τ) ≤ 0,
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τ ∈ [0, 1], and the constraints ti(τ) ≤ ti+1(τ), i = 0, . . . , 2m, τ ∈ [0, 1] :

minF0(z2m+1(1)),

Ż(τ) = F(Z(τ), V (τ)), Φ(Z(0), Z(1)) = 0,

G′
2i(Z(τ)) = 0, G′

2i+1Z(τ) ≤ 0, i = 1, . . . ,m− 1;

G′
2m(Z(τ)) = 0, DV (τ) ≤ b̃, τ ∈ [0, 1].

(6.7)

Step 2. Problem (6.7) is a special case of problem (5.1). By assumptions (A)–(D) and rela-
tions (2.20), the process (V 0(τ), Z0(τ)), τ ∈ [0, 1], satisfies conditions (I)–(III). Therefore, Theo-
rem 3 (see Appendix A) also holds for problem (6.7) and this process. By this theorem, there exists
a number y0 ≥ 0, vectors θ = (ρ1, ρ1, . . . , ρ2m+1, y), ρ∗ = (ρ∗i, i = 1, . . . ,m), ρ∗ = (ρ∗i, i = 1, . . . ,m),
ρi ∈ R

n, y ∈ R
m̄, ρ∗i, ρ

∗
i ∈ R, and functions ηi(τ), i = 2, . . . , 2m, τ ∈ [0, 1], and

φ(τ) = (φi(τ) ∈ R
n, i = 1, . . . , 2m+ 1; φ∗

i (τ) ∈ R, i = 1, . . . , 2m), τ ∈ [0, 1],

such that relations (5.3)–(5.5) are satisfied and

η2i+1(τ) ≥ 0, i = 1, . . . ,m− 1, τ ∈ [0, 1]. (6.8)

Set

β0
1(τ) ≡ 1, v01(τ) ≡ 0, β0

2i+1(τ) ≡ 0, w0
2i+1(τ) ≡ 0, i = 1, . . . ,m, τ ∈ [0, 1],

f 0
i (τ) := f(z0i (τ), β

0
i (τ), v

0
i (τ), w

0
i (τ)), i = 1, . . . , 2m+ 1, τ ∈ [0, 1],

take the specific features of the functions F(Z, V ) and Φ(Z(0), Z(1)) into account, and write rela-
tions (5.3)–(5.5) as

φ̇′
1(τ) = −φ′

1(τ)
∂f+(z01(τ), v

0
1(τ))

∂z
(t01 − t00),

φ̇′
2m+1(τ) = −φ′

2m+1(τ)
∂f−(z02m+1(τ), w

0
2m+1(τ))

∂z
(t02m+1 − t02m),

φ̇′
2i(τ) = −φ′

2i(τ)
∂f(z02i(τ), β

0
2i(τ), v

0
2i(τ), w

0
2i(τ))

∂z
(t02i − t02i−1) + d′η2i(τ), i = 1, . . . ,m,

φ̇′
2i+1(τ) = −φ′

2i+1(τ)
∂f−(z02i+1(τ), w

0
2i+1(τ))

∂z
(t02i+1 − t02i) + d′η2i+1(τ), i = 1, . . . ,m− 1,

φ̇∗
i (τ) = −φ′

i(τ)f
0
i (τ) + φ′

i+1(τ)f
0
i+1(τ), i = 1, . . . , 2m, (6.9)

φ∗
i (0) = φ∗

i (1) = 0, i = 1, . . . , 2m;

φ2i−1(0) = −ρ2i−1, φ2i−1(1) = −ρ2i; φ2i(0) = −ρ2i+ρ∗id, φ2i(1) = −ρ2i+1−ρ∗i d, i = 1, . . . ,m;

φ2m+1(0) = −ρ2m+1, φ2m+1(1) = −y0
∂F ′

0(z
0
2m+1(1))

∂x
− ∂h′(z02m+1(1))

∂x
y, (6.10)

max
|v|≤1

φ′
1(τ)b

+(z01(τ))v = φ′
1(τ)b

+(z01(τ))v
0
1(τ) for a.a. τ ∈ [0, 1],

max
|v|≤β,|w|≤1−β

φ′
i(τ)f(z

0
i (τ)), β, v, w) = φ′

i(τ)f
0
i (τ) for a.a. τ ∈ [0, 1], i ∈ Jβ,

max
|w|≤1

φ′
i(τ)b

−(z0i (τ))w = φ′
i(τ)b

−(z0i (τ))w
0
i (τ) for a.a. τ ∈ [0, 1], i ∈ J∗, (6.11)

y0 > 0 or M
({

t ∈ [0, 1] :

2m+1∑

i=1

‖φi(τ)‖ +
2m∑

i=1

|φ∗
i (τ)| > 0

})

> 0. (6.12)
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Step 3. Analyzing relations (6.7), (6.9)–(6.11) with regard to (2.3) and (2.20), we can prove that

φ∗
i (τ) ≡ 0, τ ∈ [0, 1]; φ′

i(1)fi(1) = φ′
i+1(0)fi+1(0), i = 1, . . . , 2m;

ρ∗i = 0, i = 2, . . . ,m; ρ∗i = 0, i = 1, . . . ,m− 1; (6.13)

ηi(τ) = φ′
i(τ)q

0
−(i, τ)(t

0
i − t0i−1), τ ∈ [0, 1], i = 2, . . . , 2m− 1,

η2m(τ) = φ′
2m(τ)q

0
∗(2m, τ)(t02m − t02m−1), τ ∈ [0, τ ∗[,

η2m(τ) = φ′
2m(τ)q

0
−(2m, τ)(t02m − t02m−1), τ ∈ [τ ∗, 1], (6.14)

φ̇′
i(τ) = −φ′

i(τ)Q̄
0
i (τ)(t

0
i − t0i−1), i = 1, . . . , 2m+ 1, τ ∈ [0, 1],

φ2(0) = φ1(1) + ρ∗1, φ2m(1) = φ2m+1(0)− ρ∗md, φi(1) = φi+1(0), i = 2, . . . , 2m− 1,

φ2m+1(1) = −y0
∂F ′

0(z
0
2m+1(1))

∂x
− ∂h′(z02m+1(1))

∂x
y. (6.15)

Here q0−(i, τ) = q−(z
0
i (τ), β

0
i (τ), v

0
i (τ), w

0
i (τ)), q

0
∗(i, τ) = q∗(z

0
i (τ), β

0
i (τ), v

0
i (τ), w

0
i (τ)),

Q̄0
1(τ) := Q+(z

0
1(τ), β

0
1(τ), v

0
1(τ), w

0
1(τ)),

Q̄0
i (τ) := Q−(z

0
i (τ), β

0
i (τ), v

0
i (τ), w

0
i (τ)), i = 2, . . . , 2m− 1 and i = 2m+ 1, τ ∈ [0, 1],

Q̄0
2m(τ) := Q∗(z

0
2m(τ), β

0
2m(τ), v

0
2m(τ), w0

2m(τ)), τ ∈ [0, τ ∗[,

Q̄0
2m(τ) := Q−(z

0
2m(τ), β

0
2m(τ), v02m(τ), w

0
2m(τ)), τ ∈ [τ ∗, 1],

and the functions q−(z, β, v, w), q∗(z, β, v, w), Q±(z, β, v, w), Q∗(z, β, v, w) are defined by formu-
las (2.15) and (2.18).

Let us show that

y0 + |ρ∗1|+ |ρ∗m|+ ‖y‖ 	= 0.

Assume the contrary:

y0 + |ρ∗1|+ |ρ∗m|+ ‖y‖ = 0.

Then y0 = 0, ρ∗1 = 0, ρ∗m = 0, y = 0 and relations (6.15) imply that φi(τ) ≡ 0, τ ∈ [0, 1],
i = 1, . . . , 2m + 1. But these identities and the identities in (6.13) contradict condition (6.12).
The obtained contradiction proves that y0 + |ρ∗1| + |ρ∗m| + ‖y‖ 	= 0. Without loss of generality,
we can assume that

y0 + |ρ∗1|+ |ρ∗m|+ ‖y‖ = 1. (6.16)

Step 4. At Step 3, we have shown that if the process (V 0(τ), Z0(τ)), τ ∈ [0, 1], realizes a strong
local minimum in problem (6.7), then there exist numbers y0, ρ∗1, ρ

∗
m and a vector y satisfying

condition (6.16) such that relations (6.11), (6.13), (6.8), and (6.14) are satisfied along the solu-
tion φi(τ), i = 1, . . . , 2m+ 1, of the adjoint system (6.15).

We write

ψ(t) := φi

(
t− t0i−1

t0i − t0i−1

)

, t ∈ [t0i−1, t
0
i ), i = 1, . . . , 2m+ 1; γ1 = ρ∗1, γ1 = ρ∗m.

It follows from (6.15) and (6.16) that the function ψ(t), t ∈ T , is a solution of system (2.21), (2.22)
corresponding to the set of parameters γ = (y0, y, γ1, γ

1), ‖γ‖ = 1. Relations (6.11), (6.13)
and (6.8), (6.14) imply that conditions (2.24) are satisfied along this solution. The proof of the
lemma is complete.
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