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Abstract—The spectral problem for the Sturm—Liouville operator with an arbitrary complex-
valued potential g(z) of the class L1(0,7) and degenerate boundary conditions is considered.
We prove that the system of root functions of this operator is not a basis in the space L2 (0, 7).
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1. INTRODUCTION

Consider the Sturm—Liouville problem
v —q@)u+Iu=0 (1)
with the degenerate [1, p. 35] boundary conditions
u'(0) + du'(m) = 0, u(0) — du(m) =0, (2)

where d # 0. The completeness of the system of root functions of problem (1), (2) was studied
in [2-4]. In particular, it turned out that the set @ of potentials g¢(x) € L;(0,7) ensuring the
completeness of the system of eigenfunctions and associated functions in the space Lo(0,7) is
everywhere dense in the space L; (0, 7); its complement ) has the same property. Since, for a broad
class of potentials ¢(z), the system of root functions of problem (1), (2) is complete in Ly(0,7),
it is natural to pose the problem of its basis properties.
Let m(\,) be the multiplicity of the eigenvalue A\, of problem (1), (2). It follows from [5] that
if the inequality
m(A,) < C (3)

holds with some constant C for all n € N, then the system of eigenfunctions and associated functions
of problem (1), (2) does not form an unconditional basis in the space Ly(0,7). From this and the
paper [6], where the constraint (3) is also imposed on the spectrum, we obtain the following stronger
assertion: this system is not an ordinary basis in the space L,(0, 7). However, later it was proved
in [7] that there exists a potential q(z) € Ly(0,7) for which condition (3) is not satisfied, namely,
a potential such that

&1 In ‘,u'n| S m()\n) S Ca In ‘,u'n|7 (4)

where u, = \/)\n, Rep, >0, n €N, ¢, >0, and c; > 0. In the above example, all \,, are positive.
An example of a problem of the form (1), (2) whose spectrum along with condition (4) satisfies the
inequality

csln|py| < [Imp,| < cqlnp,], (5)

where ¢; > 0 and ¢, > 0, was constructed in [8]. Note that the spectrum lies outside the Carleman
parabola under condition (5). It was proved that the system of eigenfunctions and associated
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functions of problem (1), (2) with a specially constructed potential g(x) is complete in the space
Ly(0,7) in both examples. Obviously, these examples are not covered by the papers cited above,
because the multiplicities of the eigenvalues increase unboundedly and hence the system of root
functions contains associated functions of arbitrarily large order. This effect is impossible in the
case of nondegenerate boundary conditions.

It is well known that if the total number of associated functions is infinite, then the system of
root functions may have the basis property for one choice of associated functions and lose it, still
remaining complete and minimal, for another choice. Therefore, when speaking about the presence
or absence of the basis property, one should have in mind some specific system of eigenfunctions
and associated functions. However, note that if in some boundary value problem there exists at
least one system of root functions that is a basis, i.e., the choice of associated functions is “correct,”
then one usually says that the system of eigenfunctions and associated functions of this boundary
value problem has the basis property.

The main goal of this paper is to prove the absence of the basis property of an arbitrary system
of root functions of problem (1), (2) without any constraints on its spectrum.

2. STATEMENT AND PROOF OF THE MAIN RESULT

Theorem. No system of eigenfunctions and associated functions of problem (1), (2) is a basis
in the space Ly(0,).

Proof. By B, we denote the class of odd entire functions f(z) of exponential type < o bounded
on the real axis. By c(x,u), s(z,n) (A = p?) we denote the fundamental system of solutions of
Eq. (1) with the initial conditions ¢(0, 1) = s'(0, ) =1, ¢ (0, ) = s(0, ) = 0.

Simple calculations show that the characteristic equation of any problem (1), (2) can be reduced
to the form A(u) = 0, where

_d*-1 , _dP-1 [ sinpt . d®—1  f(p)
aw=""" e s = +/K<t> Ha=t T )
0

K(t) € Li(0,7), and f(u) € B;. It is well known [9] that the spectrum of problem (1), (2)
is a countable set of eigenvalues A, which does not have a finite limit point if and only if the

inequality
q(x) —q(r —z) #0 (7)

holds on a set of positive measure. If g(x) — ¢(m — ) = 0 almost everywhere on the interval [0, 7],
then the spectrum is absent for d # 41 and fills the entire complex plane for d = +1. It follows
from the representation (6) that under condition (7) the function A(u) is a nonconstant function
of the class B and the eigenvalues of problem (1), (2) form an infinite sequence A\, = p?, where
Rep, > 0, n € N. Since the sequence {\,} does not have a finite limit point, we can assume that
the numbers \,, are numbered in nondescending order of absolute values. By m(\,) we denote the
multiplicity of the eigenvalue \,. Then the results obtained in [10, p. 130] imply the relation

m()‘n) = O(Nn)a

and it follows from [11, pp. 323-324] that all numbers p,, except possibly for a set of zero density lie
inside an arbitrarily small sector |arg | < € (¢ > 0). In [12], the above-stated theorem was proved
for the case in which lim,,_, . m(\,) < oo, and hence, in what follows, we assume that the last
condition fails; i.e., m(\,,) — oo as k — oo for any subsequence {\,, } of eigenvalues. It follows
that there exists a subsequence {\,,} for which lim . [Im g, |/|ttn,| = 0 and m(\,,) — o
as k — 0o. We denote this subsequence by A. For convenience, we write = (0,7) x (0, 7).

2.1. Estimates of the Green Function of Problem (1), (2)

Let us calculate the Green function of problem (1), (2) by two methods. For the calculations by
the first method, we use the fundamental system of solutions of Eq. (1) constructed by Birkhoff.
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1340 MAKIN

We write
Bi(y) = y'(0) + dy'(m), By (y) = y(0) — dy(),

Bi(y) =dy'(m) —y'(0),  Bi(y) = —dy(m) —y(0),

and by yi, y» we denote the fundamental system of solutions of Eq. (1) in the domain Tj
[13, pp. 55, 58, 59,

i) =" (1+0(1/p),  walz) = e (1+0(1/p)), (8)
(@) = ipe™ (1+0(1/p),  yy(x) = —ipe™ (1 + O(1/p)). 9)

Then for the characteristic determinant

Ay(p) = Bi(y1)Ba(y2) — Bi(y2)Ba(y1)
we have the relation
Ap(p) = 2ip[l — d® +e*"O(1/pu) + e~ 701/ )],

which implies the inequality
A ()] < es (™7 4 |l (10)

and, for p > 0, the inequality
[Ap(p)] < cop. (11)

It is easily seen that the Wronskian

Wb(&) _ y1(£) 92(5) ' (12)
TACIITACY
satisfies the relation
Wi () = =2ip+ O(1). (13)

By [13, p. 47], the Green function G(z,&, 1) of problem (1), (2) satisfies

G(i‘, £, :u) = Hb(x7 £, /"L)/Ab(lu’)7

where
y1(z) va(z)  g(z,8)
Hy(z,& 1) = | Bi(yi(2)) Bi(y(x))  Bilg) | (14)
By(yi(z)) Ba(ya(z)) Bal(g)
here
9o(2, &) = sgn(z — §)(—y1(2)y2(8) + ya(2)y1(£))/ (2W4(£)). (15)

Since Bi(g(,§) = [~v2() Bj:(y1) + v1(§) By (y2)]/ (2W(§)), k = 1,2, we have

Bi(g(x, &) = [-v2(§ )(dyl(ﬂ-) = 11(0)) + y1(&)(dy(m) — 15(0))]/ (W4 (£)),
Ba(g(2,€) = [=42(E)(=dyr () — 41(0)) + y1(E)(=dya(m) — 42(0))]/ (W, ().

Following [13, p. 95], to the last column of the determinant (14) we add the first column multiplied
l};y —1y2(£)/(2 b(&)) and the second column multiplied by —y;(£)/(2W;(§)); then the third column
<P =20y} (m)y2(€) — 205(0) (€) 24 (s (€) — 2y2<o>y1<£>>T
2W, 2Wb(£) ’ 2W4 (&) ’

where P(x,¢§) —2y1(m) 2(€) if x> € and P(x,§) = —2y2(z)y1(§) if x < &
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Expanding the resulting determinant along the first row, we obtain

Hy(2,€, 1) = {291 (2)y2(8) [d(y5(0)y1 () + y2(0)3 (7)) + d* (ya (m)ya (7) — y2(m)y; (7))]
= 2y1(2)y1 ([ (w5 (m)y2(0) + y2(m)y5(0))] = 2y2(2)y2(E) [d(y1 (0)y1 (7) + y1(0)y1 (7))]
+ 202(2)y1(€) 11 (0)y2(0) — 91(0)y5(0) + d(y (T)y2(0) + y1(7)y5(0))]

§

Y1
+ Pz, §)Ap(p) }/ 2W3(§)) = Ry(z, &, 1) + Ap(p)gs(, §),
where
Ry(z,&, 1) = {1 (2)y2(6) [d(y5 (0)y1 () 4+ y2(0)y/; () 4+ d* (Y3 ()1 () — ya(m)yi (1))]
— y1(@)y1 () [d(ys(m)y2(0) + y2(m)y5(0))] — y2(2)y2(E)[d(¥1 (0)y1 () + y1(0)y; (m))]
+ y2(2)y1 (§) [1(0)y2(0) — y1(0)y5(0) + d(y; (m)y2(0) + y1(m)y5(0)]}/ Wi (E),

y1(€
g5(%,§) = P(x,8)/(2W,(§)).-

We substitute the asymptotic representations (8) and (9) into the last relation and also use (13)
to obtain

Ry(x,&, p) = {=2ipe™ =9 (1 + O(1/p))d* + de™ =0 0(1)
+ 2ipe™ T (1 4+ 01/ p))d — 2ipde™ ™= (1 + O(1/p))
+de T O(1)} /W (€), (16)
go(,€) = —eM RO (1 1 O(1/ 1))}/ (W5 (€))- (17)

From (13) and (16), we obtain the asymptotic representation

Ry, 1) = [d2#@~9 1+ O(1/p)) — e ##=9(1 + 0(1/p))
+deT (14 0(1/p) — e T (14 0(1/p)
+ de T O0(1 /) + IO (1 + O(1 /). (18)

In particular, relations (13) and (17) imply the following estimate for u > 0:
l9s(, E)| < er/|pl- (19)
Let us estimate the function Ry(z, &, 1). For p > 0, relation (18) implies the inequality
| Ry (, &, )] < cs. (20)
Obviously, we have Ry(z,&, 1) = Ry 1(z,§, 1) + Rp2(z,§, 1), where

M) _ dgeiu(w,@ o efip,(mff) + deiu(ﬂfwfg) _ de*iu(ﬂ'fw*f)’ (21)
p) = > =001/ p) — e O0(1/p) + de™ ™90 (1 /)
— e MO0/ p) + d[e" OO0 (1 p) 4 e TTTHOO0(1/ ).

Rb,l(waé.v
Rb,2($7£7

One can readily verify the inequalities

Co iut C10
< e lra0,m < (22)
VT | + 1 Om = mp| +1°
7| Im p ) | Tm
< e lrom < (23)
VImp| +1 V/Tm ] + 1
This implies the estimate
IRy, )] . (21)
6,2\ Gy [ 2(Q) S
’ B (T + 1)
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1342 MAKIN

We denote the jth (7 =1,...,4) term on the right-hand side in (21) by §;(x,&, 1). It is easily
seen that

4
| Ro (. €. 1) 2, }]%wéumm+ 3 //@mfummimM%

1<j, k<4, j;ék

S mlo+2 3 //Reﬁjxmmmsm]dxds (25)

1<j<k<4

The estimates (22) and (23) imply the inequality

0126277\1111 m

2
Hﬂj(l’,faﬂ)”m((o,ﬂ)x(o,ﬂ)) 2 (Itm | + 1)2 (26)
for any j = 1,...,4. Moreover, simple calculations for 1 < j < k < 4 lead to the inequality
[ R dx d ! erim 27
. < .
[ el minto s wlasae] < csmae (L S ) e
00

It follows from inequalities (24), (26), (27) that for a sufficiently large Rep in the domain Tj we
have the estimate

cpqemm

R Z,G, 9 2 )
” b( fN)HL (Q) |Im,u|—|—1

(28)

where ¢4 > 0. By a similar argument, we obtain the estimate (28) for p lying in the do-
main T3 [13, pp. 95, 96].

Let us calculate the Green function of problem (1), (2) by the second method by using the system
of fundamental solutions of Eq. (1) related to the transformation operator introduced by Delsarte.
Let e (z, 1), k = 1,2, be the solutions of Eq. (1) satisfying the initial conditions e, (7/2, 1) = 1 and
e (m/2, 1) = (— 1)k+1z,u Then we have the representations

ex(w, p) = M) 4 / Koy, t)e=m/2) dt, (29)
ez(ac,,u):e_i“(m_”/z)+/K,,/Q(:E,t)e_i“(t_”m dt, (30)

where K, /5(x,t) is the transformation operator related to the point 7/2 [1, pp. 18, 19]. We differ-
entiate identities (29) and (30) with respect to x to obtain

; i 0K, o(x,t) .
ell(xﬂu) — ,l'luezﬂ«(wfﬂ'/Z) + / 82‘%( )ezu(tfﬂ—/g) dt

mT—X

+ Ko o(x, m)ei“(ﬂ”*”/z) + Ko po(x,m — m)ei“(”/gﬂ), (31)

; i 0K, jo(x,t) _.
elg(x,/l) — _Z'Nefzﬂ(wfﬂ'/Q) + / /82; )efzp,(tfﬂ/g) dt

™=

+ Ko o(x, m)eii“(“”/z) + Ko po(x,m — m)eii“(”/gﬂ). (32)
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BASIS PROPERTIES OF THE SYSTEM OF ROOT FUNCTIONS ...: 1 1343

By the representations (29)—(32), we obtain the following asymptotic formulas, which hold for
Im p| < M :

erlw, ) = e TR O(U ), ealw, ) = 21+ O(1/ ),
(1) = ipe 2T (L £ O(U /), €yla, 1) = —ipe™ ™2 (1 4+ O(1/p)).

It is well known that for p # 0 the functions e;(z, u) and ey(x, ) form a fundamental system
of solutions of Eq. (1). Let us calculate the characteristic determinant A,(u) of problem (1), (2).
It is easily seen that

Aq(p) = Bi(e1)Ba(ea) — Bi(ea)Ba(er) = 2ip[l — d?] + f(p), (33)

where f(u) € B, 0 < 0 < 7. Calculating the Green function by formulas (12), (14), and (15),
where y; and y, are replaced with e; and e,, respectively, we obtain

& 1)

d’(u) + 9a(,§), (34)

Gl =

where

Ryl € ) = {~2ipe" =9 (1+ O ) + de= =D 0(1) + 2ipe ) (1 + O(1/)d
= 2iude ™) (14 O(1/ ) + de™ I O(1)}/(~2i),
a(w,) = —eSEOEI (11 O(1/ )/ (~2ip).

Obviously, for > 0 we have the relations

Ry(x,&, 1) = d?e =9 — === 4 2idsin y(n — 2 — &) + O(1/ ), (35)
|9a(z, )| < e15/]pl- (36)

It follows from (35) that for u > 0 we have the inequality
||Rd(l‘,£,,u)||[,2(g) > C16- (37)
Relations (14) and (34) imply that

6o =" gt = T 4 e, (39)

Consider formula (38) for p > 0. We integrate it to obtain

‘2& ‘”Rd(%&u)lmm = | Rol & 1) + (90, ) = 9a(2, ) o1 | a0,

which, together with the estimates (11), (19), (20), (36), and (37), implies the inequality

‘Ab(u)‘ < MB@ & mllzay | 18 (1195 (2, €) = ga(2, Ol aie

< Cy7. 39
Aa(i)| = 1 Rales €)oo | Rale, )0, g (39)

Since A4(p)/p is an entire function of exponential type and Ay4(p)/pn € B,, where 0 < o < T,
we see by the Krein and Hayman theorems [10, pp. 115, 109] that the following inequality holds
everywhere outside the set of disks of finite visibility [10, p. 109]:

|Ag(p)] > et ri=elnd (40)
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for any € > 0. Inequality (40) holds on an everywhere dense set of rays issuing from the origin, in
particular, on a certain ray argu = g, where 0 < oy < 7/2, sinag > 2¢, and o < 0.
Outside the union of exceptional disks, the estimates (10) and (40) imply the inequality

A4 (1) Da(pr)] < crgelmlim=ors2elul (41)

Further, in the sector Qy = {p: 0 < argu < o} we consider the auxiliary function

X(1) = Ay (p)e=ote0) [Ny ().

It follows from inequalities (39) and (41) that the function x(u) is bounded on the boundary of

the sector Q, and satisfies the estimate |y (u)| < c19€?!l inside it, outside the union of exceptional
disks. It follows from this, the definition of exceptional disks, and the maximum principle for
an analytic function that the inequality

Ix(p)| < copeeIHFo()) ¢ o etelnl

holds everywhere insider the sector €. Then, by a Phragmén—Lindeléf type theorem
[14, pp. 186-187 of the Russian translation], the function x(u) is bounded in €, and hence the
following inequality holds in this sector:

| Ao (1) Da(p)] < core™*,

where v =71 — 0 + g, or, which is equivalent,

[Aa(p)/Ay(p)] > coze™M™ " (42)
By a similar argument, we conclude that the inequality
1Ba(i)/ Do) > cae”™™ (421

holds in the sector —ay < arg p < 0. It follows from the representations (38) that

Rale, 610 = B, &0 3" 1)+ B (. €) = (2. )

This, together with the estimates (28), (42), and (42'), implies that the inequality

024e|1ml"|(ﬂ'_l’)

4
[Tm pe| + 1 (43)

[ Ra(, &5 pn) | Lo ((0,m) % (0,7)) =

where ¢y4 > 0 and 0 < v < 7, holds for 0 < |arg u| < ay.

Let us study the function G(z, &, i) in a neighborhood of the eigenvalues A,,. It follows from [15]
that each root subspace contains one eigenfunction and possibly several associated functions. As-

sume that the system of functions {Zn(ac)} (h=0,...,m(\,)) is an arbitrary canonical system of

h
eigenfunctions and associated functions of problem (1), (2) and the system of functions {v, (x)}
is an appropriately normalized canonical system of eigenfunctions and associated functions of the

adjoint boundary value problem [16]; i.e., ’?Ln(ac) and 8,L(ac) are eigenfunctions and Zn(ac) and ’Zn(ac)
(h > 1) are associated functions of order h, where

h
(Un (), D (£)) Lo(0.m) = Ok Onm(rn)—1—g-

Everywhere below, we consider only the root subspaces corresponding to the above-cited subse-

quence of eigenvalues A. We write

m(An, )—1
0 0 0 m(An, )—1 k m(An, )—1—
Ry (2,6) = 1y, (2)0,,, (£), Ru (2,6)= >t ()" %, ().

p=0
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Since the function A4(p) has a root of multiplicity m(\,, ) at the point w,,, we have

Ag) = D Cilp— pa) = (1= )" Coniny it = i)' (44)

l:m()\nk) =0
where Cp(r, ) = AT (Y fm(, ). Tt follows from (38), (44), (36), and (20) that

2O (A Ra(@, €, i)

0
Ry, (2,6) = lim (p® — g2 )" NG (2, €, p) = ) (45)
=ty Afi ()‘"k))('unk)
By the Bernstein inequality [17, p. 115], we have the estimate
|A;m(Ank))(;unk)| < C257Tm()\nk),
which, together with the representation (45), implies that
; M) Ny [mOny)
| Ry (2, §)| = c26(2/m)™ e m (A, ) o, | ™% | Ra (%, €, i, )
where co6 > 0, and hence
0
| Ry, (2, )[40 = cor[(2/m) ™ O (N )P i [P0 | R, € pan )17 2 (46)

where ¢y7 > 0. Then the estimates (43) and (46) imply the inequality

0
1R (2, )7, (@) > cas[(2/m) ™ I m( N, 2, [P (P s 20 [ ([T o, | +1))%, (47)

where cyg > 0.

2.2. Asymptotic Formulas for the Figenfunctions
of Problem (1), (2) and the Adjoint Problem

By [2, p. 34], problem (1), (2) has the solutions

wr(, 1) = (€40, ) + dey(m, p))er (2, 1) — (€, (1) + de (. 1) s (i, ), (48)
ws(, 1) = (e1(0, 1) — dea(m, p))en (2 1) — (ex(0, 1) — des (, 1))es (x, 1) (49)

if u is a root of the characteristics determinant (33). The functions u,(z, ) and wuq(x,pn) are
eigenfunctions of problem (1), (2) if they are not identically zero. Replacing the functions the
functions e, k = 1,2, and their derivatives in (48) and (49) with the representations (29)—(32),
we obtain

uy(p, ) = —2ip(cos px + deos u(m — x)) — 2ip [ Kyjo(x,t)[cos ut — dcos u(m —t)] dt

T
™

[ [0Kep(0,t) _ 0Kep(mt)] -
_ 22/ [ . —d O sinp(x —t)dt —2i | Kypo(x,7)dr

™
s

y / [aKﬂ/g(o,t) _ OKapa(mt)

. 9 } sin pu(T —t) dt 4+ 2i[K,/5(0,0) + dK/5(7,0)] sin pz

- 2Z[Kﬂ'/2(07 7T) + dKﬂ'/?(ﬂ-7 ﬂ-)] SiIl,u,(T(' - .’E) + 2Z[Kﬂ'/2(07 0) + dKﬂ'/Z(ﬂ-7 O)]

x

X /K,T/z(a:, t)sinpt dt — 2i[K)2(0,7) + dK jo(, w)]/Kﬂ/z(:r, t)sin pu(m —t)dt

T—X ™

= —2ip(cos px + dcos pu(m — x)) + O1(p, x),

DIFFERENTIAL EQUATIONS Vol. 54 No. 10 2018



1346 MAKIN

where

s

/ [aKﬂ/g(o,t) _ OKap(m)

O1(p,x) = —2ip / K )o(x,t)[cos pt — dcos p(m —t)] dt — 2i . 9

— 0

, - [ (0K, (0,t) 0K, ps(mt)]
X sin p(z —t) dt — 2i / K, o(x,T) dT/ [ ({923; —d gx sin (1T —t) dt
T—x 0

+ 2i[K2(0,0) + dK o(, 0)] sin p — 2i[K . 5(0, 7) + dK o (m, )] sin p(m — x)

+ ZZ[KW/Z(Oa 0) + dKﬂ'/?(Tra 0)] / KW/Z(xat) sin :u‘t dt — QZ[KW/2(077T) + dKﬂ/Z(Traﬂ-)]

X / Koz, t)sinp(m —t) dt = —2i [(Kﬂ/z(w, x) — dKypo(x, ™ — x)) sin px

mT—X
x

— (Kapo(z,m — ) — dK, o (2, 2)) sin p(m — ) — / 8K’T§t(x’ t) (sin pt + sin p(m — t)) dt

T—X

s

[ [0K200) _ 0Kepa(mt)] T
_21/[ . —d D s1nu(a;—t)dt—2z/K,T/g(a:,T)dT

s

< / [8K7régx(0,t) _dangm(mt)] sin (7 — t) dt + 2i[K/2(0,0) 4+ dK jo(m,0)] sin pa

— 2i[K,2(0,m) + dK o (7, m)] sin p(m — ) + 2i[K2(0,0) + dK)2(7,0)]

x

X / K jo(x,t)sin pt dt — 2i[K)2(0,7) + dK o (7, )] / K jo(z,t) sin p(m — t) dt,

and

us (1, ) = 2i(sin px + dsin p(r — z)) —i—/IE'(t) sin pu(t — x) dt
0

+ /Kﬂ/g(az,t) dt K(T) sin (1 —t)dr + / K o(x,t)(sin pt + dsin p(m —t)) dt
T—T 0 T—T
= 2i(sin px + dsin pu(r — ) + O (p, x), (50)

where
K(t) = Kﬂ-/g(o, t) + dKﬂ-/Q(T(', t),

Os(p, x) :/IN((t)sin,u(t—m)dt—F / Kﬂ/g(az,t)dt/f((v')sinu(v'—t)dT

+ / K jo(x,t)(sin pt + dsin p(m —t)) dt.
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Integrating by parts in the last relation, we obtain

Oy(p,z)=p~" [(f((O) + Kopo(x,m — x) — dKy)o(x, ™ — 2)) cos px

+ (dK o2, 2) — Ky jo(w,2) — K (7)) cos p(m — )

+ /K’(t) cos u(t — x) dt + / <K’(0)Kﬂ/2(m,t) + 8Kﬂ/@2t($’t)> cos ut dt
_ _/ (K(W)Kﬂ/g(x,t) +d 8K”§t(m t)> cos ju(m — t) dt
+/K,,/2(x, t)dt ﬂf(’(r) cos pu(1 — t) d’T] . (50")

Obviously, the problem adjoint to problem (1), (2) has the form

—q(x)v+ v =0,
dv'(0) — o' () = 0, dv(0) + v(7) = 0. (51)

It follows that if v, (z) is an eigenfunction of problem (51) corresponding to the eigenvalue A,,, then
the function w(z) = v,(z) is an eigenfunction of the problem

w” — g(x)w + Aw = 0,
dw'(0) —w'(w) =0, dw(0) +w(m) =0 (52)

corresponding to the eigenvalue A,,.
In a similar way, we conclude that for u* = A, problem (52) has the solutions

wy (z, 1) = —2ip(dcos px — cos u(m — x)) — 2ip / K jo(z,t)[dcos put + cos u(m — t)] dt

T—X

_21/[ K2 (0.0) | DK (1)

. P } sin pu(z —t) dt — 21 / K. jo(x,7)dr

T—X

" /{ 8K7T/2(0 t) n 0K )o(m,t)

. 9 } sin (T —t) dt + 2i[dK2(0,0) — K o(m,0)] sin px

— 2[d K j2(0, ) — Ky jo(m,m)] sin p(m — x) + Qi[dKﬂ-/g(O 0) — K, /o(m,0)]

X / K jo(x,t)sin pt dt — 2i[dK)2(0,7) — Ky jo(m /K,,/Q x,t)sin p(m — t) dt

m™T—X -

= —2ip(d cos px — cos u(m — x)) + OF (u, x),
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where

/ [ K2 (0.0) | DK po(m.1)

O (u, ) = —2ip / K jo(x,t)[dcos ut + cos p(m — t)] dt — 2i . 9

0
T

f K K
x sin p(x —t) dt — 2i / Ky )o(x,7)dr /[d§ ﬂgw(o’ t) + 0 ﬂgw(ﬂ’ t)] sin (1 —t) dt

— 0

+ 2Z[dK7r/2(07 O) - KW/Z(W7 O)] sin HT — 2Z[dK7r/2(07 7T) - KTF/2(7T7 ﬂ-)] SiIl,u,(T(' - ‘T)

+ 2i[dK2(0,0) — Ky o(m,0)] / Koz, t)sin pt dt — 2i[dK/2(0,7) — Ky jo(m, )]

X / K jo(z,t)sinp(m —t) dt = —2i [(Kﬁ/z(ac, T — )+ dK, p(x,x))sin px

x

— (Krjo(x, @) + dKyjo(x,m — x)) sin p(m — x) + / 8K,,/5t(a;, ) sin p(m —t) dt
[T OKp(0.8) 0K po(mt)] T
— 22/ [d P + O sinp(z —t) dt — 21 / K)oz, 7)dr

[T 0K, 5(0,t) 0K, (mt
X / d 2(0:4) + 2(mt) sin pu(T —t) dt + 2i[dK,/2(0,0) — K, /5(7,0)] sin pz
Ox Ox
0
— 2i[dK/2(0,7) — Ky jo(m, m)]sin p(m — x) + 2i[dK2(0,0) — Ky /2(7,0)]
K o(x,t) sin p(m —t) dt,

™

X / Ko )o(x,t)sin pt dt — 2i[dK)2(0,7) — Ky )jo(m, )]

and

way(x, p) = 2i(dsin px — sin p(m — x)) + /K*(t) sin pu(t — x) dt
0

+ / K, jo(,t) dt/f(*(T) sin p(t —t)dr + / K, jo(x,t)(dsin pt — sin p(m —t)) dt
T—T 0 T—z

= 2i(dsin px — sin p(m — z)) + O (u, x), (53)
where

K*(t) = dK/5(0,t) — Ky jo(,1),

05 (u, ) = /f(*(t) sin p(t — x) dt

+/ K. o(x,t) dt/K*(T) sinu(r —t)dr + [ Ky jo(x,t)(dsin put — sin p(m —t)) dt.
m™—x 0 —x

s
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Integrating by parts, we obtain
O5(p, ) = pt [(K*(O) + dKy)o(x,m — x) + Ky po(x, ™ — 2)) cos px

— (K*(7) — Ky o, 2) — dKyjo(2, ) cos p(m — )

r(- K
—l—/(K*(O)K,,/Q(:E,t) —|—d8 7Tﬂuﬂf)) cos ut dt

ot
- / <K*(W)Kﬂ/2(m,t)—8Kﬁ/82t(x’t)>cosu(7r—t)dt

™ s

+/(K*(t))’cosu(t—m) dt + / K )o(z,t) dt/(K*(T))’COSN(T—t) dr|. (53)

0

One can readily verify that for all sufficiently large |ul, if at least one of the conditions
d#+1 or |u—n|>0,001

is satisfied, then us(p, x) #Z 0 and wq(p, ) # 0 (case 1). If d =1, |u—2n| < 0,001 or if d = —1,
| —2n — 1| < 0,001, then uy(p, x) Z 0 and wq(p, z) Z 0 (case 2);if d =1, |p—2n — 1| < 0,001 or
ifd=—1, |pp—2n] < 0,001, then uy(p, z) Z 0 and w; (u, ) #Z 0 (case 3). In what follows, we study
case 1; cases 2 and 3 can be considered in a similar way.

2.3. Asymptotic Formulas for the Products of Figenfunctions and Their Derivatives
for Problem (1), (2) and the Adjoint Problem

For p = p,, the function u,(p,z) is an eigenfunction of problem (1), (2), and the function
wy(p, &) is an eigenfunction of problem (52).

The representations (50) and (53) imply the relations

u2(a:,,u)w2(£,u) = Zéj(/%m’g)v (54)

=0
where

Do (p,x,&) = 2i(sin px + dsin pu(m — x))2i(dsin u& — sin p(m —§))
= 2[cosp(m —x — &) —cos p(m +x — &) + d(cos p(x + &) — cos u(2m — x — §))
+ d*(cos p(m — z + &) — cos p(m — z — £))]
=2[(1 —d*)cosp(m — 2 — &) — cos pu(m + x — &) + d(cos p(x + €)
—cos p(2m — x — &) + d* cos pu(m — x + €)], (55)
Py (p, 2, €) = 2i(sin px + dsin p(r — 2))O5 (1, ),
Py (p1, w, &) = 2i(dsin p§ — sinp(m — €))O2(u, ),
D1, ,€) = O (j1, 1) (1, ©).

This, the representations (53') and (50’), and the obvious relation sin py = sgny sin uly|, which
holds for any real y, imply

Dy (p,z,8) = /fl[2i(sin/wc + dsin p(m — x))] [(K*(O) +dK ) o(x,m = &) + Ky jo(§,m — &) cos pé

£
- - 0K (8,
— (K*(m) = K 2(€,€) — dK2(€,€)) cos p(m — &) + / (K*(O)Kﬂ/z(ﬁ,t) +d gt(g t)> cos put dt
m—=¢
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13 T
/ ( Kr2(&,t) — ﬂ/;t(g’t)) cos pu(m —t) dt + /(K*(t))'cos u(t —&)dt
& 0
£ T
+ [ Kepletyat [(R2 @) costr — dr] i [(K*m) K (e — €) + Ky (s — )

T—€ 0
< sin a(a +€) + sen(e — €)sin e — €|+ dlsin u(r — 2+ €) + sl — @ — &) sinplr — & — )
— (K*(m) = Kz )2(&,6) — dKj2(€,8)) (sin p(z + m — &) +sgn(z — 7 + &) sin pla — m + |
3
sdsinpr o) —sinue + ) + [ (KOKpaen +a” )

=
X (sinp(z +t) + sgn(z — t) sin ple — t| + d(sinp(r —z +t) + sgn(r —z — t) sinp|r —z —t|)) dt
~ [ (e - TR Yt +m - 0+ st —n4 0 sinple 7+
nog
+d(sinpu(2m —x —t) —sinpu(x +t))) dt + /(K*(t))’(sgn(x +t—&sinplr+t—& +sgn(x —t+¢)
0

xsinplr —t+ & +d(sgn(mr —z+t—&)sinplr —x+t— & +sgn(r —z—t+&)sinulr —x —t+£|))dt

+ / K,T/z({,t)dt/(f(*(T))'(sgn(x—l—t—T)sinu|x+t—7|+sgn(x—t+7)sinu|x—t+7|
T—& 0

+d(sgn(mr —xz+t—7)sinplr —x +t— 7| —|—sgn(ﬂ'—a:—t—|—r)sinu|7r—x—t—|—7'|))dr], (56)
2(p, @, €) = [2i(dsin p€ — sinp(m — €))]Oa(, ) = p~* [2i(dsin p — sinp(m — €))]

{ )+ Kepp(x,m—x) —dKq )9z, m — ) cos px + (dK jo(w, ) — Krjo(x, ) — K(m)) cos p(m — )

[/ OK 1o, t r/-
/ t)cos pu(t —x)dt + / <K(0)Kﬂ/2(x,t) + /82t($ )) cos ut df — / <K(7r)K,,/2(x,t)
0 T—x T—x
0K a(et ’ T
/;t(x )) cos pu(m —t) dt + / Ko jo(x, ) dt/K'(r) cos (T —t) dT:|
T— 0

=ip! [(f((O) + Krpo(w,m —x) — dKy oz, m — x))(dsin (€ + x) + sgn(§ — x)dsin pl§ — |

— sin plm—€+2) — sgn(n—€—o) sin plr—€—a]) + (A2 ,7) — Kol ) — K () (dsin plé + 7 — o)
+dsgn(§ —7m+a)sinp|lé — 7+ x| —sinp(2r — & — ) — sgn(z — &) sin p|z — &)

/K’ d(sgn(€+t—x)sinul +t — x| +sgn(§ —t+x)sinplé —t + x|) —sgn(r — &+t —x)

0K a(, t))

xsinplr —&+t—z|—sgn(r — & —t+x)sinplr — & —t+x|)dt + / <I~((0)Kﬂ/2(x,t)+ Y

m™T—X

x (d(sin (€ +t) +sgn(§ —t)sinpl — ¢ —sinpu(r — &+ 1t)) —sgu(mr — & —t)sinpu|lr — & —t|) dt

— [ (Bt + 0”5 ) s e+ 7 0+ st~ + sinle — -+

m™—X
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—sinpu(2r — & —t) —sgn(t — &) sinp|t — &|) dt + / Kﬂ/g(x,t)dt/f(’(T)

X (d(sgn(€+7 —t)sinp|l +7—t| +sgn(€ — 7+ ¢)sinp|é — 7+ ¢

—sgn(w—§+T—t)sin,u|7r—£+r—t|+sgn(7r—£—7’+t)sin,u|7r—§—T+t|)dr], (57)

P31, 2, €)= O (1, )O3 (1, ) =" [ / R (t) sin u(t — ) df + / Koo, t) dt / R(r)sin p(r — ) dr
0 0

+/K,T/g(x,t)(sinut+dsinu(7r—t))dt] {(f(*(())+dK,r/2(§,7r—§)+K,r/2(£,7r—§))cosu£

13
~ (1) = Kayal6,) — o6 D) cosplr — ) + (K*m)Kﬂ/z(g,a)+d8K”/2(5’0‘)) cos i da

Ja
m—E
/ 0K, /a(6. )
/ (K( VK y2(€, ) — 7T/820470[>cosu7r—0z da+/ ) cos p(a — &) da
T—E& 0
£ ™
+ [ Kol ayda [ @)Y cosuts - ) as|
T—& 0
= (2p) 7" [(K*(O) +dK (6 m — &) + Kr a6, m / )(sgn(t —x + &) sinplt — x + ]
0

+sgn(t —x — ) sinplt — x — &]) dt — (K*(m) — Ky 2(€,€) — dK2(€, )
></f((t)(sgn(t—x—l—ﬂ—&)sinuﬁ—x+7r—§|—|—sgn(t—x—7r+§)sinu|t—x—7r+§|)dt

T £
+ /f((t) dt / <I~(*(O)Kﬂ/2(£, a) + daKﬂgoig’ @) ) (sgn(t — x4+ a)sinult — z + af +sgn(t — x — )
0 T

—£

Xsin,u|t—a:—oz|)do¢—/ﬂf((t)dt/§ <K*(W)Kw/2(§,a)_ 3Kn/2(§,o<))
0

Oa
m—§

(sgn(t—x—l—W—a)sinu|t—x+7r—a|—|—sgn(t—x—7r+a)sinu|t—x—7r+a|)da

/K dt/ ) (sgn(t —z+a—&sinplt —z+a—& +sgnt —x—a+&sinult —z — a+ &) da
+/f((t)dt / K,,/2(g,a)da/(f(*(ﬁ))/(sgn(t—a:+ﬁ—a)sinu|t—x+ﬁ—a|+sgn(t—x—ﬁ+a)
0 T— 0

xsinplt —2 = 6+ al)d8 + (K°(0) + dKel€,m ~ ) + Kepaleen =€) [ Kepotat [ (o)
x (sgn(r — ¢+ €)sin r — ¢+ €| + sgn(r — ¢ — &) sinplr — ¢ — &) dr — (K*(m) = Ko jal6. )

—dE s (6,6)) / K, (e, t) dt / R(r)dr(san(r — t + 7 — €)sinpulr — t + 7 — €|
z 0
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s

£
+sgn(T—t—ﬂ+£)sinu|7—t—ﬂ+£|)+/ K, (e, 0)d / /( VK ja(£, )

mT—X

8K7r/2(§) )
O

- /IK,T/2(x,t)dt/ﬂf((r)dr/5 <I~(*(7T)Kn/2(§,0<)—aKﬂgo([g’a))(sgn(r—t%—w—a)
roa 0

+d )(sgn(7—t+o¢)sinu|7'—t+oz| +sgn(r —t—a)sinu|lr —t — a|) da

xsinplr —t+m—al|+sgn(r —t+7—a)sinplt —t+ 7 —al)da + / Kﬂ/g(x,t)dt/f((r)dr

K

X /(f(*(oz))’(sgn(r—t+a—£)sinu|7'—t+o¢—§| +sgn(t —t—a+&)sinu|lt —t — a+¢£|) da

T bis 13 T
+ / Kﬂ/g(x,t)dtb/K(T)dT / K,,/Q(&,a)da/(f(*(ﬁ))’(sgn(T—t—i—ﬁ—a)sinu|7—t+ﬂ—a|

T—& 0

=+ SgH(T —t- ﬁ =+ Oé) sinu|7' —t- ﬁ + Oé|) dﬁ + (IN(*(O) + dKT(/2(£) ™ — 5) =+ KT(/2(£) ™ — f)) / Kﬂ./g(ZII,t)

T—X

X (sin pu(t + &) +sgn(t — &) sinp|t — &| + d(sinpu(r —t + &) +sgn(m —t — &) sinp|mr —t — &|)) dt

— (K*(m) — K /2(€,6) — dK2(£,€)) / Ky po(z, t)(sinp(t + 7 — &) +sgu(t — 7 + &) sinplt — 7 + ¢
z ¢
(2 — =€) +sgn(e — sl — ) e+ [ Kooty [(R2O) (e + a2 e ‘”)
T—x m—£
X (sin p(t + «) 4 sgn(t — ) sin p|t — | + d(sinpu(m — t + @) + sgn(r — t — a) sin p|r — ¢t — al)) do

z 3
[ Keptear [ (e - " Y it n - o)t =t
T—x T—&

x sin p|t — 7 + | + d(sin p(27 — t — ) 4+ sgn(a — t) sin pla — t|)) da + / K,T/Z(x,t)dt/(f{*(a))’
T—x 0
X (sgn(t + a— &) sinplt+ o — & +sgn(t — a+ &) sinplt — o+ ¢
+d(sgn(m —t+a—&)sinp|lr —t+a—¢|
z ¢
—|—sgn(7r—t—a+§)sinu|7r—t—a—|—§|))da—|—/K,,/Q(x,t)dt/Kﬂ/z(ﬁ,a)da/(f{
—T T—& 0
X (sgn(t + B — a)sinplt + 5 — a| +sgn(t — 8+ a)sinpult — 8+ af

T

+d(sgn(7r—t+ﬁ—o¢)sinu|7r—t+ﬁ—oz|+|sgn(7r—t—ﬁ+o¢)sinu|7r—t—ﬁ+a|))dﬁ]. (58)
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