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Abstract—We consider the so-called bilocal neuron model, which is a special system of two
nonlinear delay differential equations coupled by linear diffusion terms. The system is invari-
ant under the interchange of phase variables. We prove that, under an appropriate choice of
parameters, the system under study has a stable relaxation cycle whose components turn into
each other under a certain phase shift.
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1. STATEMENT OF THE PROBLEM AND DESCRIPTION OF THE RESULTS

Following [1, 2], we assume that the operation of an individual neuron is modeled by the equation

u̇ = λf(u(t− 1))u (1.1)

for the membrane potential u = u(t) > 0. Here the parameter λ > 0 characterizing the rate
of electric processes in the neuron is assumed to be large, the dot over a function stands for
differentiation with respect to t, and the function f(u) ∈ C2(R+), R+ = {u ∈ R : u ≥ 0}, has
the properties

f(0) = 1, f(u) = −a+O(1/u), uf ′(u) = O(1/u), u2f ′′(u) = O(1/u) (1.2)

as u → +∞, where a = const > 0. An example of such a function is given by

f(u) =
1− u

1 + u/a
. (1.3)

Equation (1.1), which is a modification of the well-known Hutchinson equation [3], was pro-
posed in [4], where it was shown that for λ � 1 it admits an exponentially orbitally stable cycle
u∗(t, λ) > 0, u∗(0, λ) ≡ 1, of period T∗(λ) satisfying the limit relations

lim
λ→+∞

T∗(λ) = T∗, max
0≤t≤T∗(λ)

|ω∗(t, λ)− ω∗(t)| = O(1/λ), λ → +∞, (1.4)

where T∗ = (1 + a)t0, t0 = 1 + 1/a, ω∗(t, λ) = (1/λ) ln u∗(t, λ), and the T∗-periodic function ω∗(t)
is given by the relations

ω∗(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t for 0 ≤ t ≤ 1,

1− a(t− 1) for 1 ≤ t ≤ t0 + 1,

t− T∗ for t0 + 1 ≤ t ≤ T∗,

ω∗(t+ T∗) ≡ ω∗(t). (1.5)
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Fig. 1.

The relaxation properties of this cycle are visualized by its graph on the plane (t, u) numerically
constructed for the case of Eq. (1.1) with f(u) given by (1.3), λ = 5, and a = 2 (see Fig. 1).

Now consider a system of two electrically coupled neurons. Their membrane potentials u1(t)
and u2(t) satisfy a system of differential-difference equations of the form

u̇1 = d(u2 − u1) + λf(u1(t− 1))u1,

u̇2 = d(u1 − u2) + λf(u2(t− 1))u2,
(1.6)

where the parameter d > 0 characterizes the neuron coupling strength.

It is of interest to note that system (1.6) also admits an ecological interpretation; namely, one
can assume that Eq. (1.1) (recall that it is a generalization of the Hutchinson equation in ecology)
describes the dynamics of the mammal population density in a homogeneous natural habitat.
We also assume that the food potential is stably recovered to a certain fixed level and migration
is strong enough to damp spatial perturbations. Under these biological hypotheses, we consider
two local habitats connected by a narrow passage. As a result, we obtain system (1.6) for the
population densities u1 and u2 in these habitats. Following the biological terminology, we refer to
this system as the bilocal neuron model or simply the bilocal model.

One possible stationary mode of system (1.6) is the so-called self-symmetric cycle, which is pre-
served under the change of variables (u1, u2) 	→ (u2, u1) and does not coincide with the homogeneous
cycle

(u1, u2) = (u∗(t, λ), u∗(t, λ)), (1.7)

where u∗(t, λ) is a periodic solution of Eq. (1.1). By the above-cited properties, this cycle admits
the representation

(u1, u2) = (u∗∗(t, λ), u∗∗(t− h(λ), λ)), (1.8)

where h=h(λ)>0 is a phase shift, and has the period T = 2h. The function u∗∗(t, λ), u∗∗(0, λ) ≡ 1,
in the representation (1.8) is a 2h-periodic solution of the scalar equation

u̇ = d(u(t− h)− u) + λf(u(t− 1))u. (1.9)

In the present paper, we show that, under the conditions

d = λ exp(−bλ), b = const > 0, λ � 1, (1.10)

a > 1, 1 +
1

a
< b < 1 +

1

2

(

a+
1

a

)

, (1.11)

there exists a self-symmetric cycle (1.8) of the bilocal model (1.6) and that this cycle is stable.
Its asymptotic properties are also studied.
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STABLE RELAXATION CYCLE IN A BILOCAL NEURON MODEL 1287

To state the corresponding rigorous result, we introduce some notation. Namely, consider the
2b-periodic function ω∗∗(t) given by the expression

ω∗∗(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t for 0 ≤ t ≤ 1,

1− a(t− 1) for 1 ≤ t ≤ t1,

t− 2b for t1 ≤ t ≤ 2b,

ω∗∗(t+ 2b) ≡ ω∗∗(t), (1.12)

where t1 = 1+2b/(a+1). The graph of this function is shown in Fig. 2, where the dashed graph of
the function ω∗(t) (see (1.5)) is given for comparison. By the inequality t1 < t0 + 1, which follows
from inequalities (1.11), the minimum of the function ω∗∗(t) is greater than the minimum of the
function ω∗(t), and its period 2b is less than T∗.

It turns out that the periodic function (1.12) is the zero-order approximation as λ → +∞ to the
function ω∗∗(t, λ) = (1/λ) ln u∗∗(t, λ), where u∗∗(t, λ) is the function given in (1.8). More precisely,
the following assertions hold.

Theorem 1.1. Under conditions (1.10) and (1.11), there exists a sufficiently large λ0 > 0 such
that system (1.6) admits a self-symmetric cycle (1.8) for all λ ≥ λ0. As λ → +∞, the following
asymptotic representations hold for this cycle :

h(λ) = b− lnλ

λ
− ln(b− t0)

λ
+O

(
lnλ

λ2

)

,

max
0≤t≤2h(λ)

|ω∗∗(t, λ)− ω∗∗(t)| = O

(
lnλ

λ

)

. (1.13)

Theorem 1.2. The cycle (1.8) in Theorem 1.1 is exponentially orbitally stable.

The proof of Theorem 1.1 is based on the search of a 2h-periodic solution u = u∗∗(t, λ) of the
auxiliary equation (1.9) with the properties (1.13). The stability of the cycle (1.8) is established
separately by an asymptotic analysis of the corresponding linear variational system.

Comparing formulas (1.4), (1.5) with formulas (1.12), (1.13), we see that the self-symmetric
cycle (1.8) of system (1.6) has significantly better biological characteristics than the homoge-
neous cycle (1.7). Indeed, by the mutual location of the graphs of the functions (1.5) and (1.12) in
Fig. 2, the period of the cycle (1.8) is less than the period of the homogeneous cycle, and conversely,
the minima of its components are greater than the corresponding minima of the cycle (1.7). This
fact allows us to speak about the self-organization phenomenon observed in the framework of the

Fig. 2. Fig. 3.
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biological model (1.6). In the ecological interpretation, the essence of this phenomenon is that the
species under study artificially creates an inhomogeneous habitat by migration between the two
local habitats and thus improves its own biological characteristics. Therefore, it is expedient to say
that the periodic mode (1.8) is a self-organization mode. It is visualized in Fig. 3, where the graphs
of its components u1(t) and u2(t) are drawn on the plane (t, u) in case (1.3), (1.10) for λ = 5, a = 2,
and b = 1.87. (The solid line shows the graph of the function u1(t); the dashed line, the graph of
the function u2(t).)

2. PROOF OF THEOREM 1.1.

2.1. General Scheme of the Study

As was already said, Theorem 1.1 is justified by analyzing the auxiliary equation (1.9), and more
precisely, by seeking its nonconstant 2h-periodic solution.

Under conditions (1.10) and (1.11), in Eq. (1.9) we make the change the variable u = exp(λω)
and set ε = 1/λ 
 1. As a result, for the new variable ω = ω(t) we obtain the equation

ω̇ = exp

(
ω(t− h)− ω − b

ε

)

− exp

(

− b

ε

)

+ f

(

exp

(
ω(t− 1)

ε

))

. (2.1)

Throughout the following, we assume that the delay h in this equation ranges in the set

Ω
def
= [b− δ0, b+ δ0], (2.2)

where the value of the constant δ0 > 0 will be specified below. Now we assume that the following
inequality holds:

δ0 < b− 1. (2.3)

Now let us describe the class of initial conditions for Eq. (2.1). To this end, we fix a sufficiently
small constant σ0 > 0. Just as in the case of constant δ0, we further impose several restrictions
on it. In particular, we assume everywhere below that

σ0 < (h− 1)/2, h ∈ Ω. (2.4)

(This inequality is possible, because h > 1 for all h ∈ Ω by inequality (2.3).)

Condition (2.4) permits representing the interval I = [−h − σ0,−σ0] in the form I = I1
⋃

I2,
where I1 = [−h−σ0,−h+1+σ0] and I2 = [−h+1+σ0,−σ0]. We use this representation to define
the desired set S of initial functions ϕ(t) continuous for t ∈ I by the conditions

S={ϕ(t) : −q1≤ϕ(t)≤−q2 for t∈I1, ϕ(−σ0)=−σ0, |ϕ(t)−t|≤exp(−1/
√
ε ) for t∈I2}, (2.5)

where q1 > q2 > 0 are some universal constants (constants independent of t, ε, h, and ϕ) which we
choose below.

Consider the solution ω = ωϕ(t, ε, h), t ≥ −σ0, of Eq. (2.1) with an arbitrary initial function
ϕ(t) ∈ S for t ∈ I. By t = Tϕ(ε, h) we denote the second positive root of the equation

ωϕ(t− σ0, ε, h) = −σ0 (2.6)

(if it exists) and define an operator Π acting from the set S to the space C(I) of functions continuous
for t ∈ I by the rule

Π(ϕ) = ωϕ(t+ Tϕ(ε, h), ε, h), t ∈ I. (2.7)

As will be shown below, for an appropriate choice of the parameters q1, q2, δ0, and σ0, the opera-
tor (2.7) is defined on the set (2.5), and one has Π(S) ⊂ S and Tϕ(ε, h) > h for all h ∈ Ω and ϕ ∈ S.
Since the set S is closed, bounded, and convex and the operator Π is compact by the inequality
Tϕ > h, it has at least one fixed point ϕ = ϕ̃(t, ε, h) in the set S by the Schauder principle. It is also
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obvious that the solution ω̃(t, ε, h) = ωϕ|ϕ=ϕ̃ of Eq. (2.1) is periodic with period T̃ (ε, h) = Tϕ|ϕ=ϕ̃.
As to the additional parameter h ranging in the set (2.2), it can be determined from the equation

T̃ (ε, h) = 2h. (2.8)

It turns out that Eq. (2.8) admits a solution h = h(ε) bounded in ε and such that h(ε) → b
as ε → 0. In turn, this implies that for h = h(ε) the auxiliary equation (2.1) has the desired
2h(ε)-periodic solution ω(t, ε) = ω̃(t, ε, h)|h=h(ε).

2.2. Asymptotic Integration of an Auxiliary Scalar Equation

To implement the scheme described in the preceding section, it is necessary to know the asymp-
totics as ε → 0 (uniform in h ∈ Ω and ϕ ∈ S) of the solution ωϕ(t, ε, h) on various intervals of
time t. The process of constructing this asymptotics is divided into nine stages, each of which
has its own lemma. Further, the same letter q is used to denote some universal positive constants
(constants independent of t, ε, h, and ϕ) whose exact values are of no importance.

At the first of these stages, consider the interval

−σ0 ≤ t ≤ 1− σ0. (2.9)

We have the following assertion.

Lemma 2.1. The asymptotic representation

ωϕ(t, ε, h) = t+O(exp(−q/ε)) (2.10)

holds as ε → 0 on the interval (2.9) uniformly in t, h, and ϕ.

Proof. Since the delay h is greater than unity by inequality (2.3) and the interval (2.9) has
unit length, it follows that the functions ω(t− 1) and ω(t− h) coincide with the functions ϕ(t− 1)
and ϕ(t− h), respectively, for t in this interval. Thus, we obtain the Cauchy problem

ω̇ = exp((ϕ(t− h)− ω − b)/ε) − exp(−b/ε) + f(exp(ϕ(t − 1)/ε)), ω|t=−σ0
= −σ0. (2.11)

The analysis of problem (2.11) is based on estimates of the form

ϕ(t− 1) ≤ −M1, ϕ(t− h)− ωϕ(t, ε, h) − b ≤ −M2, M1,M2 = const > 0. (2.12)

Just as with the letter q, from now on by const we denote various positive constants independent
of t, ε, h, and ϕ. Note that, by the definition of the set S (see (2.5)), the first inequality in (2.12)
is satisfied automatically, while the second inequality is proved at the end of the lemma.

In the equation in (2.11), we take into account relations (2.12) together with the representation

f(exp(ϕ(t− 1)/ε)) = 1 +O(exp(−q/ε)) as ε → 0,

which follows from properties (1.2), and conclude that the Cauchy problem in question can be
written as

ω̇ = 1 +O(exp(−q/ε)), ω|t=−σ0
= −σ0,

which obviously implies the asymptotic formula (2.10).

To complete the justification of the lemma, it remains to verify the second inequality in (2.12).
Based on relation (2.10) (yet only a priori one), we have

ϕ(t− h)− ωϕ(t, ε, h) − b < −ωϕ(t, ε, h) − b = −t− b+O(exp(−q/ε)).

This means that this inequality is indeed satisfied with any constant M2 in the interval (0, b− σ0).
The proof of Lemma 2.1 is complete.
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At the second stage, consider the interval

1− σ0 ≤ t ≤ 1 + σ0 (2.13)

under the condition that
σ0 < min(2−1, (b+ 1)/a). (2.14)

Inequality (2.14) guarantees the inclusions

t− 1 ∈ [−σ0, σ0] ⊂ [−σ0, 1− σ0], t− h ∈ [−h+ 1− σ0,−h+ 1 + σ0] ⊂ I1.

This, definition (2.5) and the representation (2.10) imply that

ωϕ(t− 1, ε, h) = t− 1 +O(exp(−q/ε)), ωϕ(t− h, ε, h) = ϕ(t− h). (2.15)

We have the following assertion for the function ωϕ(t, ε, h) on the interval (2.13).

Lemma 2.2. The asymptotic representation

ωϕ(t, ε, h) = 1 + εv0(τ)|τ=(t−1)/ε +O(exp(−q/ε)) (2.16)

as ε → 0, where

v0(τ) = τ +

τ∫

−∞

[f(exp s)− 1] ds, (2.17)

holds uniformly in t ∈ [1− σ0, 1 + σ0], h ∈ Ω, and ϕ ∈ S.

Proof. As in the proof of Lemma 2.1, formulas (2.16) and (2.17) are justified first under the
a priori assumption

ϕ(t− h)− ωϕ(t, ε, h) − b ≤ −M, M = const > 0, (2.18)

and then we verify whether condition (2.18) itself is satisfied.

On the right-hand side in Eq. (2.1), we take into account relations (2.15) and (2.18) and make
the change of time τ = (t− 1)/ε in this equation. As a result, we obtain the Cauchy problem

dω

dτ
= εf [exp(τ +O(exp(−q/ε)))] +O(exp(−q/ε)),

ω|τ=−σ0/ε = ωϕ(t, ε, h)|t=1−σ0
= 1− σ0 +O(exp(−q/ε)).

(2.19)

To analyze problem (2.19), we use the estimate

|f(u1)− f(u2)| ≤
M

1 + min(u2
1, u

2
2)

|u1 − u2|, M = sup
u≥0

(1 + u2)|f ′(u)| < ∞, u1, u2 ≥ 0, (2.20)

and the asymptotic representation

v0(τ) = τ +O(exp τ) as τ → −∞, (2.21)

which follows from properties (1.2). By relations (2.20) and (2.21), it is easily seen that the
asymptotic relations

f [exp(τ +O(exp(−q/ε)))] = f(exp τ) +O(exp(−q/ε)),

1 + εv0(τ)|τ=−σ0/ε = 1− σ0 +O(exp(−q/ε)) as ε → 0

hold uniformly in τ ∈ [−σ0/ε, σ0/ε]. This and problem (2.19) automatically imply the desired
formulas (2.16) and (2.17).

DIFFERENTIAL EQUATIONS Vol. 54 No. 10 2018



STABLE RELAXATION CYCLE IN A BILOCAL NEURON MODEL 1291

To prove the estimate (2.18), along with (2.21), we use the asymptotic representation (which
holds due to properties (1.2))

v0(τ) = −aτ + c0 +O(exp(−τ)) as τ → +∞, (2.22)

where

c0 =

1∫

0

f(u)− 1

u
du+

+∞∫

1

f(u) + a

u
du. (2.23)

As a result, in view of the inequalities a > 1 and aσ0 < b+ 1 (see (1.11) and (2.14)), we see that

ϕ(t− h)− ωϕ(t, ε, h) − b < −ωϕ(t, ε, h) − b = −b− 1− εv0(τ)|τ=(t−1)/ε +O(exp(−q/ε)) ≤ −M,

where M = const ∈ (0, b+ 1− aσ0). The proof of Lemma 2.2 is complete.

At the third stage, consider the values of t in the interval

1 + σ0 ≤ t ≤ t1(h)− σ0, (2.24)

where t1(h) = 1 + (b+ h)/(a + 1), under the assumptions that

t0 < t1(h) < t0 + 1, t0 < h, σ0 < min(a−1, (t1(h) − 1)/2). (2.25)

Note that for δ0 = 0, i.e., for h = b, the first two of these inequalities are satisfied (see (1.11)).
Therefore, they are also satisfied for a sufficiently small δ0 > 0. Throughout the following, we as-
sume that δ0 in (2.2) is chosen precisely in this way.

Lemma 2.3. The asymptotic relation

ωϕ(t, ε, h) = 1− a(t− 1) + εc0 +O(exp(−q/ε)), (2.26)

where c0 is the constant (2.23), holds as ε → 0 on the interval (2.24) uniformly in t, h, and ϕ.

Proof. The lemma is proved by the step method using the a priori estimates

ωϕ(t− 1, ε, h) ≥ M1, ωϕ(t− h, ε, h) − ωϕ(t, ε, h) − b ≤ −M2, M1,M2 = const > 0. (2.27)

In this method, the interval (2.24) is divided into intervals of length at most unity and then,
considering these intervals as they are successively located, we first derive (2.26) on the current
interval under assumptions (2.27) and then use the result to prove the estimates (2.27) themselves.

At the first stage, consider the interval

1 + σ0 ≤ t ≤ min(2 + σ0, t1(h)− σ0), (2.28)

on which, by the inclusions

t− 1 ∈ [σ0,min(1 + σ0, t1(h)− 1− σ0)] ⊂ [σ0, 1 + σ0],

t− h ∈ [−h+ 1 + σ0,min(2− h+ σ0, t1(h)− h− σ0)] ⊂ [−h+ 1 + σ0, 1− σ0]

following from inequalities (2.25), the function ωϕ(t− 1, ε, h) is defined by relations (2.10), (2.16),
and (2.17), and for the function ωϕ(t− h, ε, h), by formulas (2.5), (2.10), we have

ωϕ(t− h, ε, h) = t− h+O(exp(−1/
√
ε )). (2.29)

Thus, in this case, the first inequality in (2.27) holds with any constant M1 ∈ (0,min(σ0, 1− aσ0)),
and the second inequality will be proved later.

Taking into account relations (2.27) on the right-hand side in Eq. (2.1) and using properties (1.2)
of the function f(u), we conclude that, on the interval (2.28), this equation becomes

ω̇ = −a+O(exp(−q/ε)). (2.30)

DIFFERENTIAL EQUATIONS Vol. 54 No. 10 2018
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Further, by relations (2.16), (2.17), and (2.22), Eq. (2.30) must be supplemented with the initial
condition

ω|t=1+σ0
= ωϕ(t, ε, h)|t=1+σ0

= 1− aσ0 + εc0 +O(exp(−q/ε)). (2.31)

Solving the resulting Cauchy problem, we obtain the desired relation (2.26).

Now let us verify the second estimate in (2.27). By the representation (2.29) and the asymptotic
formula (2.26) (which has already been obtained for the values of t under study), we have

ωϕ(t− h, ε, h) − ωϕ(t, ε, h) − b = (a+ 1)(t− t1(h)) − εc0 +O(exp(−q/ε)).

Since the function (a + 1)(t − t1(h)) is negative on the interval (2.28), it follows that the second
inequality in (2.27) holds with an arbitrary constant M2 in the interval (0, (a + 1)σ0).

At the subsequent stages, by the estimates 1 − a(t − 2) > 0, (a + 1)(t − t1(h)) < 0, the whole
above argument is repeated practically word by word. Namely, at the current stage, first, under
conditions (2.27), we derive the asymptotic representation (2.26) from the Cauchy problem of the
form (2.30), (2.31), and then we verify that the estimates (2.27) are indeed satisfied with constants
M1 ∈ (0,min(1 − aσ0, 1− a(t1(h) − 2− σ0))) and M2 ∈ (0, (a + 1)σ0). The proof of Lemma 2.3 is
complete.

At the fourth stage, consider the time interval

t1(h) − σ0 ≤ t ≤ t1(h) + σ0 (2.32)

and the next additional restriction

σ0 < 2−1(t0 + 1− t1(h)), h ∈ Ω, (2.33)

on the parameter σ0. Inequalities (2.25) and (2.33) guarantee the inclusions

t− 1 ∈ [t1(h)− 1− σ0, t1(h)− 1 + σ0] ⊂ [σ0, t0 − σ0],

t− h ∈ [−h+ t1(h)− σ0,−h+ t1(h) + σ0] ⊂ [−h+ 1 + σ0, 1− σ0].

Thus, for the above-listed t, formula (2.29) holds for the function ωϕ(t− h, ε, h), and the function
ωϕ(t− 1, ε, h) is defined on the corresponding time intervals by the relations obtained at the three
preceding stages (see (2.10), (2.16), (2.17), and (2.26)). In this case, these formulas imply that

ωϕ(t− 1, ε, h) ≥ M, M = const ∈ (0, σ0). (2.34)

In Eq. (2.1), we change the variables

ω = t1(h) − h− b+ εw, τ = (t− t1(h))/ε (2.35)

and take into account the above-obtained information about the functions ωϕ(t − 1, ε, h) and
ωϕ(t − h, ε, h) on the right-hand side in (2.1); we see that the function w satisfies an equation
of the form

dw

dτ
= exp[τ − w +O(ε−1 exp(−1/

√
ε ))]− a+O(exp(−q/ε)). (2.36)

By formulas (2.26) and (2.35), it should be supplemented with the initial condition

w|τ=−σ0/ε = ε−1(ωϕ(t1(h)− σ0, ε, h) − t1(h) + h+ b) = aσ0/ε+ c0 +O(exp(−q/ε)). (2.37)

We denote the solution of the Cauchy problem (2.36), (2.37) by wϕ(τ, ε, h). The following assertion
holds.

Lemma 2.4. The asymptotic representation

wϕ(τ, ε, h) = w0(τ) +O(ε−1 exp(−1/
√
ε )), (2.38)

where
w0(τ) = ln(exp(−aτ + c0) + (a+ 1)−1 exp τ), (2.39)

holds as ε → 0 uniformly in τ ∈ [−σ0/ε, σ0/ε], h ∈ Ω, and ϕ ∈ S.
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Proof. We directly verify that the function w = w0(τ) is a solution of the Cauchy problem

dw

dτ
= exp(τ − w)− a, w|τ=−σ0/ε = ε−1aσ0 + c0 +O(exp(−q/ε)).

Therefore, we have the representation wϕ(τ, ε, h) = w0(τ) + Δ, where the remainder term Δ is
asymptotically small. More precisely, the principal order of this remainder is determined from the
linear Cauchy problem

dΔ

dτ
= − exp(τ − w0(τ))Δ +O(ε−1 exp(−1/

√
ε )) exp(τ − w0(τ)) +O(exp(−q/ε)),

Δ|τ=−σ0/ε = O(exp(−q/ε)).
(2.40)

In turn, from relations (2.40) we derive the estimate

|Δ| ≤ M1 exp

(

− q

ε

)
w∗(−σ0/ε)

w∗(τ)
+

M2

εw∗(τ)
exp

(

− 1√
ε

) τ∫

−σ0/ε

exp[(a+ 1)s] ds

+
M3

w∗(τ)
exp

(

− q

ε

) τ∫

−σ0/ε

w∗(s) ds, M1,M2,M3 = const > 0,

where
w∗(τ) = exp c0 + (a+ 1)−1 exp[(a+ 1)τ ]. (2.41)

This and the explicit form of the functions w0(τ) and w∗(τ) (see (2.39) and (2.41)) imply

|Δ| ≤ Mε−1 exp(−1/
√
ε ), M = const > 0.

The proof of Lemma 2.4 is complete.

Summarizing the above, we substitute the functions defined by relations (2.38) and (2.39)
into (2.35). As a result, we see that, at the fourth stage, the following asymptotic representa-
tion holds for the solution ωϕ(t, ε, h) as ε → 0 uniformly in t in the interval (2.32) and in h ∈ Ω
and ϕ ∈ S :

ωϕ(t, ε, h) = t1(h) − h− b+ εw0(τ)|τ=(t−t1(h))/ε +O(exp(−1/
√
ε )). (2.42)

At the fifth stage, consider the values of t in the interval

t1(h) + σ0 ≤ t ≤ t0 + 1− σ0. (2.43)

In this case, by conditions (2.25) and (2.33), we have the inclusions

t− 1 ∈ [t1(h)− 1 + σ0, t0 − σ0] ⊂ [σ0, t0 − σ0],

t− h ∈ [t1(h)− h+ σ0, t0 + 1− h− σ0] ⊂ [−h+ 1 + σ0, 1− σ0].

Therefore, formulas (2.29) and the estimate (2.34) hold on the interval (2.43) for the functions
ωϕ(t− h, ε, h) and ωϕ(t− 1, ε, h), respectively.

With regard to the above information, Eq. (2.1) is transformed to the form

ω̇ = [1 +O(ε−1 exp(−1/
√
ε ))] exp((t− h− b− ω)/ε) − a+O(exp(−q/ε)).

Further, by the representation (2.42), we supplement this equation with the initial condition

ω|t=t1(h)+σ0
= ωϕ(t1(h) + σ0, ε, h) = t1(h)− h− b+ σ0 − ε ln(a+ 1) +O(exp(−1/

√
ε ))

and then set
ω = t− h− b− ε ln(a+ 1) + Δ
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in the resulting Cauchy problem. As a result, to seek the remainder Δ, in the linear approximation
we have the following problem:

Δ̇ = −ε−1(a+ 1)Δ +O(ε−1 exp(−1/
√
ε )), Δ|t=t1(h)+σ0

= O(exp(−1/
√
ε )).

A simple analysis of the problem leads to the estimates

|Δ| ≤ M1 exp

[

− 1√
ε
− a+ 1

ε
(t− t1(h) − σ0)

]

+
M2

ε
exp

(

− 1√
ε

) t∫

t1(h)+σ0

exp

[

− a+ 1

ε
(t− s)

]

ds ≤ M3 exp

(

− 1√
ε

)

,

where M1,M2,M3 = const > 0.

Thus, we obtain the following assertion.

Lemma 2.5. As ε → 0, the asymptotic relation

ωϕ(t, ε, h) = t− h− b− ε ln(a+ 1) +O(exp(−1/
√
ε )) (2.44)

holds for the solution ωϕ(t, ε, h) uniformly in t in the interval (2.43) and in h ∈ Ω and ϕ ∈ S.

At the sixth stage, consider the time interval

t0 + 1− σ0 ≤ t ≤ t0 + 1 + σ0 (2.45)

under the next additional condition

σ0 < 2−1 min(t0 − 1, t1(h) − t0, h− t0), h ∈ Ω, (2.46)

on the parameter σ0. This condition ensures the inclusions

t− 1 ∈ [t0 − σ0, t0 + σ0] ⊂ [1 + σ0, t1(h)− σ0],

t− h ∈ [t0 + 1− h− σ0, t0 + 1− h+ σ0] ⊂ [−h+ 1 + σ0, 1− σ0],

which imply that, first, formula (2.29) holds for the functions ωϕ(t−h, ε, h) and second, in this case,
by the representation (2.26), the following asymptotic relation holds for the function ωϕ(t−1, ε, h) :

ωϕ(t− 1, ε, h) = 1− a(t− 2) + εc0 +O(exp(−q/ε)). (2.47)

Taking into account relations (2.29) and (2.47) and making the change of variables

ω = t0 + 1− h− b+ εz(τ), τ = (t− t0 − 1)/ε (2.48)

in Eq. (2.1), we obtain an equation of the form

dz

dτ
= [1 +O(ε−1 exp(−1/

√
ε ))] exp(τ − z) + f(exp(−aτ + c0)) +O(exp(−q/ε)) (2.49)

for determining z. Further, omitting the exponentially small additional terms on the right-hand
side in Eq. (2.49), we obtain the model equation

dz

dτ
= exp(τ − z) + f(exp(−aτ + c0)).

We are interested in its special solution z = z0(τ) given by the formulas

z0(τ) = ln

(

K(τ)

τ∫

−∞

exp s

K(s)
ds

)

, K(τ) = exp

( τ∫

0

f(exp(−as+ c0)) ds

)

, τ ∈ R. (2.50)
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We separately consider the asymptotic behavior of the function z0(τ) as τ → ±∞. It follows
from properties (1.2) of the function f(u) that

τ∫

0

f(exp(−as+ c0))ds =

τ∫

0

[f(exp(−as+ c0)) + a]ds − aτ = c1 +

τ∫

−∞

[f(exp(−as+ c0)) + a] ds − aτ

= c1 − aτ +O(exp aτ) as τ → −∞, c1 = −
0∫

−∞

[f(exp(−as+ c0)) + a] ds.

Taking into account these relations in the formula for K(τ) (see (2.50)), we successively find that

K(τ) = exp[c1 − aτ +O(exp aτ)],
τ∫

−∞

exp s

K(s)
ds =

exp(−c1 + (a+ 1)τ)

a+ 1
+O(exp(2a+ 1)τ) as τ → −∞. (2.51)

From this and the definition of the function z0(τ), we finally obtain

z0(τ) = τ − ln(a+ 1) +O(exp aτ) as τ → −∞. (2.52)

As τ → +∞, properties (1.2) imply the relations

τ∫

0

f(exp(−as+ c0)) ds=

τ∫

0

[f(exp(−as+ c0))− 1] ds + τ=τ + c2 −
+∞∫

τ

[f(exp(−as+ c0))− 1] ds

= τ + c2 +O(exp(−aτ)), c2 =

+∞∫

0

[f(exp(−as+ c0))− 1] ds,

τ∫

−∞

exp s

K(s)
ds =

0∫

−∞

exp s

K(s)
ds +

τ∫

0

(
exp s

K(s)
− exp(−c2)

)

ds+ τ exp(−c2)

= c3 + τ exp(−c2) +O(exp(−aτ)), c3 =

0∫

−∞

exp s

K(s)
ds+

+∞∫

0

(
exp s

K(s)
− exp(−c2)

)

ds. (2.53)

Taking them into account in the formula for the function z0(τ) in (2.50), we conclude that

z0(τ) = τ + ln(c∗ + τ) +O(exp(−aτ)) as τ → +∞, (2.54)

where c∗ = c3 exp c2.

It turns out that the function z0(τ) plays a key role in the construction of the asymptotics of
the solution ωϕ(t, ε, h) on the interval (2.45). Namely, we have the following lemma.

Lemma 2.6. The function ωϕ(t, ε, h) admits the asymptotic representation

ωϕ(t, ε, h) = t0 + 1− h− b+ εz0(τ)|τ=(t−t0−1)/ε +O(exp(−1/
√
ε )) (2.55)

as ε → 0 on the interval (2.45) uniformly in t, h, and ϕ.

Proof. By (2.44), we supplement Eq. (2.49) with the initial condition

z|τ=−σ0/ε = ε−1(ωϕ(t0 + 1− σ0, ε, h) − t0 − 1 + h+ b)

= −ε−1σ0 − ln(a+ 1) +O(ε−1exp(−1/
√
ε )). (2.56)
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Further, by setting z = z0(τ) +Δ in the Cauchy problem (2.49), (2.56) and by taking into account
property (2.52) of the function z0(τ), for the remainder Δ we obtain the linear inhomogeneous first
approximation problem

dΔ

dτ
= − exp(τ − z0(τ))Δ +O(ε−1 exp(−1/

√
ε )) exp(τ − z0(τ)) +O(exp(−q/ε)),

Δ|τ=−σ0/ε = O(ε−1 exp(−1/
√
ε )).

(2.57)

The analysis of problem (2.57) is based on the obvious estimate

|Δ| ≤ M1

ε

z∗(−σ0/ε)

z∗(τ)
exp

(

− 1√
ε

)

+
M2

εz∗(τ)
exp

(

− 1√
ε

) τ∫

−σ0/ε

exp s

K(s)
ds

+
M3

z∗(τ)
exp

(

− q

ε

) τ∫

−σ0/ε

z∗(s) ds, M1,M2,M3 = const > 0,

where

z∗(τ) =

τ∫

−∞

exp s

K(s)
ds.

Combining this estimate with properties (2.51) and (2.53) of the function z∗(τ), we finally obtain

|Δ| ≤ Mε−1 exp(−1/
√
ε ), M = const > 0.

This and the change of variables (2.48) automatically imply the desired asymptotic relation (2.55).
The proof of Lemma 2.6 is complete.

At the seventh stage, consider the values of t in the interval

t0 + 1 + σ0 ≤ t ≤ h+ 1− σ0. (2.58)

In this case, we have the inclusions

t− 1 ∈ [t0 + σ0, h− σ0], t− h ∈ [t0 + 1− h+ σ0, 1− σ0] ⊂ [−h+ 1 + σ0, 1− σ0],

and hence formula (2.29) still holds for the function ωϕ(t− h, ε, h). For the function ωϕ(t, ε, h), for
the values of t in question, we have the following assertion.

Lemma 2.7. The function ωϕ(t, ε, h) admits the following asymptotic relation as ε → 0 uni-
formly in t in the interval (2.58) and in h ∈ Ω and ϕ ∈ S :

ωϕ(t, ε, h) = t− h− b+ ε ln(c∗ + ε−1(t− t0 − 1)) +O(exp(−1/
√
ε )), (2.59)

where c∗ is the constant in (2.54).

Proof. Just as in Lemma 2.3, the proof of the above-stated lemma is based on the method of
a priori estimates and the step method. Namely, in this situation, we assume that the following
inequality holds:

ωϕ(t− 1, ε, h) ≤ −M, M = const > 0. (2.60)

As usual, we divide the interval (2.58) into parts of length at most equal to unity and successively
consider the obtained time intervals. We immediately note that, at the first of them, i.e., for

t0 + 1 + σ0 ≤ t ≤ min(t0 + 2 + σ0, h+ 1− σ0), (2.61)
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by the inclusion t − 1 ∈ [t0 + σ0, t0 + 1 + σ0] and the already obtained formulas (2.26), (2.42),
(2.44), (2.55), the estimate (2.60) is satisfied with the constant M in the interval

(0,min(aσ0, h+ b− t0 − 1− σ0)).

Taking into account relations (2.29) and (2.60) on the right-hand side of Eq. (2.1) and substi-
tuting the expression

ω = t− h− b+Δ (2.62)

into it, we obtain an equation of the form

Δ̇ = [1 +O(ε−1 exp(−1/
√
ε ))] exp(−Δ/ε) +O(exp(−q/ε)) (2.63)

for the remainder Δ. By formulas (2.54), (2.55), and (2.62), we supplement Eq. (2.63) with the
initial condition

Δ|t=t0+1+σ0
= ε ln(c∗ + ε−1σ0) +O(exp(−1/

√
ε )). (2.64)

A simple analysis of the Cauchy problem (2.63), (2.64) show that the asymptotic representation

Δ = ε ln(c∗ + ε−1(t− t0 − 1)) +O(exp(−1/
√
ε )) as ε → 0

holds on the interval (2.61) uniformly in t, h, and ϕ. This and (2.62) imply the desired for-
mula (2.59).

When considering the subsequent intervals of this division, the desired a priori condition (2.60)
is necessarily satisfied by the estimate t − 1 − h − b < 0. This means that we can generalize the
asymptotic formula (2.59) to the entire interval (2.58). The proof of Lemma 2.7 is complete.

At the eighth stage, consider the time interval

h+ 1− σ0 ≤ t ≤ h+ 1 + σ̃0, (2.65)

where σ̃0 is an arbitrarily fixed constant in the interval (0, σ0). For the above-distinguished t, by the
inclusions

t− 1 ∈ [h− σ0, h+ σ̃0] ⊂ [t0 + σ0, h+ 1− σ0], t− h ∈ [1− σ0, 1 + σ̃0]

and formulas (2.16), (2.17), (2.26), (2.42), (2.44), (2.55), and (2.59), we have

ωϕ(t− h, ε, h) = 1 + εv0(τ)|τ=(t−h−1)/ε +O(exp(−q/ε)),

ωϕ(t− 1, ε, h) ≤ −M, M = const ∈ (0,min(aσ0, b− 1 + σ0)).
(2.66)

Further, we take into account relations (2.66) on the right-hand side in Eq. (2.1) and set

ω = 1− b+ εγ(τ), τ = (t− h− 1)/ε (2.67)

in this equation. As a result, to determine the function γ, we obtain an equation of the form

dγ

dτ
= (1 +O(exp(−q/ε))) exp(v0(τ)− γ) + 1 +O(exp(−q/ε)). (2.68)

It follows from (2.59) and (2.67) that it is necessary to supplement this equation with the initial
condition

γ|τ=−σ0/ε = ε−1(ωϕ(h+ 1− σ0, ε, h) − 1 + b)

= −ε−1σ0 + ln(c∗ + ε−1(h− t0 − σ0)) +O(ε−1 exp(−1/
√
ε )). (2.69)

Just as in the case of Eq. (2.49), neglecting the exponentially small additional terms on the
right-hand side in Eq. (2.68), we obtain the model equation

dγ

dτ
= exp(v0(τ)− γ) + 1. (2.70)
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It is easily seen that the solution of the Cauchy problem (2.69), (2.70) is given by the explicit
expressions

γ = τ + ln

(

c+

τ∫

−σ0/ε

exp(v0(s)− s) ds

)

, c = exp(γ|τ=−σ0/ε + ε−1σ0). (2.71)

To analyze formulas (2.71), we need the asymptotic representation

0∫

τ

exp(v0(s)− s) ds = −τ +

0∫

−∞

[exp(v0(s)− s)− 1] ds +O(exp τ) as τ → −∞,

which follows from property (2.21) of the function (2.17). It follows from this relation that

c+

0∫

−σ0/ε

exp(v0(s)− s) ds = c∗∗ + ε−1(h− t0) +O(ε−2 exp(−1/
√
ε )) as ε → 0, (2.72)

where

c∗∗ = c∗ +

0∫

−∞

[exp(v0(s)− s)− 1] ds. (2.73)

Further, taking into account relations (2.72) and (2.73) in the expression (2.71) for the function γ,
we conclude that the asymptotic representation

γ = τ + ln

(

c∗∗ + ε−1(h− t0) +

τ∫

0

exp(v0(s)− s) ds

)

+O(ε−1 exp(−1/
√
ε )) (2.74)

as ε → 0 holds uniformly in τ ∈ [−σ0/ε, σ0/ε], h ∈ Ω, and ϕ ∈ S. Obviously, the asymptotic repre-
sentation (2.74) is preserved when we pass backward from Eq. (2.70) to the original equation (2.68).
Thus, we have the following assertion.

Lemma 2.8. The asymptotic relation

ωϕ(t, ε, h) = 1− b+ εγ(τ, ε)|τ=(t−h−1)/ε +O(exp(−1/
√
ε )), (2.75)

where

γ(τ, ε) = τ + ln

(

c∗∗ +
h− t0

ε
+

τ∫

0

exp(v0(s)− s) ds

)

, (2.76)

holds as ε → 0 for the solution ωϕ(t, ε, h) uniformly in t in the interval (2.65), h ∈ Ω, and ϕ ∈ S.

The ninth, last stage is related to the consideration of the time interval

h+ 1 + σ̃0 ≤ t ≤ h+ b− σ0/2. (2.77)

Just as at the first stage, we assume that the a priori estimates

ωϕ(t− h, ε, h) − ωϕ(t, ε, h) − b ≤ −M1, ωϕ(t− 1, ε, h) ≤ −M2, M1,M2 = const > 0, (2.78)

similar to (2.12), are satisfied on this interval.
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By the step method, using inequalities (2.78), we see that, on each part of the interval (2.77) of
length at most equal to unity, we must consider an equation of the form

ω̇ = 1 +O(exp(−q/ε)). (2.79)

This and relations (2.75) and (2.76) imply that, uniformly in t ∈ [h+ 1 + σ̃0, h+ b− σ0/2], h ∈ Ω,
and ϕ ∈ S, we have the relation

ωϕ(t, ε, h) = ωϕ(h+ 1 + σ̃0, ε, h) + t− h− 1− σ̃0 +O(exp(−q/ε)) (2.80)

as ε → 0, where, in turn,

ωϕ(h+ 1 + σ̃0, ε, h) = 1− b+ σ̃0 + ε ln(c∗∗∗ + ε−1(h− t0)) +O(exp(−1/
√
ε )),

c∗∗∗ = c∗∗ +

+∞∫

0

exp(v0(s)− s) ds. (2.81)

Thus, under conditions (2.78), relation (2.80) holds on the entire interval (2.77). Now let us
verify conditions (2.78). To this end, we combine formulas (2.80) and (2.81) with the asymp-
totic representations already obtained for the function ωϕ(t, ε, h) (starting from the second stage).
As a result, we have

ωϕ(t− h, ε, h) ≤ 1− aσ̃0 +O(exp(−q/ε)),

ωϕ(t, ε, h) = t− h− b+O(ε ln ε−1),

ωϕ(t− 1, ε, h) ≤ −M,

where M = const ∈ (0, aσ̃0), whence the desired estimates (2.78) obviously follows.

Therefore, at the last stage we have the following assertion.

Lemma 2.9. The solution ωϕ(t, ε, h) admits the asymptotic representation (2.80) as ε → 0 on
the interval (2.77) uniformly in the variables t, h, and ϕ.

Let us summarize the results. To this end, consider the function

ω0(t, h) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t for −σ0 ≤ t ≤ 1,

1− a(t− 1) for 1 ≤ t ≤ t1(h),

t− h− b for t1(h) ≤ t ≤ h+ b− σ0/2.

(2.82)

Combining Lemmas 2.1–2.9, we conclude that the asymptotic representation

ωϕ(t, ε, h) = ω0(t, h) +O(ε ln ε−1) (2.83)

holds as ε → 0 uniformly in t ∈ [−σ0, h+ b− σ0/2], h ∈ Ω, and ϕ ∈ S.

Relations (2.82) and (2.83) permit localizing the desired second positive root t = Tϕ(ε, h) of
Eq. (2.6). Indeed, it follows from these relations that the value t = Tϕ(ε, h) − σ0 belongs to the
interval (2.77). By relations (2.79)–(2.81), this automatically implies that the root Tϕ(ε, h) is
determined uniquely and admits the following asymptotics as ε → 0 uniformly in h ∈ Ω and ϕ ∈ S :

Tϕ(ε, h) = h+ 1 + σ̃0 − ωϕ(h+ 1 + σ̃0, ε, h) +O(exp(−q/ε)), (2.84)

where, as we recall, the function ωϕ(h+ 1 + σ̃0, ε, h) satisfies formulas (2.81).

2.3. Completion of the Proof of Theorem 1.1

Now we implement the scheme for studying Eq. (1.9) described in Section 2.1. Consider the
operator (2.7), which, by our constructions, is well defined on the set (2.5), and show that the in-
clusion Π(S) ⊂ S holds under an appropriate choice of the constants q1 and q2 in definition (2.5)
and under some additional condition on the parameter δ0 in (2.2).
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Indeed, by the asymptotic relations (2.81)–(2.84), we can readily see that the condition

−q1 ≤ ωϕ(t+ Tϕ(ε, h), ε, h) ≤ −q2, t ∈ I1,

is necessarily satisfied with any fixed constants

q1 > − min
b−σ0≤t≤b+1+σ0

ω0(t, h), q2 ∈
(

0,− max
b−σ0≤t≤b+1+σ0

ω0(t, h)

)

. (2.85)

Further, under the next additional assumption

δ0 < σ0 − σ̃0, (2.86)

which guarantees the inclusions

[Tϕ(ε, h) − h+ 1 + σ0, Tϕ(ε, h) − σ0] ⊂ [h+ 1 + σ̃0, h+ b− σ0/2],

formulas (2.80) and (2.84) imply the relation

ωϕ(t+ Tϕ(ε, h), ε, h) = t+O(exp(−q/ε)), t ∈ I2. (2.87)

Thus, the inequality

|ωϕ(t+ Tϕ(ε, h), ε, h) − t| ≤ exp(−1/
√
ε ), t ∈ I2,

required in definition (2.5), is satisfied automatically.

Thus, we have shown that the inclusion Π(S) ⊂ S holds under conditions (2.3), (2.4), (2.14),
(2.25), (2.33), (2.46), (2.85), and (2.86) on the parameters σ0, q1, q2, and δ0. Further, by the
inequality Tϕ(ε, h) > h, which follows from (2.81) and (2.84), the operator Π is compact. Thus,
by the Schauder principle, it has at least one fixed point ϕ = ϕ̃(t, ε, h) in the set S. As was shown
in Section 2.1, the corresponding solution ω̃(t, ε, h) = ωϕ|ϕ=ϕ̃ of Eq. (2.1) turns out to be periodic
with period

T̃ (ε, h) = Tϕ|ϕ=ϕ̃.

Moreover, it follows from (2.87) that, in the case of ϕ = ϕ̃, in all formulas for the solution
ωϕ(t, ε, h), the remainders of the form O(exp(−1/

√
ε )) (where they are encountered) can be re-

placed with O(exp(−q/ε)). Taking this fact into account, from (2.81) and (2.84) with ϕ = ϕ̃ we
derive

T̃ (ε, h) = h+ b− ε ln(c∗∗∗ + ε−1(h− t0) +O(exp(−q/ε)) as ε → 0. (2.88)

Further, consider Eq. (2.8) for the free parameter h ∈ Ω. By the asymptotic representa-
tion (2.88), we conclude that Eq. (2.8) admits the solution h = h(ε) with the asymptotics

h(ε) = b+ h0(ε) +O(exp(−q/ε)) as ε → 0, (2.89)

where h0 = h0(ε) is determined from the equation

h0 = −ε ln(c∗∗∗ + ε−1(b− t0 + h0)). (2.90)

In turn, the solution h0(ε) of Eq. (2.90) has the asymptotics

h0(ε) = ε ln ε− ε ln(b− t0) +O(ε2 ln ε−1) as ε → 0. (2.91)

The constructions made in this section, together with the asymptotic analysis in Section 2.2,
allow us to prove Theorem 1.1. To this end, consider the function

ω(t, ε) = ω̃(t, ε, h)|h=h(ε), (2.92)
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which, by construction, is periodic with period 2h(ε). Further, consider the root t = t0(ε) of the
equation ω(t, ε) = 0, which is asymptotically close to zero. The representation (2.10) and the for-
mula

ω̇ϕ = 1 +O(exp(−q/ε)),

which holds on the interval (2.9), imply that this root is simple and admits the asymptotics

t0(ε) = O(exp(−q/ε)) as ε → 0. (2.93)

Further, we assume that

u∗∗(t, λ) = exp(λω∗∗(t, λ)), ω∗∗(t, λ) = ω(t+ t0(ε), ε)|ε=1/λ , h(λ) = h(ε)|ε=1/λ (2.94)

and obtain the desired cycle (1.8) of system (1.6), (1.10).

In conclusion, note that our relations imply the asymptotic representations (1.13) for the func-
tions ω∗∗(t, λ) and h(λ). Indeed, the desired formula for h(λ) obviously follows from (2.89), (2.91),
and (2.94), and the asymptotic formula for ω∗∗(t, λ) is a consequence of relations (2.82), (2.83),
(2.89), (2.91), (2.93), and (2.94). The proof of Theorem 1.1 is complete.

3. PROOF OF THEOREM 1.2

3.1. General Plan of the Study

To analyze the stability properties of the cycle (1.8) in system (1.6) under conditions (1.10)
and (1.11), we change the variables u1 = exp(λω1), u2 = exp(λω2) and the parameter λ = 1/ε.

As a result, we obtain a system of the form

ω̇1 = exp((ω2 − ω1 − b)/ε) − exp(−b/ε) + f(exp(ω1(t− 1)/ε)),

ω̇2 = exp((ω1 − ω2 − b)/ε) − exp(−b/ε) + f(exp(ω2(t− 1)/ε)).
(3.1)

Note that in system (3.1) the self-symmetric cycle (1.8) is associated with the periodic solution

(ω1, ω2) = (ω(t, ε), ω(t − h, ε)), (3.2)

where h = h(ε) and ω(t, ε) are the functions (2.89) and (2.92). In turn, the stability of the cycle (3.2)
is determined by the multipliers of the linear variational system

ġ1 = a(t, ε)(g2 − g1) + b(t, ε)g1(t− 1),

ġ2 = a(t− h, ε)(g1 − g2) + b(t− h, ε)g2(t− 1)
(3.3)

with the coefficients

a(t, ε) =
1

ε
exp

(
ω(t− h, ε) − ω(t, ε)− b

ε

)

,

b(t, ε) =
1

ε
f ′
(

exp

(
ω(t− 1, ε)

ε

))

exp

(
ω(t− 1, ε)

ε

)

.

(3.4)

Let us explain the meaning of the term “multiplier” as applied to system (3.3). In this con-
nection, consider the Banach space E of vector functions g0(t) = (g1,0(t), g2,0(t)) continuous with
respect to t on the interval [−1, 0] with the norm

‖g0‖E = max
j=1,2

max
−1≤t≤0

|gj,0(t)|. (3.5)

Further, the monodromy operator system (3.3) is a bounded linear operator V (ε) from E to E
acting on an arbitrary function g0(t) ∈ E by the rule

V (ε)g0 = g(t+ 2h, ε), −1 ≤ t ≤ 0, (3.6)
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where g(t, ε) = (g1(t, ε), g2(t, ε)) is a solution of system (3.3) on the interval 0 ≤ t ≤ 2h with the
initial function g0(t), t ∈ [−1, 0]. Note that, by the obvious inequality 2h > 1, the operator (3.6) is
compact. By analogy with the case of ordinary differential equations, the multipliers of system (3.3)
are defined to be the eigenvalues of the operator V (ε). We number them in descending order of
absolute values and denote by νs(ε) ∈ C, s ∈ N.

Note that system (3.1) is a special case of a ring-like system of unidirectionally coupled equations,
and the cycle (3.2) is a periodic mode of traveling wave type. For such periodic solutions, a special
method for analyzing the stability properties was developed in [5–7]. The essence of this method
is described below.

Along with system (3.3), consider the auxiliary scalar linear equation

ġ = a(t, ε)(κg(t − h)− g) + b(t, ε)g(t − 1), (3.7)

where h is the phase shift in (3.2), g(t) is a complex-valued function, and κ ∈ C is an arbitrary
parameter. Just as in the case of system (3.3), let νs(κ, ε), s ∈ N, denote the multipliers of
this equation numbered in descending order of absolute values. Note that the multipliers for the
scalar equation (3.7) are the eigenvalues of the monodromy operator W (κ, ε) : C(G) → C(G),
similar to (3.6), where G = [1 + σ0, h+ 1 + σ0] and C(G) is the space of complex-valued functions
continuous in t ∈ G. The norm on the space C(G) is defined as usual, i.e., by a relation similar
to (3.5). The operator W (κ, ε) satisfies the formulas

W (κ, ε)g0 = g(t+ 2h,κ, ε), t ∈ G, (3.8)

where g0(t) is an arbitrary element of the space C(G) and g(t,κ, ε) is the solution of Eq. (3.7) with
the initial function g0(t), t ∈ G.

Consider the problem of the relationship between the multipliers of system (3.3) and of Eq. (3.7).
We have the following assertion (see [5–7]).

Lemma 3.1. Each multiplier ν �= 0 of system (3.3) admits the representation

ν = κ
2,

where κ is a root of one of the equations

νs(κ, ε) = κ
2, s ∈ N. (3.9)

Conversely, if for some s = s0 Eq. (3.9) has a nonzero root κ = κ0, then the original system (3.3)
has the multiplier ν = κ

2
0.

In the next two sections, we asymptotically calculate the multipliers νs(κ, ε) and analyze
Eqs. (3.9). In this way, we obtain the relation

ν1(ε) ≡ 1, |ν2(ε)| ≤ Mε2, sup
s≥3

|νs(ε)| ≤ exp(−q/ε), M = const > 0, (3.10)

which means that the cycle (1.8) is exponentially orbitally stable (in the metric of the phase
space E).

3.2. Analysis of the Auxiliary Linear Equation

Consider the set of initial functions

B = {g0(t) ∈ C(G) : g0(h+ 1 + σ0) = 0, ‖g0‖ ≤ 2}, (3.11)

where ‖ · ‖ is the norm on the space C(G). By g1(t, g0,κ, ε) we denote the solution of Eq. (3.7)
with an arbitrary initial condition g0(t) in the set (3.11); by g2(t,κ, ε), the solution of this equa-
tion with the initial function g2 ≡ 1, t ∈ G. It follows from Eq. (3.7) that, on the interval
t ∈ [h+ 1 + σ0, 3h+ 1 + σ0] of length 2h, the dependence of the functions g1 and g2 on κ is
quadratic; i.e.,

g1(t, g0,κ, ε) = g1,1(t, g0, ε) + κ g1,2(t, g0, ε) + κ
2g1,3(t, g0, ε),

g2(t,κ, ε) = g2,1(t, ε) + κ g2,2(t, ε) + κ
2g2,3(t, ε).

(3.12)

Moreover, g1,3(t, g0, ε) ≡ g2,3(t, ε) ≡ 0 for t ∈ [h+ 1 + σ0, 2h+ 1 + σ0].
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For the asymptotic analysis of multipliers of Eq. (3.7), we need the following assertion.

Lemma 3.2. There exists a sufficiently small ε0 > 0 such that for all 0 < ε ≤ ε0 κ ∈ Λ
def
=

{κ ∈ C : |κ| ≤ 1}, g0 ∈ B, on the interval h+ 1 + σ0 ≤ t ≤ 3h+ 1 + σ0, the estimates

2∑

k=0

∣
∣
∣
∣
∂kg1
∂κk

(t, g0,κ, ε)

∣
∣
∣
∣ ≤ exp

(

− q

ε

)

,

2∑

k=0

∣
∣
∣
∣
∂kg2
∂κk

(t,κ, ε)

∣
∣
∣
∣ ≤ M (3.13)

hold with constants q,M > 0 independent of t, ε, κ, and g0. Moreover, as ε → 0, the asymptotic
representations

∂kg2
∂κk

(3h+1+σ0,κ, ε)=

[

1+(κ−1)

(

1− ε

h− t0 + εc∗∗∗

)](k)

+O

(

exp

(

− q

ε

))

, k=0, 1, 2, (3.14)

hold uniformly in κ ∈ Λ. (Here and below, [·](k) denotes the kth derivative with respect to κ.)

Proof. By relations (3.4) and well-known asymptotic properties of the function ω(t, ε), we have
the inequalities

max
h+1+σ0≤t≤2h+1+σ0

|a(t, ε)| ≤ exp(−q/ε), max
h+1+σ0≤t≤2h+1−σ0

|b(t, ε)| ≤ exp(−q/ε), (3.15)

where q = const > 0. Combining the estimates (3.15) with g0(h + 1 + σ0) = 0 and integrating
Eq. (3.7) with an arbitrary initial condition g0 ∈ B by the step method (i.e., successively considering
time intervals of length at most unity), we obtain

2∑

k=0

∣
∣
∣
∣
∂kg1
∂κk

(t, g0,κ, ε)

∣
∣
∣
∣ ≤ exp(−q/ε), t ∈ [h+ 1 + σ0, 2h+ 1− σ0]. (3.16)

Further, for 2h+ 1− σ0 ≤ t ≤ 2h+ 1 + σ0, by (3.4) and the estimate (3.16), we have

a(t, ε) = O(exp(−q/ε)), |b(t, ε)| = O(1/ε),

2∑

k=0

∣
∣
∣
∣
∂kg1
∂κk

(t− 1, g0,κ, ε)

∣
∣
∣
∣ = O(exp(−q/ε)).

In turn, it follows from this and Eq. (3.7) that the first estimate in (3.13) also holds on the interval
h+ 1 + σ0 ≤ t ≤ 2h+ 1 + σ0.

On the remaining interval 2h + 1 + σ0 ≤ t ≤ 3h + 1 + σ0, inequality (3.16) is proved by
induction. To this end, we divide the interval [2h + 1 + σ0, 3h + 1 + σ0] under study into the
intervals [2h+ σ0 + n, 2h+ σ0 + n+ 1], n = 1, . . . , n0 − 1, and [2h + σ0 + n0, 3h+ 1 + σ0], where

n0 =

⎧
⎨

⎩

h for integer h,

�h� + 1 otherwise,

and �·� is the integer part of a number.

At the first stage, i.e., for 2h+ 1 + σ0 ≤ t ≤ 2h+ 2 + σ0, the solution g1(t, g0,κ, ε) satisfies the
explicit formula

g1(t, g0,κ, ε) = g1(2h+ 1 + σ0, g0,κ, ε) exp

(

−
t∫

2h+1+σ0

a(σ, ε) dσ

)

+

t∫

2h+1+σ0

exp

(

−
t∫

s

a(σ, ε) dσ

)

[κa(s, ε)g1(s− h, g0,κ, ε) + b(s, ε)g1(s− 1, g0,κ, ε)] ds. (3.17)
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In this formula, we take into account inequality (3.16) for t ≤ 2h+ 1 + σ0 and the properties

exp

(

−
t∫

s

a(σ, ε) dσ

)

≤ 1, a(t, ε) + |b(t, ε)| = O(1/ε), 2h+ 1 + σ0 ≤ t ≤ 3h+ 1 + σ0, (3.18)

which follow from (3.4), and see that the estimates (3.16) hold for 2h+ 1 + σ0 ≤ t ≤ 2h+ 2 + σ0.

The reasoning at the subsequent stages is quite similar. Namely, at the nth stage, i.e., for
t ∈ [2h + σ0 + n, 2h + σ0 + n + 1], we first write a formula of the form (3.17) for the initial
time t = 2h + σ0 + n and then use the already known estimate (3.16) for t ≤ 2h + σ0 + n and
relations (3.18). As a result, inequality (3.16) is generalized to a stage ahead, and after n0 stages,
it is established on the whole interval 2h + 1 + σ0 ≤ t ≤ 3h + 1 + σ0. Thus, the first estimate
in (3.13) has been proved.

The second inequality in (3.13) and formulas (3.14) are proved simultaneously by asymptotic
integration of Eq. (3.7) with the initial condition g ≡ 1 for t ∈ G. The corresponding analysis
is divided into nine stages similar to the already considered in the case of Eq. (2.1). Therefore,
omitting the technical details, we only present the final results here.

At the first stage, consider the values t ∈ [h + 1 + σ0, 2h + 1 − σ0]. In this case, as was noted
above (see (3.15)),

a(t, ε) + |b(t, ε)| = O(exp(−q/ε)) as ε → 0, g2(t− h,κ, ε) ≡ 1.

From this and Eq. (3.7), using the step method, we obtain the asymptotic representations

g2(t,κ, ε) = 1 +O(exp(−q/ε)),
∂g2
∂κ

(t,κ, ε) = O(exp(−q/ε)) as ε → 0,

∂2g2
∂κ2

(t,κ, ε) ≡ 0 (3.19)

uniform in t and κ.

At the second stage, consider the interval t ∈ [2h + 1 − σ0, 2h + 1 + σ0] on which, as ε → 0,
we have

a(t, ε) = O(exp(−q/ε)), ω(t− 1, ε) = ετ |τ=(t−2h−1)/ε +O(exp(−q/ε)).

From this, with regard to the inequality

|u1f
′(u1)− u2f

′(u2)| ≤
M

1 + min(u2
1, u

2
2)
|u1 − u2|, M = sup

u≥0

(1 + u2)|f ′(u) + uf ′′(u)|, u1, u2 ≥ 0,

which follows from properties (1.2), we conclude that

b(t, ε) = ε−1f ′(exp τ) exp τ |τ=(t−2h−1)/ε +O(exp(−q/ε)) as ε → 0.

Moreover, here we still have g2(t − h,κ, ε) ≡ 1, and for g2(t − 1,κ, ε) we have formulas of the
form (3.19). It follows from the above representations that, as ε → 0, the asymptotic relations

g2(t,κ, ε) = v′0(τ)|τ=(t−2h−1)/ε +O(exp(−q/ε)),

∂g2
∂κ

(t,κ, ε) = O(exp(−q/ε)),
∂2g2
∂κ2

(t,κ, ε) ≡ 0
(3.20)

hold uniformly in t ∈ [2h+1−σ0, 2h+1+σ0] and κ ∈ Λ, where v0(τ) is the function in (2.17) and
the prime stands for differentiation with respect to τ .

At the third stage, consider the interval 2h+1+σ0 ≤ t ≤ t1(h)+2h−σ0. For the t listed above,
we have

a(t, ε) = O(exp(−q/ε)), |b(t, ε)| = O(exp(−q/ε)) as ε → 0.
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From this and Eq. (3.7), we conclude that, as ε → 0, the asymptotic representations

g2(t,κ, ε) = −a+O(exp(−q/ε)),
∂kg2
∂κk

(t,κ, ε) = O(exp(−q/ε)), k = 1, 2, (3.21)

hold uniformly in t ∈ [2h+ 1 + σ0, t1(h) + 2h− σ0] and κ ∈ Λ.

At the fourth stage, i.e., for t1(h) + 2h − σ0 ≤ t ≤ t1(h) + 2h + σ0, by (3.19), the function
g2(t− h,κ, ε) satisfies the relations

g2(t− h,κ, ε) = 1 +O(exp(−q/ε)),
∂kg2
∂κk

(t− h,κ, ε) = O(exp(−q/ε)), k = 1, 2, (3.22)

as ε → 0, and the functions a(t, ε) and b(t, ε) satisfy the relations

a(t, ε) = ε−1 exp(τ − w0(τ))|τ=(t−t1(h)−2h)/ε +O(exp(−q/ε)), |b(t, ε)| = O(exp(−q/ε)),

where w0(τ) is the function (2.39). Substituting these asymptotic relations into Eq. (3.7) and then
integrating the resulting equation, we see that, as ε → 0, the asymptotic representations

∂kg2
∂κk

(t,κ, ε) =

[

w′
0(τ) + (κ − 1)

exp(a+ 1)τ

exp(a+ 1)τ + (a+ 1) exp c0

](k)∣∣
∣
∣
τ=(t−t1(h)−2h)/ε

+O(exp(−q/ε)), k = 0, 1, 2, (3.23)

hold uniformly in t ∈ [t1(h) + 2h− σ0, t1(h) + 2h+ σ0] and κ ∈ Λ.

At the fifth stage, consider the interval t1(h) + 2h + σ0 ≤ t ≤ 2h + t0 + 1 − σ0. In this case,
we have the asymptotic relations (3.22) and the formulas

a(t, ε) = ε−1(a+ 1) +O(exp(−q/ε)), |b(t, ε)| = O(exp(−q/ε)) as ε → 0,

which, in turn, imply that, as ε → 0, the asymptotic representations

∂kg2
∂κk

(t,κ, ε) = [κ](k) +O(exp(−q/ε)), k = 0, 1, 2, (3.24)

hold uniformly in t and κ.

At the sixth stage, consider the interval 2h+ t0 + 1− σ0 ≤ t ≤ 2h+ t0 + 1 + σ0, on which

a(t, ε) = ε−1 exp(τ − z0(τ))|τ=(t−t0−1−2h)/ε +O(exp(−q/ε)),

b(t, ε) = ε−1f ′(exp(−aτ + c0)) exp(−aτ + c0)|τ=(t−t0−1−2h)/ε +O(exp(−q/ε)),

where z0(τ) is the function in (2.50). Moreover, for the function g2(t− h,κ, ε), by the representa-
tions (3.19), (3.21), formulas (3.22) hold as ε → 0, and for the function g2(t− 1,κ, ε), we have

g2(t− 1,κ, ε) = −a+O(exp(−q/ε)),
∂kg2
∂κk

(t− 1,κ, ε) = O(exp(−q/ε)), k = 1, 2.

With regard to the above relations, at the sixth stage, we obtain the representations

∂kg2
∂κk

(t,κ, ε) = [z′0(τ) + κ − 1](k)|τ=(t−t0−1−2h)/ε +O(exp(−q/ε)) as ε → 0, k = 0, 1, 2, (3.25)

which hold uniformly in t and κ.

At the seventh stage, consider the interval 2h+ t0+1+σ0 ≤ t ≤ 3h+1−σ0, on which, as ε → 0,
the asymptotic relations

a(t, ε) =
1

t− t0 − 1− 2h+ εc∗
+O(exp(−q/ε)), |b(t, ε)| = O(exp(−q/ε))
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hold, and for the function g2(t − h,κ, ε) we still have formulas (3.22). By this, we conclude that,
as ε → 0, the representations

∂kg2
∂κk

(t,κ, ε) =

[

κ +
1

c∗ + (t− t0 − 1− 2h)/ε

](k)

+O(exp(−q/ε)), k = 0, 1, 2, (3.26)

hold uniformly in t and κ.

At the eighth stage, consider the interval 3h+ 1− σ0 ≤ t ≤ 3h+ 1 + σ̃0. In this case,

a(t, ε)=ε−1 exp(v0(τ)− γ(τ, ε))|τ=(t−3h−1)/ε +O(exp(−q/ε)), |b(t, ε)|=O(exp(−q/ε)) as ε→0,

where γ(τ, ε) is the function (2.76), and for the function g2(t − h,κ, ε), as ε → 0, the asymptotic
representations

g2(t− h,κ, ε) = v′0(τ)|τ=(t−3h−1)/ε +O(exp(−q/ε)),
∂kg2
∂κk

(t− h,κ, ε) = O(exp(−q/ε)), k = 1, 2,

hold by relations (3.20). Taking into account the above relations in Eq. (3.7), we see that

∂kg2
∂κk

(t,κ, ε) =

[

κγ′
τ(τ, ε) − (κ − 1)

(

c∗∗ +
h− t0

ε
+

τ∫

0

exp(v0(s)− s) ds

)−1](k)∣∣
∣
∣
τ=(t−3h−1)/ε

+O(exp(−q/ε)) as ε → 0, k = 0, 1, 2. (3.27)

At the ninth, last stage, consider the time interval 3h + 1 + σ̃0 ≤ t ≤ 3h + 1 + σ0. It is easy to
see that, by the relations

a(t, ε) = O(exp(−q/ε)), |b(t, ε)| = O(exp(−q/ε)) as ε → 0,

in this case, as ε → 0, the asymptotic relations

∂kg2
∂κk

(t,κ, ε) =

[

1 + (κ − 1)

(

1− ε

h− t0 + εc∗∗∗

)](k)

+O

(

exp

(

− q

ε

))

, k = 0, 1, 2, (3.28)

hold uniformly in t and κ.

Combining the above-obtained formulas (3.19)–(3.21), (3.23)–(3.28), we conclude that proper-
ties (3.13), (3.14) of the function g2 are indeed satisfied. The proof of Lemma 3.2 is complete.

3.3. Completion of the Proof of Theorem 1.2

First, we localize the values of the parameter κ for which Eqs. (3.9) must be considered. In this
connection, we arbitrarily fix the initial condition g0(t) ∈ C(G), ‖g0‖ ≤ 1, and note that the
operator (3.8) acts on the function g0 by the rule

W (κ, ε)g0 = g1(t+ 2h, g̃0,κ, ε) + g0(h+ 1 + σ0)g2(t+ 2h,κ, ε), t ∈ G, (3.29)

where g̃0(t) = g0(t) − g0(h + 1 + σ0) ∈ B (see (3.11)) and g1 and g2 are the solutions of Eq. (3.7)
studied above. In turn, relations (3.12) and (3.29) imply the representation

W (κ, ε) = W0(ε) + κW1(ε) + κ
2W2(ε), (3.30)

where the Wj(ε) : C(G) → C(G), j = 0, 1, 2, are bounded linear operators. Moreover, the above-
established asymptotic properties of the functions g1 and g2 ensure the estimates

‖Wj(ε)‖C(G)→C(G) ≤ Mj+1, j = 0, 1, ‖W2(ε)‖C(G)→C(G) ≤ exp(−q/ε), (3.31)

where M1,M2 = const > 0.
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Further, we show that, for a fixed sufficiently large R > 0, Eqs. (3.9) do not have roots in the set
{κ ∈ C : |κ| > R}. Indeed, the representation (3.30) and the estimates (3.31) imply the inequality

sup
s≥1

|νs(κ, ε)| ≤ ‖W0(ε)‖C(G)→C(G) + |κ|‖W1(ε)‖C(G)→C(G) + |κ|2‖W2(ε)‖C(G)→C(G)

≤ M1 + |κ|M2 + |κ|2 exp(−q/ε).

Since, for sufficiently large fixed constant R and for all sufficiently small ε, we have the estimate

M1 +M2R+R2 exp(−q/ε) < R2, (3.32)

we see that sups≥1 |νs(κ, ε)| < |κ|2 necessarily for all κ ∈ C, |κ| > R. Thus, Eqs. (3.9) indeed do
not have roots κ satisfying the inequality |κ| > R.

Now we directly asymptotically calculate the spectrum of the operator (3.8). We have the
following assertion.

Lemma 3.3. For any R > 0, there exist ε0 = ε0(R) > 0, q = q(R) > 0, and δ = δ(R) > 0 such

that the following inequality holds for all 0 < ε ≤ ε0, κ ∈ Λδ,R
def
= {κ ∈ C : exp(−δ/ε) ≤ |κ| ≤ R} :

sup
s≥2

|νs(κ, ε)| ≤ exp(−q/ε). (3.33)

The multiplier ν1(κ, ε) is simple, analytically depends on κ ∈ Λδ,R, and admits the asymptotic
representations

∂kν1
∂κk

(κ, ε) =

[

1 + (κ − 1)

(

1− ε

h− t0 + εc∗∗∗

)](k)

+O(exp(−q/ε)), k = 0, 1, (3.34)

uniform in κ as ε → 0.

Proof. We arbitrarily fix R > 0 and fix that the parameter κ in Eq. (3.7) belongs to the set
Λδ,R for some δ > 0 (we choose δ somewhat later). It follows from formula (3.29) that W (κ, ε) =
U1(κ, ε) + U2(κ, ε), where the operators U1 and U2 are given by the relations

U1(κ, ε)g0 = g1(t+2h, g̃0,κ, ε), U2(κ, ε)g0 = g0(h+1+σ0)g2(t+2h,κ, ε), t ∈ G, (3.35)

and, by inequalities (3.13), admit the estimates

‖U1(κ, ε)‖C(G)→C(G) +

∥
∥
∥
∥
∂U1

∂κ
(κ, ε)

∥
∥
∥
∥
C(G)→C(G)

≤ exp(−q/ε),

‖U2(κ, ε)‖C(G)→C(G) +

∥
∥
∥
∥
∂U2

∂κ
(κ, ε)

∥
∥
∥
∥
C(G)→C(G)

≤ M, M = const > 0.

(3.36)

First, we study the spectral properties of the operator U2(κ, ε). By the second relation in (3.35),
it remains finite-dimensional, and its spectrum consists of the following two points, the simple
eigenvalue ν = ν∗(κ, ε), where ν∗(κ, ε) = g2(3h+ 1 + σ0,κ, ε), and the eigenvalue ν = 0 of infinite
multiplicity. For the eigenvalue ν∗(κ, ε), the representations (3.14) imply the asymptotic relations

∂kν∗
∂κk

(κ, ε) =

[

1 + (κ − 1)

(

1− ε

h− t0 + εc∗∗∗

)](k)

+O(exp(−q/ε)), k = 0, 1, (3.37)

uniform in κ ∈ Λδ,R.

Now consider the initial operator W (κ, ε) and note that, by the relations

W = U1 + U2, (νI−W )−1 = (I− (νI− U2)
−1U1)

−1(νI− U2)
−1,
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where I is the identity operator, any value ν ∈ C such that

‖(νI− U2(κ, ε))
−1U1(κ, ε)‖C(G)→C(G) < 1 (3.38)

belongs to the resolvent set of this operator. Recall that the operator U1 admits the estimate
in (3.36). But for the case of the operator (νI− U2)

−1, taking into account its implicit form

(νI− U2)
−1g0 =

g0(t)

ν
+

g0(h+ 1 + σ0)

ν(ν − ν∗(κ, ε))
g2(t+ 2h,κ, ε), t ∈ G,

and the second estimate in (3.13), we obtain the inequality

‖(νI− U2(κ, ε))
−1‖C(G)→C(G) ≤

M(1 + |ν|)
|ν||ν − ν∗(κ, ε)|

, ν ∈ C, ν �= 0, ν∗(κ, ε), (3.39)

where M = const > 0.

At the final stage of the proof of Lemma 3.3, we combine the estimates (3.36) and (3.39) with
the asymptotic representations (3.37). As a result, we see that condition (3.38) is satisfied for any
κ ∈ Λδ,R and ν ∈ C \ {O1

⋃
O2}, where

O1 = {ν : |ν| < exp(−δ1/ε)}, O2 = {ν : |ν − ν∗(κ, ε)| < exp(−δ2/ε)}, (3.40)

and the constants δ, δ1, δ2 > 0 are sufficiently small. Thus, the spectrum of the operator (3.29)
necessarily belongs to the balls (3.40), which obviously implies inequality (3.33).

To justify relations (3.34), note that, under the perturbation of the operator U2(κ, ε) with
respect to κ by the additional term U1(κ, ε) of order O(exp(−q/ε)), the eigenvalue ν = ν∗(κ, ε)
turns into the simple eigenvalue ν = ν1(κ, ε) analytically depending on κ ∈ Λδ,R, and

ν1(κ, ε)− ν∗(κ, ε) = O(exp(−q/ε)) as ε → 0 (3.41)

(in the C1-metric with respect to the variable κ). Then we combine relations (3.37) and (3.41)
to conclude that, for κ ∈ Λδ,R, the multiplier ν1(κ, ε) has all the desired properties. The proof of
Lemma 3.3 is complete.

At the final stage of the proof of Theorem 1.2, we analyze Eqs. (3.9). We assume that the con-
stant R > 0 satisfies condition (3.32). Then, when considering these equations, we can necessarily
restrict ourselves to the values κ ∈ C, |κ| ≤ R. Further, we choose the constant δ = δ(R) > 0
by Lemma 3.3 and consider the set Λδ,R. By the asymptotic relations (2.89), (2.91), and (3.34),
Eq. (3.9) has two simple roots in the set Λδ,R for s = 1,

κ = 1, κ = κ0(ε), κ0(ε) = − ε

b− t0
+O(ε2 ln ε−1) as ε → 0. (3.42)

We point out that the existence of the root κ = 1 is guaranteed by the identity ν1(1, ε) ≡ 1.
This identity follows from the fact that Eq. (3.7) has the unit multiplier for κ = 1. (In this case,
Eq. (3.7) is the linearization of Eq. (2.1) on the cycle (2.92).)

By Lemma 3.1, the roots (3.42) are associated with the multipliers ν1(ε) ≡ 1 and ν2(ε) = κ
2
0(ε)

of system (3.3). For the remaining multipliers of this system, the desired exponential estimate
in (3.10) holds by inequality (3.33). The proof of Theorem 1.2 is complete.

CONCLUSION

Thus, we have found the range of the parameter d for which the bilocal model (1.6) has an ex-
ponentially orbitally stable self-symmetric cycle. Then it is natural to pose the question of what
occurs outside this range.

First, we assume that

d = λ exp(−bλ), b = const > 1 +
1

2

(

a+
1

a

)

, a = const > 1, λ � 1. (3.43)

DIFFERENTIAL EQUATIONS Vol. 54 No. 10 2018



STABLE RELAXATION CYCLE IN A BILOCAL NEURON MODEL 1309

Then the function (1.5) satisfies the inequality

ω∗(t− T∗/2)− ω∗(t)− b < 0, 0 ≤ t ≤ T∗. (3.44)

Further, using relations (3.43) and (3.44) and analyzing the auxiliary equation (2.1) for ε = 1/λ,
we conclude that, for some h = h(ε), it admits a 2h(ε)-periodic solution ω = ω(t, ε), where

h(ε) = T∗/2 +O(exp(−q/ε)), max
0≤t≤2h(ε)

|ω(t, ε) − ω∗(t)| = O(ε) as ε → 0. (3.45)

Under conditions (3.43), the original system (1.6) has a self-symmetric cycle determined by rela-
tions (1.8), (2.94), and (3.45). Based on the methods developed above, we can also readily show
that this cycle is quasi-stable; i.e., its multipliers νs(ε), s ∈ N, satisfy the conditions

ν1(ε) ≡ 1, ν2(ε) = −1 +O(exp(−q/ε)), sup
s≥3

|νs(ε)| ≤ exp(−q/ε).

As numerical analysis shows, for the parameter values

d = λ exp(−bλ), b = const ∈ (0, 1 + 1/a), a = const > 1, λ � 1, (3.46)

system (1.6) admits two stable cycles which pass into each other under the permutation of the
coordinates u1 and u2. In the case of d ∼ 1 and λ � 1, the existence of such cycles can be proved
analytically (see [8]), and in the case of (3.46), this problem is open yet.
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