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Abstract—We consider families of n-dimensional (n ≥ 2) linear differential systems on the time
semiaxis with parameter varying in a metric space. For such families continuously depending on
the parameter in the sense of uniform convergence on the time semiaxis, we completely describe
the spectra of their Lyapunov exponents as vector functions of the parameter.
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1. INTRODUCTION. STATEMENT OF THE PROBLEM

Let M be a metric space. For a given n ∈ N, consider a family

ẋ = A(t, μ)x, x ∈ R
n, t ∈ R+ ≡ [0,+∞), (1)

of linear differential systems with parameter μ ∈ M such that for each μ ∈ M the matrix-
valued function A(· , μ) : R+ → R

n×n defined on the time semiaxis R+ is continuous and bounded
(in general, by a constant depending on μ). Therefore, by taking any fixed μ ∈ M in the fam-
ily (1), we obtain a linear differential system with continuous coefficients bounded on the semi-
axis. We denote its Lyapunov exponents [1, p. 27; 2, p. 63] by λ1(μ;A) ≤ · · · ≤ λn(μ;A), and
hence we obtain a function λk(· ;A) : M → R for each k = 1, . . . , n, which we call the kth Lya-
punov exponent of the family (1), and the vector function Λ(· ;A) : M → R

n defined by the relation
Λ(μ;A) = (λ1(μ;A), . . . , λn(μ;A))

T which we call the Lyapunov spectrum of the family (1). (In this
notation, the argument “A” indicates the dependence of the exponents on the choice of the fam-
ily (1).)

If the mapping A : R+ ×M → R
n×n is not required to have any additional properties, then for

an arbitrary function M → R there obviously exists a family (1) whose exponent λk(· ;A) coincides
with that function. Therefore, it is meaningless to consider such families (1) without additional
assumptions from the viewpoint of mathematics as well as practical applications, where these
families in particular arise as the variational systems of nonlinear families continuously depending
on a parameter in a certain sense.

One usually considers a family of matrix-valued mappings A(· , μ), μ ∈ M (each of which is
continuous and bounded on the semiaxis) under one of the following two natural assumptions:
this family is continuous in either (a) the compact-open topology or (b) the uniform topology.
Condition (a) is equivalent to saying that if a sequence (μk)k∈N of points in M converges to
a point μ0, then the sequence of functions A(· , μk) converges as k → +∞ to the function A(· , μ0)
uniformly on each closed interval of the time semiaxis R+, and condition (b) means that this
convergence is uniform on the whole semiaxis R+. The class of families (1) with matrix-valued
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function A(· , ·) jointly continuous in all the variables (and hence continuous in the above-mentioned
sense in the compact-open topology) will be denoted by Cn(M), and the class of such functions
continuous in the uniform topology will be denoted by Un(M). The inclusion Un(M) ⊂ Cn(M) is
obvious. Further, we identify the family (1) with the matrix-valued function A(· , ·) determining it,
and hence we write A ∈ Cn(M) or A ∈ Un(M).

Very simple examples show that, starting from n = 1, the functions λk(· ;A), k = 1, . . . , n, for
a bounded mapping A ∈ Cn([0, 1]), can be everywhere discontinuous. This is impossible for families
A ∈ U1(M); namely, the Lyapunov exponent of such a family is a continuous function of the param-
eter μ ∈ M . Perron [3] (see also [4, pp. 13–15]) presented an example of a mapping A ∈ U2([0, 1])
such that the function λ2(· ;A) is not upper semicontinuous. For the families introduced above,
Millionshchikov [5] posed the problem of describing their Lyapunov exponents as functions of the
parameter, in other words, the problem of describing the function classes

Λk(M ;n, C) = {λk(· ;A) : A ∈ Cn(M)} and Λk(M ;n,U) = {λk(· ;A) : A ∈ Un(M)} (2)

for any n ∈ N, k = 1, . . . , n, and any metric space M . Millionshchikov showed that the natural
language for such a description is the language of the Baire theory of discontinuous functions.
Let us recall the following definition [6, p. 294].

The Baire classes with finite indices on a metric space M are defined by induction as follows.
The zeroth Baire class is the set of continuous functions M → R. If the classes with numbers less
than k ∈ N have already been defined, then the kth Baire class is the set of functions M → R

representable as the pointwise limit of a sequence of functions of the (k − 1)st class.

Millionshchikov made a fundamentally important step towards the solution of the problem of
describing the classes (2); namely, he proved [7] that for any metric space M and any family
A ∈ Cn(M), each of the Lyapunov exponents λk(· ;A) can be represented as the limit of a decreas-
ing sequence of functions of the first Baire class and is in particular a function of the second Baire
class on this space. This assertion was proved by Millionshchikov for substantially more general
objects, i.e., for the Lyapunov exponents (introduced in [7]) of families of morphisms of metrized
vector bundles. (The latter present a wide generalization of families of the class Cn(M).) Rakhim-
berdiev [8] proved that the second Baire class in this assertion cannot be replaced by the first Baire
class even for families of the class Un(M).

At the same time, the problem of complete description of the classes (2) remained unsolved until
recently, and its solution was obtained in [9] and [10]. Before we present the corresponding results,
recall that a function f : M → R is called a function of the class (∗, Gδ) [6, p. 267] if for each r ∈ R

the preimage f−1([r,+∞)) of the half-interval [r,+∞) is a Gδ-set in the metric space M . Below,
following [6, p. 264], we denote the set f−1([r,+∞)) by [f ≥ r].

Let n ∈ N and k = 1, . . . , n be given. It was proved in [9] that a function f : M → R belong
to the class Λk(M ;n, C) if and only if it satisfies the following two conditions: (i) it is a function
of the class (∗, Gδ), and (ii) it has an upper semicontinuous minorant. (In [9], just as in [7], this
assertion was proved for the Lyapunov exponents of a family of morphisms of metrized vector
bundles.) It was proved in [10] that a function f : M → R belongs to the class Λk(M ;n,U) for
n ≥ 2 if and only if it satisfies condition (i) and the following condition (ii′): it has a continuous
minorant and a continuous majorant. We see from the statements given above that the descriptions
of the classes Λk(M ;n, C) and Λk(M ;n,U) differ only slightly, but at the level of the proofs they
are substantially different.

The description of the classes (2) follows from the somewhat more general problem of describing
the classes

Λ(M ;n, C) = {Λ(· ;A) : A ∈ Cn(M)} and Λ(M ;n,U) = {Λ(· ;A) : A ∈ Un(M)} (3)

of vector functions for any n ∈ N and any metric space M . The class Λ(M ;n, C) was described in [9]
for any n ∈ N and any metric space M . The problem of describing the class Λ(M ;n,U) for n ≥ 2,
which is precisely the problem studied in the present paper, was explicitly stated in [10]. For n = 1,
such a description is obvious; namely, the class Λ(M ; 1,U) = Λ1(M ; 1,U) consists of all continuous
functions M → R. We point out that the description of the class Λ(M ;n, C) for any n ∈ N

automatically follows from the description of the class Λ(M ; 1, C). Such a reduction to the case of
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n = 1 is impossible for the class Λ(M ;n,U), because, as was already mentioned, the class Λ(M ; 1,U)
coincides with the class of continuous real-valued functions on M . Therefore, the description of the
classes Λ(M ;n,U), n ≥ 2, is a separate, independent problem.

2. PRELIMINARIES

In this section, we construct a special linear differential system defined on an interval and
depending on three positive real parameters b, c, and σ and one positive integer parameter k. Such
systems will be used in the proof of the theorem to construct the desired family (1). In what
follows, we denote the zero and identity n× n matrices by On and En, respectively.

We recursively define a sequence (Tk)k∈N0
of integers by the relations T0 = 0 and

T6m+i = T6m+i−1 +

{
2m+1 if i = 1, 3, 4, 6,

1 if i = 2, 5,
m ∈ N0.

The relation T6k = 4(2k+1 − 2) + 2k, k ∈ N0, is obvious. To simplify further notation, we write
Δk = [T6k, T6(k+1)] and Δi

k = [T6k+i−1, T6k+i], k ∈ N0, i = 1, . . . , 6.

We fix some positive numbers c and b (c > b) and define the two-dimensional diagonal system

ẋ = B(t)x, x = (x1, x2)
T ∈ R

2, t ∈ Δk, (4)

on the interval Δk with coefficient matrix

B(t) =

⎧⎪⎪⎨
⎪⎪⎩

diag [b,−c] for t ∈ Δ1
k

⊔
Δ4

k,

diag [−b, c] for t ∈ Δ3
k

⊔
Δ6

k,

O2 for the other t ∈ Δk.

(5)

Let x1(·) be the solution of system (4), (5) with the initial vector x1(T6k) = (1, 0)T, and let
x2(·) be the solution with the initial vector x2(T6k) = (0, 1)T. Since system (4), (5) is diagonal,
one can readily verify the following properties. The norm ‖x2(t)‖, t ∈ Δk, does not exceed 1,
and it is equal to 1 only at the points t = T6k, t = T6k+3, and t = T6k+6. The norm ‖x1(t)‖,
t ∈ Δk, is equal to eb(t−T6k) for t ∈ Δ1

k; on the interval Δ2
k, it is constant and equal to e2

k+1b;
and on the interval Δ3

k, it monotonically decreases to 1. On the intervals Δj+3
k , the behavior of

the norm ‖x1(t)‖ is the same as on the intervals Δj
k, j = 1, 2, 3, respectively; namely, it is equal

to eb(t−T6k+3) for t ∈ Δ4
k, is constant and equal to e2

k+1b on the interval Δ5
k, and monotonically

decreases to 1 on the interval Δ6
k. In particular, if X(t, τ) is the Cauchy matrix of system (4), (5),

then X(T6k+3, T6k) = X(T6k+6, T6k) = E2, and

max
t∈Δk

1

t
ln ‖x1(t)‖ =

2k+1b

T6k+1

=
2k+1b

4(2k+1 − 2) + 2k + 2k+1
−→

k→+∞

b

5
and max

t∈Δk

1

t
ln ‖x2(t)‖ = 0.

In what follows, we denote the matrix of system (4), (5) by B[b, c; k](t).

Consider a system that is a perturbation of system (4), (5) by special exponentially small
additional terms. We fix a positive number σ and define the perturbation matrix Q[σ; k](·) as

Q[σ; k](t) =

⎧⎪⎪⎨
⎪⎪⎩
(

0 0

(−1)i exp{−σiT6k+i} 0

)
for t ∈ Δi

k, i = 2, 5,

O2 for the other t ∈ Δk,

where σ2 = σ and σ5 = σT6k+2/T6k+5. Obviously, for k ≥ 5 we have the inequality

σ5 = σ
T6k+2

T6k+5

= σ
4(2k+1 − 2) + 2k + 2k+1 + 1

4(2k+1 − 2) + 2k + 3 · 2k+1 + 2
≥ 5

7
σ.
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Let us study the behavior of solutions of the perturbed system

ẏ = (B[b, c; k](t) +Q[σ; k](t))y, y = (y1, y2)
T ∈ R

2, t ∈ Δk. (6)

Let y1(·) be the solution of system (6) with the initial vector y1(T6k) = (1, 0)T, and let y2(·) be
the solution with the initial vector y2(T6k) = (0, 1)T. Obviously, y2(t) ≡ x2(t) for all t ∈ Δk.

Consider the behavior of the solution y1(t) on each of the intervals t ∈ Δi
k, i = 1, . . . , 6.

For t ∈ Δ1
k, the identity y1(t) ≡ x1(t) is obvious. For t ∈ Δ2

k, we have

y1(t) =

(
1 0

(t− T6k+1)e
−σT6k+2 1

)(
e2

k+1b

0

)
=

(
1

(t− T6k+1)e
−σT6k+2

)
e2

k+1b.

Therefore,

y1(T6k+2) = (1, e−σT6k+2 )Te2
k+1b.

Then for t ∈ Δ3
k we have

y1(t) =

(
e−b(t−T6k+2) 0

0 ec(t−T6k+2)

)(
1

e−σT6k+2

)
e2

k+1b =

(
e−b(t−T6k+2)

e−σT6k+2+c(t−T6k+2)

)
e2

k+1b.

Therefore,

y1(T6k+3) = (1, e−σT6k+2+(b+c)2k+1

)T.

Further for t ∈ Δ4
k we have

y1(t) =

(
eb(t−T6k+3) 0

0 e−c(t−T6k+3)

)(
1

e−σT6k+2+2k+1(b+c)

)
=

(
eb(t−T6k+3)

e−σT6k+2+2k+1(b+c)−c(t−T6k+3)

)
.

Therefore,

y1(T6k+4) = (1, e−σT6k+2 )Te2
k+1b.

For t ∈ Δ5
k, we have

y1(t) =

(
1 0

−(t− T6k+4)e
−σ5T6k+5 1

)(
1

e−σT6k+2

)
e2

k+1b

=

(
1

−(t− T6k+4)e
−σ5T6k+5 + e−σT6k+2

)
e2

k+1b.

Therefore, y1(T6k+5) = (1, 0)Te2
k+1b. Finally, for t ∈ Δ6

k we have

y1(t) =

(
e−b(t−T6k+5) 0

0 ec(t−T6k+5)

)(
1

0

)
e2

k+1b =

(
e−b(t−T6k+5)

0

)
e2

k+1b.

Therefore, y1(T6k+6) = (1, 0)T.

Thus, if Y (t, τ) is the Cauchy matrix of system (6), then

Y (T6k+6, T6k) = E2, max
t∈Δk

t−1 ln ‖y2(t)‖ = 0,
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and if σ ≤ (5c− b)/25, then

lim
k→+∞

max
t∈Δk

1

t
ln ‖y1(t)‖ = lim

k→+∞

1

T6k+3

ln ‖y1(T6k+3)‖

= lim
k→+∞

(b+ c)2k+1 − σ(4(2k+1 − 2) + 2k + 2k+1 + 1)

4(2k+1 − 2) + 2k + 2 · 2k+1 + 1
=

b+ c− 5σ

6
. (7)

Let us prove relation (7). Since its left-hand side is independent of the choice of the norm, we take
the maximum of absolute values of its components for the norm. Let y1(t) = (y1

1(t), y
1
2(t))

T.

It follows from the above calculations that any of the functions ϕm(t)
def
= t−1 ln |y1

m(t)|, m = 1, 2,
is a monotone linear fractional function on each interval Δi

k, i = 1, 3, 4, 6, and hence its maximum is
attained at one of the endpoints of this interval. Calculating the values of the functions ϕm(t),
m = 1, 2, at the points T6k+j , j = 1, . . . , 6, and taking the maximum of these values, we see that
since σ ≤ (5c− b)/25, it follows that the limit of these maximum values is equal to the right-hand
side of (7). It remains to take into account the fact that the values of the functions ϕm(t) on the
intervals Δi

k, i = 2, 5, cannot change this limit, because the ratios T6k+2/T6k+1 and T6k+5/T6k+4

tend to 1 as k → +∞.

3. MAIN RESULT

A complete description of each of the classes Λ(M ;n,U), n ≥ 2, is given by the following theorem
announced in the report [11].

Theorem. For any positive integer n ≥ 2 and any metric space M, the vector function f(·) =
(f1(·), . . . , fn(·))T : M → R

n is the Lyapunov spectrum of some family A ∈ Un(M) if and only if it
satisfies the following conditions.

(i) The inequalities f1(μ) ≤ · · · ≤ fn(μ) hold for each μ ∈ M.

(ii) The function fi(·) : M → R is a function of the class (∗, Gδ), i = 1, . . . , n.

(iii) The function f1(·) has a continuous minorant , and the function fn(·) has a continuous
majorant.

To prove the theorem, we, in particular, need the following assertion proved in [12, 13] and
independently in [9].

Lemma. Let (P,≺) be an at most countable linearly ordered set , and let {Aρ : ρ ∈ P} be
a collection of Gδ-sets in a topological space τ such that Aλ ⊂ Aμ if μ ≺ λ. Then there exists a rep-
resentation Aρ =

⋂
k∈N

Gρ
k of each of the sets Aρ, where Gρ

k is an open subset of τ such that every
a �∈ Aλ belongs to at most finitely many sets in the collection {Gρ

k : k ∈ N, ρ � λ}.

One can readily find examples showing that this lemma is not true in general if the set P is
uncountable.

Proof of the theorem. Necessity of the assertion of the theorem was proved in [10].

Sufficiency. 1. We denote a continuous minorant of the function f1(·) by m(·) and a contin-
uous majorant of the function fn(·) by m(·). We define functions Fk(·) : M → R, k = 1, . . . , n,
by the formulas Fk(μ) = fk(μ) − m(μ) + 1 for all μ ∈ M . Then, as is easy to see, the vector
function F (·) = (F1(·), . . . , Fn(·))T : M → Rn satisfies conditions (i)–(iii). Indeed, the inequalities
F1(μ) ≤ · · · ≤ Fn(μ) are obvious for any μ ∈ M ; the fact that the function Fi(·) : M → R is a func-
tion of the class (∗, Gδ) for each i = 1, . . . , n follows from [6, p. 267]; moreover, the function F1(·)
has a continuous minorant m∗(·) (identically equal to 1), and the function Fn(·) has a continuous
majorant m∗(·) (equal to m(·)−m(·) + 1).

In part 4 of the proof of sufficiency, we construct a family in Un(M) whose Lyapunov spectrum
coincides with the vector function F (·). Then we apply a standard method (see part 5) to this
family to obtain the desired family.
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2. In this part of the proof of sufficiency, we present some auxiliary constructions to be used
below.

By Q1 we denote the set of rational numbers on the half-interval [1,+∞). We arbitrarily
enumerate the elements of the set Q1 : r1, r2, . . . , and fix this enumeration. We assume that
the natural order “<” is used to arrange the elements of the set Q1. Since the function Fk(·) is

a function of the class (∗, Gδ), we see that for each m ∈ N the set Gk,m
def
= [Fk ≥ rm] is a (possibly,

empty) Gδ-set. By the above lemma, for nonempty sets Gk,m there exist representations

Gk,m =
⋂
i∈N

Gi
k,m, k = 1, . . . , n, m ∈ N,

where the Gi
k,m, (k,m, i) ∈ {1, . . . , n} × N

2, are open sets such that every point μ ∈ M \Gk,m

belongs to at most finitely many sets Gi
k,p with rp > rm.

In turn, each set Gi
k,m can be represented as the union

Gi
k,m =

⋃
l∈N

J i
k,m(l),

where J i
k,m(l) is the set of points μ ∈ Gi

k,m whose distance from the boundary FrGi
k,m of the set

Gi
k,m is not less than 1 for l = 1 and belongs to the interval [l−1, (l − 1)−1] for l > 1. Note that for

each pair (k,m) there exist infinitely many l ∈ N such that J i
k,m(l) is nonempty. Since the distance

from a subset of a metric space is a continuous function on that space [14, p. 209], we see that the
sets J i

k,m(l) are closed as the preimages of closed sets. Since the set Gk,m is open, it follows that

the distance from any of its points to the boundary FrGk,m is positive, and hence the family J i
k,m(l),

l ∈ N, is a cover of the set Gi
k,m; by construction, each point of the set Gi

k,m is covered at most

twice. In addition, let J̃ i
k,m(l) be the set of points μ ∈ Gi

k,m whose distance from the boundary

FrGi
k,m is greater than 0.5 for l = 1 and belongs to the interval ((l + 0.5)−1, (l − 1.5)−1) for l > 1.

By construction, the sets J̃ i
k,m(l) are open, each point μ ∈ Gi

k,m belongs to at most three of them,

and the inclusions J i
k,m(l) ⊂ J̃ i

k,m(l) ⊂ Gi
k,m hold.

We separately note the case in which the boundary FrGi
k,m of the set Gi

k,m is empty. This means
that the set Gi

k,m is open and closed simultaneously, and in this case we define the sets J i
k,m(l)

and J̃ i
k,m(l) by the relations J i

k,m(1) = J̃ i
k,m(1) = Gi

k,m and J i
k,m(l) = J̃ i

k,m(l) = ∅ for l > 1. By Ind

we denote the set of quadruples (k,m, i, l) ∈ {1, . . . , n} ×N
3 such that J i

k,m(l) �= ∅.

Let (k,m, i, l) ∈ Ind. If FrGi
k,m �= ∅, then the set J i

k,m(l) is nonempty and closed. By the

Urysohn lemma [14, p. 126], there exists a continuous function ϕi,l
k,m : M → R equal to 1 on the closed

set J i
k,m(l) and zero on the closed set M \ J̃ i

k,m(l) and taking intermediate values on the difference

J̃ i
k,m(l) \ J i

k,m(l). In the case of empty boundary FrGi
k,m, we put the function ϕi,1

k,m to be equal to 1

on the set J i
k,m(1) = Gi

k,m and zero on the set M\Gi
k,m. This function is continuous, because Gi

k,m

is an open-closed set.

3. Fix an arbitrary bijection o : N → Ind.

First, we construct a family

ẋ = C(t, μ)x, x = (x1, . . . , xn)
T ∈ R

n, t ≥ 0, (8)

such that the family itself is bounded and piecewise continuous for each fixed μ ∈ M , all points
of discontinuity are contained in the set {T6k+j : k ∈ N, j = 1, . . . , 6}, and the Lyapunov spec-
trum Λ(· ;C) coincides with the vector function F (·). We construct the family (8) by induction.
At the qth inductive step (q ∈ N0), the family (8) is constructed on the half-interval [T6k, T6(k+1)),
and it does not change on this half-interval at the subsequent steps. To have the base of induction,
we take the zeroth step at which we set C(t, μ) ≡ On for t ∈ [0, T6]. Assume that we have taken
q − 1 steps; i.e., the family (8) has been defined for all t ∈ [0, T6q ].

DIFFERENTIAL EQUATIONS Vol. 54 No. 12 2018



COMPLETE DESCRIPTION OF THE LYAPUNOV SPECTRA 1541

Let us take the qth step. Let o(q) = (k,m, i, l). Then for t ∈ [T6q, T6(q+1)) the family (8) coincides
with the family

ẋj = 0 for j �∈ {k, k + 1}, and

(
ẋk

ẋk+1

)
= (B[1, 6m∗(μ); q](t) +Q[σq(μ), q](t))

(
xk

xk+1

)
, (9)

where σq(μ) = (1 + 6m∗(μ) − 6ϕi,l
k,m(μ)min{rm,m∗(μ)})/5 and we also assume that xn+1 = x1.

The qth step is complete. The family (8) has been constructed.

In other words, definition (9) can be stated as follows: let C0(t, μ) and Q(t, μ) denote n × n
matrices such that, for t ∈ [T6q, T6(q+1)) and q ∈ N, their 2×2 submatrices located on the intersection
of the kth and (k + 1)st rows and columns (the (n + 1)th row and column are the first row and
column) coincide with the matrices B[1, 6m∗(μ); q](t) and Q[σq(μ); q](t), respectively, and their
other entries are zero; then the identity C(t, μ) ≡ C0(t, μ)+Q(t, μ) holds for (t, μ) ∈ [T6,+∞)×M.
We set C0(t, μ) = Q(t, μ) = On for t ∈ [0, T6) and find that this identity holds for all (t, μ) ∈ R+×M.

Note that the numbers σq(μ) are separated from zero by the number 1/5 for all q ∈ N and μ ∈ M.

Indeed, σq(μ) = (1 + 6m∗(μ) − 6ϕi,l
k,m(μ)min{rm,m∗(μ)})/5 ≥ (1 + 6m∗(μ) − 6m∗(μ))/5 = 1/5.

Therefore,
‖Q(t, μ)‖ ≤ exp(−t/7) for all t ≥ 0. (10)

Let us calculate the Lyapunov exponents of system (8). By ek we denote the vector in R
n whose

kth component is equal to 1 and the other components are zero. For k ∈ {1, . . . , n}, by Nk we
denote the set of positive integers q for which the first element in the quadruple o(q) is equal to k.
Let Δ(k) = {[T6q, T6(q+1)] : q ∈ Nk}. We will calculate the Lyapunov exponent of the solution xk(·)
issuing at time t = 0 from the vector ek. If q �∈ Nk, then the inequality ‖xk(t)‖ ≤ 1 holds on the
entire interval Δq, and therefore,

t−1 ln ‖xk(t)‖ ≤ 0 for t ∈
⋃

s∈{1,...,n}\{k}

Δ(s).

Let t ∈ Δ(k). We fix μ ∈ M and an arbitrary strictly increasing sequence of rational num-
bers (rmj

)j∈N such that limj→+∞ rmj
= Fk(μ). Then μ ∈ [Fk ≥ rmj

] for all j ∈ N, and hence

for each j ∈ N there exists a pair (ij , lj) such that μ ∈ J
ij
k,mi

(lj), whence for qj such that
o(qj) = (k,mj , ij , lj) we obtain, by (7) and the definition of system (8),

sup
t∈Δqj

t−1 ln ‖xk(t)‖ = ϕ
ij ,lj
k,mj

(μ)min{rmj
,m∗(μ)} + εj = rmj

+ εj ,

where εj → 0 as j → +∞. Therefore, λ[xk] ≥ Fk(μ).

Let us prove that the last inequality is in fact an equality. Assume the contrary: λ[xk] > Fk(μ)
for a point μ ∈ M . This means that there exists a rational number r > Fk(μ) and sequences

(mj)j∈N, (ij)j∈N, and (lj)j∈N of positive integers such that rmj
≥ r and μ ∈ J̃

ij
k,mj

(lj) for all j ∈ N.
But this is impossible. Indeed, by the lemma, the point μ can only belong to finitely many sets Gk,m,

m ∈ N, rm > r; in turn, each point of the set Gk,m belongs to at most three sets J̃ i
k,m(l), l ∈ N.

The proof of the equality is complete.

Let us show that the basis (x1(·), . . . , xn(·)) of solutions of system (8) is normal. To this end,
note that if T is an unbounded subset of the time semiaxis R+, then the functional

χ[x] = lim
T�t→+∞

t−1 ln ‖x(t)‖

defined on the linear space {x} of solutions of the linear differential system is a Lyapunov exponent
on this space in the sense of [2, Sec. 2.1] and, in particular, does not increase when taking linear
combinations. For each k = 1, . . . , n, let χk[f ] be the characteristic exponent of the restriction of
a function f : R+ → R

n to the set Δ(k), i.e., the number

χk[f ]
def
= lim

t→+∞
t∈Δ(k)

t−1 ln ‖f(t)‖.
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Then, as was stated above, the functional χk[·] is a Lyapunov exponent on the space of solutions
of system (8) in the sense of [2, Sec. 2.1] and does not increase when taking linear combinations.
By construction, χk[x

k] = Fk(μ) ≥ 1 and χk[x
i] = 0 for i ∈ {1, . . . , n}\{k}. Therefore, for each set

of numbers α1, . . . , αk, αk �= 0 we obtain

λ

[ k∑
i=1

αix
i

]
≥ χk

[ k∑
i=1

αix
i

]
= χk[x

k] = Fk(μ) = λ[xk],

which implies that no subset of the set of solutions {x1(·), . . . , xk(·)} admits a decreasing combi-
nation. By [2, Sec. 2.3.10], the basis (x1(·), . . . , xn(·)) is normal, and the exponents of its solutions
are the exponents of system (8). Thus, Λ(μ;C) = F (μ) for any μ ∈ M .

Note that, by construction, the matrix B[1, 6m∗(μ); q](t) satisfies the condition of uniform con-
vergence in the parameter on the time semiaxis: if μk → μ0 as k → +∞, then B[1, 6m∗(μk); q](t) →
B[1, 6m∗(μ0); q](t) as k → +∞ uniformly in t ∈ R+. Indeed, the matrix B[1, 6m∗(μ); q](t) is con-
stant on each interval Δk, k ∈ N0, and its coefficients take at most five values on each of such
intervals, namely, either 0, or 1, or −1, or 6m∗(μ), or −6m∗(μ). Since the function m∗(·) is con-
tinuous, the convergence μk → μ0 implies the convergence m∗(μk) → m∗(μ0) as k → +∞, and
hence if |m∗(μk)−m∗(μ0)| ≤ ε for k ≥ Nε, then ‖B[1, 6m∗(μk); q](t)−B[1, 6m∗(μ0); q](t)‖ ≤ ε for
all t ∈ R+, or, which is equivalent, ‖C0(t, μk)− C0(t, μ0)‖ ≤ ε for all t ∈ R+.

Since C(t, μ) = C0(t, μ) + Q(t, μ) and ‖Q(t, μ)‖ ≤ exp(−t/7) by inequality (10), we have the
convergence C(t, μk) → C(t, μ0) uniformly on R+ as μk → μ0.

4. Let us show that there exists a family

ẋ = B(t, μ)x, x ∈ R
n, t ≥ 0, (11)

of the class Un(M) whose Lyapunov spectrum Λ(· ;B) coincides with the vector function F (·).
As follows from the Bogdanov–Grobman theorem [15, 16], the Lyapunov exponents of the systems

ẋ = C(t)x and ẋ = (C(t) +R(t))x, x ∈ R
n, t ∈ R+,

coincide if the integral
∫ +∞
0

‖R(τ)‖ exp(τ 2) dτ converges.

As follows from the construction of the matrix C(t, μ), the points of discontinuity of this matrix
are contained in the set {Tm : m ∈ N}. Let δm = [δm,1, δm,2] be an interval centered at the point Tm

of length |δm| = 2−m exp(−δ2m,2). We set the matrix R(t) to be equal to On for t ∈ R+\
⋃

m∈N
δm

and to −C(t, μ) + |δm|−1(C(δm,1, μ)(δm,2 − t) + C(δm,2, μ)(t − δm,1)) for t ∈ δm, m ∈ N. Then the

matrix B(t, μ)
def
= C(t, μ) + R(t, μ) is obviously jointly continuous with respect to its arguments,

is bounded for all t ≥ 0 for each μ ∈ M , and hence belongs to the class Un(M). Since the inequality

+∞∫
0

‖R(τ, μ)‖ exp(τ 2) dτ ≤
∞∑

m=1

18m∗(μ)|δm| exp(δ2m,2) = 18m∗(μ)

holds for each μ ∈ M , it follows that the Lyapunov spectra of the families (8) and (11) coincide.

Thus, family (11) belongs to the class Un(M), and its Lyapunov spectrum coincides with the
vector function F (·).

5. Finally, we construct a family A ∈ Un(M) whose Lyapunov spectrum coincides with the
vector function f(·). We use the following well-known assertion: the Lyapunov exponents λk(B)
and λk(B + aEn), k = 1, . . . , n, of the respective systems

ẋ = B(t)x and ẏ = (B(t) + aEn)y, x, y ∈ R
n, t ∈ R+,

where a ∈ R is fixed, are related as λk(B + aEn) = λk(B) + a which follows from the fact that the
identity x(t) ≡ y(t) exp(−at), t ∈ R+, holds for the solutions x(t) and y(t) of these systems with
the same initial vector (x(0) = y(0)).
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Set A(t, μ) = B(t, μ) + (m(μ) − 1)En, t ∈ R+, μ ∈ M . Then it follows from the above and the
already proved identity Λ(μ;B) = F (μ) for all μ ∈ M that the Lyapunov spectrum Λ(μ;A) of
the family (1) with the matrix A(· , ·) thus defined is identically equal to the vector function f(μ)
for all μ ∈ M . The proof of the theorem is complete.

4. COROLLARIES

In the case of a bounded vector function f(·) (‖f(μ)‖ ≤ const, for all μ ∈ M), the theorem
proved above implies the following assertion announced in the report [17], which can be considered
as a sufficiently wide generalization of Perron’s example [3].

Corollary 1. For any n ≥ 2, any metric space M, and any vector function (f1, . . . , fn)
T :

M → R
n whose components belong to the class (∗, Gδ), are bounded, and satisfy the inequalities

f1(μ) ≤ · · · ≤ fn(μ) for any μ ∈ M, there exists a continuous bounded n × n matrix A(t), t ∈ R+,
and a continuous n× n matrix Q(t, μ), t ∈ R+, μ ∈ M, exponentially decaying to zero as t → +∞
uniformly with respect to μ such that the Lyapunov exponents λk(·) of the family

ẋ = (A(t) +Q(t, μ))x, x ∈ R
n, μ ∈ M,

satisfy the relations λk(μ) = fk(μ) for all k = 1, . . . , n and μ ∈ M .

There is another application of the theorem proved above. Millionshchikov [7] proved that ifM is
a complete metric space and A ∈ Cn(M), then for each i = 1, . . . , n the set USi(A) of points of upper
semicontinuity of the function λi(· ;A) contains a dense Gδ-set. In other words, the upper semicon-
tinuity of these functions is typical in the sense of Baire in the space M . In the case of lower semi-
continuity, this it not true: an example of a family A ∈ Cn([0, 1]) for which the set LSi(A) of points
of lower semicontinuity of the function λi(· ;A), i = 1, . . . , n, is empty was constructed in [18]
for each n ≥ 1. A complete description of the n-tuples (LS1(A), . . . , LSn(A)), where A ∈ Cn(M),
for any metric space M and a complete description of the n-tuples (US1(A), . . . , USn(A)) for a com-
plete space M were obtained in [19].

A family A ∈ Un([0, 1]) for which the set LSi(A) is empty was constructed for any n ≥ 2 and
i = 1, . . . , n in [20]. Then the ideas of this paper and the results obtained in [19] were used in [21]
to obtain a complete description of the sets LSi(A) and, in the case of a complete space M, also of
the sets USi(A), i = 1, . . . , n, for families A ∈ Un(M).

Using the theorem proved above, we can completely describe the n-tuples (LS1(A), . . . , LSn(A))
for each metric space M , and in the case of a complete space M we can also describe the
n-tuples (US1(A), . . . , USn(A)) for families A ∈ Un(M) and thus obtain an answer to the ques-
tion posed in [21].

Corollary 2. For any n ≥ 2 and any metric space M, an n-tuple (M1, . . . ,Mn) of subsets
of M is the n-tuple of the sets of lower semicontinuity of the Lyapunov exponents of a family
A ∈ Un(M), i.e., Mi = LSi(A), i = 1, . . . , n, if and only if each of the sets Mi, i = 1, . . . , n, is
an Fσδ-set containing all isolated points of the space M . If the space M is complete, then an n-tuple
(M1, . . . ,Mn) is the n-tuple of the sets of upper semicontinuity of the Lyapunov exponents of a family
A ∈ Un(M), i.e., Mi = USi(A), i = 1, . . . , n, if and only if each of the sets Mi, i = 1, . . . , n, is
a dense Gδ-set in M .

Proof. Necessity of the conditions of the corollary follows from [19], because Un(M) ⊂ Cn(M).

Sufficiency. We prove the assertion for the points of lower semicontinuity. Assume that
each of the sets Mi, i = 1, . . . , n, is an Fσδ-set containing all isolated points of the space M .
By [19, Lemma 5], for each i = 1, . . . , n, there exists a function gi : M → [0, 1] of the class (∗, Gδ)
such that the set of points of its lower semicontinuity coincides with the set Mi. We use the
theorem proved above to construct a family A ∈ Un(M) with the Lyapunov spectrum Λ(· ;A) =
(g1, g2 + 1, . . . , gn + n− 1)T. Then LSi(A) = Mi for all i = 1, . . . , n. The assertion of the corollary
for the points of upper semicontinuity can be proved in a similar way. The proof of the corollary is
complete.
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