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Abstract—We study ω-periodic solutions of a functional-differential equation of point type
that is ω-periodic in the independent variable. In terms of the right-hand side of the equation,
we state easy-to-verify sufficient conditions for the existence and uniqueness of an ω-periodic
solution and describe an iteration process for constructing the solution. In contrast to the
previously considered scalar linearization, we use a more complicated matrix linearization, which
permits extending the class of equations for which one can establish the existence and uniqueness
of an ω-periodic solution.
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1. INTRODUCTION. STATEMENT OF THE PROBLEM

The problem on the existence of ω-periodic solutions of differential equations ω-periodic in the
independent variable is one of the classical problems of the theory of ordinary differential equations.
This problem has been studied by various methods such as the Poincaré–Andronov method of point
mappings [2, p. 328; 3, p. 66], the topological method, the method of directing functions [4, p. 72;
5, p. 172], variational methods, and so on.

The approach proposed in the present paper is in fact most close to the method of integral equa-
tions presented in detail in the monographs [6, p. 146] and [7, p. 26] and several related papers, where
periodic and bounded solutions of differential equations were studied. In these papers, the study
of the problem on periodic solutions was based on the construction of the operator Green function
used then to construct such solutions themselves. The construction of the operator Green func-
tion and the verification of the conditions that must be satisfied by this function are rather labo-
rious. To solve any specific problem, a large amount of nontrivial preliminary work is required.
The question as to whether the constructed solution is classical should be studied separately.

The approach developed in this paper, which was considered under more restricting assumptions
in [1], permits avoiding these difficulties. The conditions ensuring the existence and uniqueness
of a classical ω-periodic solution are easily verifiable and can be stated in terms of numerical
characteristics of the right-hand side of the differential equation (such as the Lipschitz constant
for the residual nonlinear perturbation, the value of deviations in the case of functional-differential
equation of point type, and the coefficients of the linearized equation).

One specific characteristic of the approach considered here is the choice of an appropriate lin-
earization of the right-hand side of the equation. As a rule, the most widely used method for
isolating the linear part is the Taylor linearization. But there exist examples showing that the
Taylor linearization does not always permit establishing the existence of a periodic solution, even
though this can be done by other linearization methods. Varying the linear part, one can choose
a linearization for which the nonresonance conditions are satisfied, and this permits correctly deter-
mining the periodic solution operator and solving the problem of minimizing the Lipschitz constant
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for the residual nonlinear perturbation if the nonresonance condition is satisfied. The nonresonance
condition is “typical” and can be attained by using only the scalar linearization under which the
linearized equation has the simplest form, but when the problem of the Lipschitz constant mini-
mization for the residual nonlinear perturbation is further solved in the class of scalar linearizations,
to obtain the desired value of this constant, it is necessary to impose rather rigid restrictions on
the right-hand side of the equation, because this class of linearizations is narrower. That is why
one needs to use the matrix linearization, studied in the present paper, of the original functional-
differential equation.

Consider the functional-differential equation of point type

ẋ(t) = g(t, x(t + τ1), . . . , x(t+ τs)), t ∈ R, (1)

where the function g(·) belongs to the space C(r)(R × R
n×s;Rn), r ∈ N0 ≡ N � {0}. A solution of

Eq. (1) is an absolutely continuous function x(·) satisfying this equation. Since the right-hand side
g(·) of Eq. (1) belongs to the space C(r)(R×R

n×s;Rn), r ∈ N0, it follows that each of its solutions
x(·) belongs to the space C(r+1)(R;Rn). In the paper, for Eq. (1) with right-hand side 2π-periodic in
time t, sufficient conditions for the existence and uniqueness of a 2π-periodic solution are obtained,
the iteration process of construction of such a solution is described, and the rate of convergence
of the process is given. Obviously, the equation of any other period ω > 0 can be reduced by the
change t = (2π)−1ωτ of the independent variable to an equation of period 2π.

Since the goal of this study is to investigate 2π-periodic solutions, we can assume without
loss of generality that all deviations τ1, . . . , τs belong to the half-interval [0, 2π). Indeed, if the
deviations are such that τj ∈ [2πpj , 2π(pj + 1)), j ∈ {1, . . . , s}, pj ∈ Z, then, replacing them
with the corresponding deviations τ j = τj − 2πpj belonging to the half-interval [0, 2π), we obtain
an equation that obviously has the same 2π-periodic solutions as the original one.

Moreover, in what follows we assume that the numbers τ1, . . . , τs are pairwise commensurable;
i.e., for any τi and τj, i, j ∈ {1, . . . , s}, there exist nji, nij ∈ N0 such that nji + nij �= 0 and
njiτi = nijτj .

We write Eq. (1) in the form

ẋ(t) =

s∑

j=1

Ajx(t+ τj) + f(t, x(t+ τ1), . . . , x(t+ τs)), t ∈ R, (2)

where Aj is the real n× n matrix, τj ∈ [0, 2π), j ∈ {1, . . . , s}, and

f(t, x(t+ τ1), . . . , x(t+ τs)) = g(t, x(t+ τ1), . . . , x(t+ τs))−
s∑

j=1

Ajx(t+ τj). (3)

In this paper, which continues and develops the study in [1], we obtain sufficient conditions
on the matrices Aj , the deviations τj, j ∈ {1, . . . , s}, and the vector function f(·), for Eq. (1) to
have a unique 2π-periodic solution. The main distinction from [1] is that here we consider a more
general case of separation of the linearized part; namely, the role of coefficients of the linearized
part in Eq. (2) is played by the matrices Aj , while the case of separation of a scalar linear part was
considered in [1], where Eq. (2) has the form

ẋ(t) =

s∑

j=1

ajx(t+ τj) + f(t, x(t+ τ1), . . . , x(t+ τs)), t ∈ R,

with aj ∈ R. Thus, the results obtained in this paper extend the scope of possible applications of
the proposed method.

Functional-differential equations of the form (1) were studied in the monograph [8], where,
in particular, conditions [8, p. 45] on Eq. (1) were obtained ensuring the existence and uniqueness
of a solution of the Cauchy problem

x(t) = x, t ∈ R, x ∈ R
n, (4)
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in a special class of functions. The conditions that must be satisfied by the function g(·) are the
following :

I. The inclusion g(·) ∈ C(r)(R× R
n×s;Rn) holds for some r ∈ N0.

II. For all t, xj , and xj , j = 1, . . . , s, the inequalities

‖g(t, x1, . . . , xs)‖Rn ≤ M0(t) +M1

s∑

j=1

‖xj‖Rn , M0(·) ∈ C(0)(R;R),

‖g(t, x1, . . . , xs)− g(t, x1, . . . , xs)‖Rn ≤ Lg

s∑

j=1

‖xj − xj‖Rn (5)

are satisfied. Note that the second inequality is the Lipschitz condition.

III. There exists a μ∗ ∈ R+ such that the expression

sup
i∈Z

M0(t+ i)(μ∗)|i|

is finite for each t ∈ R and is a continuous function of the argument t.

IV. For the number μ∗ in condition III, the family of functions

g̃i,z1,...,zs(t) = g(t+ i, z1, . . . , zs)(μ
∗)|i|, i ∈ Z, (z1, . . . , zs) ∈ R

n×s,

is equicontinuous on any finite interval.

In the above conditions I–IV and everywhere below, by ‖ · ‖Rn we denote the Euclidean norm
on the space R

n.

Obviously, if the function g(·) is periodic, then condition III is automatically satisfied for
all μ∗ ∈ (0, 1].

We define the space

Ln
μC

(r)(R) =
{
x(·) : x(·) ∈ C(r)(R;Rn), max

0≤l≤r
sup
t∈R

‖x(l)(t)e−δ|t|‖Rn < +∞
}
,

where r ∈ N0 and μ = e−δ.

Theorem 1 [8, p. 45]. If a function g(·) satisfies conditions I–IV and the inequality

Lg

s∑

j=1

μ−|τj| < lnμ−1 (6)

holds for some μ ∈ (0, μ∗) ∩ (0, 1), then for any x ∈ R
n there exits a solution x(·) ∈ Ln

μC
(k)(R) of

the Cauchy problem (1), (4). This solution is unique and belongs to the class Ln
μC

(r+1)(R).

If the function g(·) ∈ C(r)(R×R
n×s;Rn), r ∈ N0, on the right-hand side in Eq. (1) is ω-periodic,

then Theorem 1 can be restated as follows with regard to the fact that condition III is satisfied in
this case.

Corollary 1. Assume that the function g(·) ∈ C(r)(R × R
n×s;Rn), r ∈ N0, in Eq. (1) is

ω-periodic in time. If the function g(·) satisfies conditions II and IV and inequality (6) holds for
some μ ∈ (0, μ∗)∩(0, 1), then for any x ∈ R

n there exists a solution x(·) ∈ Ln
μC

(r)(R) of the Cauchy

problem (1), (4). This solution is unique and belongs to the class Ln
μC

(r+1)(R).
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We define the function space

Vμ∗(R× R
n×s;Rn) = {f(·) : the function f(·) satisfies conditions I–III}.

For all functions in Vμ∗(R × R
n×s;Rn), the parameter μ∗ ∈ R+ coincides with the corresponding

constant in condition III. In the space Vμ∗(R× R
n×s;Rn), one can introduce the Lipschitz norm

‖g(·)‖Lip = sup
t∈R

‖f(t, 0, . . . , 0)e−δ∗|t|‖Rn

+ sup
(t,z1,...,zs,z1,...,zs)∈R×Rn×s×Rn×s

‖g(t, z1, . . . , zs)− g(t, z1, . . . , zs)‖Rn∑s

j=1 ‖zj − zj‖Rn

,

where μ∗ = e−δ∗ . Obviously, the least value of the constant Lg in the Lipschitz condition (condi-
tion II) for the function g(·) ∈ Vμ∗(R × R

n×s;Rn) coincides with the value of the second term in
the definition of the norm ‖g(·)‖Lip. In what follows, when speaking about the Lipschitz condition,
we understand the constant Lg as this least value. The right-hand side of the functional-differential
equation of point type will be viewed as an element of the Banach space Vμ∗(R× R

n×s;Rn).

To indicate that the solution of the Cauchy problem (1), (4) depends on the initial value x and on
the right-hand side g(·) itself, we denote this solution by x(t; t, x, g). The continuous dependence of
the solution x(·) on the variables t, x, g is understood as its continuous dependence on the variable
(t, x, g) ∈ R

1 × R
n × Vμ∗(R× R

n×s;Rn).

Theorem 2 (“coarseness” theorem) [8, p. 47]. In Theorem 1 and Corollary 1, the solution of
the main Cauchy problem (1), (4) continuously depends on the variables t, x, and g.

In Theorem 2, if the continuous dependence on the initial condition x and the right-hand side
g(·) of the differential equation is considered, then one can state somewhat more.

Remark 1 [8, p. 47]. In Theorem 2, the solution of the Cauchy problem (1), (4) as an element

of the space Ln
μC

(0)(R) continuously depends on x̄ and g(·).
Since we only consider periodic functions in what follows, we use the ordinary spaces C(r)(R;Rn),

r ∈ N0, of continuous functions rather than the spaces Ln
μC

(r)(R).

2. PROPERTIES OF PERIODIC SOLUTIONS
OF THE LINEAR HOMOGENEOUS EQUATION

Let us establish several properties of linear functional-differential equations of point type.

Consider the homogeneous functional-differential equation of point type

ẋ(t) =

s∑

j=1

Ajx(t+ τj), t ∈ R, (7)

where Aj is a real n× n matrix and τj ∈ [0, 2π), j ∈ {1, . . . , s}.
Let us describe the set (A1, . . . , As) of matrices and deviations (τ1, . . . , τs) ∈ [0, 2π)× . . .× [0, 2π)

for which Eq. (7) has only the zero 2π-periodic solution (the nonresonance condition). To this end,
consider the following 2n× 2n matrix consisting of four n× n blocks:

Ak =

(
−

∑s

j=1 Aj cos(kτj) kI −
∑s

j=1 Aj sin(kτj)

−kI +
∑s

j=1 Aj sin(kτj) −
∑s

j=1 Aj cos(kτj)

)
, k ∈ N, (8)

where I is the n× n identity matrix. We introduce the notation

Ak = −
s∑

j=1

Aj cos(kτj), A k = kI −
s∑

j=1

Aj sin(kτj).

DIFFERENTIAL EQUATIONS Vol. 54 No. 10 2018



MATRIX LINEARIZATION OF FUNCTIONAL-DIFFERENTIAL EQUATIONS 1275

In this notation, the matrix Ak becomes

Ak =

(
Ak A k

−A k Ak

)
, k ∈ N.

We assume that the matrix Ak is invertible for all k ∈ N.

In what follows, by ‖ · ‖Rn we also denote the matrix spectral norm, i.e, the operator matrix

norm induced by the Euclidean vector norm. Obviously, there exist constants C̃1 > 0 and C̃2 > 0

such that the estimates ‖Ak‖Rn < C̃1 and ‖
∑s

j=1 Aj sin(kτj)‖Rn < C̃2 are satisfied for all k ∈ N.

It is also obvious that the norm ‖A k‖Rn tends to infinity at the rate O(k) as k → ∞.

Let us estimate the behavior of the norm ‖A−1
k ‖R2n as k → ∞. Since, as is easily seen,

‖A−1
k ‖R2n =

(
min

e∈R2n, ‖e‖
R2n=1

‖Ake‖R2n

)−1

,

we see that it is then necessary to estimate the minimum

min
e∈R2n, ‖e‖

R2n=1
‖Ake‖R2n . (9)

Assume that e1, e2 ∈ R
n. We form a vector e = (e′1, e

′
2)

′ of the space R
2n. (The prime stands for

transposition.) Then

Ake =

(
Ak A k

−A k Ak

)(
e1

e2

)
=

(
Ake1 +A ke2

−A ke1 +Ake2

)

and

‖Ake‖2R2n = ‖Ake1 +A ke2‖2Rn + ‖ −A ke1 +Ake2‖2Rn , ‖e‖2
R2n = ‖e1‖2Rn + ‖e2‖2Rn . (10)

By the representations (10), under the assumption that ‖e‖R2n = 1, we have the lower bound

‖Ake‖R2n ≥ 2−1(‖Ake1 +A ke2‖Rn + ‖ −A ke1 +Ake2‖Rn)

≥ 2−1(‖Ake2‖Rn − ‖A ke1‖Rn + ‖A ke1‖Rn − ‖Ake2‖Rn)

≥ 2−1(k(‖e1‖Rn + ‖e2‖Rn)− 4max{C̃1, C̃2}) ≥ 2−1k − 2max{C̃1, C̃2}.

On the other hand, the representations (10) obviously imply the upper bound

‖Ake‖R2n ≤ 2k + 4max{C̃1, C̃2}.

Therefore, the minimum (9) tends to infinity at the rate O(k) as k → ∞, and hence the norm
‖A−1

k ‖R2n tends to zero at the rate O(1/k) as k → ∞. This assertion will be important for us
below.

Lemma 1. The homogeneous equation (7) has a unique 2π-periodic solution if and only if the
conditions

det

s∑

j=1

Aj �= 0, detAk �= 0 for all k ∈ N (11)

are satisfied. This 2π-periodic solution is trivial. Otherwise, the homogeneous equation (7) has
infinitely many 2π-periodic solutions.
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Proof. Since the solutions of the homogeneous equation (7) belong to the space C(1)(R;Rn),
it follows that an arbitrary 2π-periodic solution x(t), t ∈ R, can be represented on the interval [0, 2π]
by a convergent Fourier series

x(t) = α0 +

∞∑

k=1

α2k−1 cos(kt) + α2k sin(kt).

We substitute this representation into Eq. (7), match the coefficients of each of the basis functions 1,
cos(kt), and sin(kt), and obtain the relations

−
( s∑

j=1

Aj

)
α0 = 0, −

( s∑

j=1

Aj cos(kτj)

)
α2k−1 +

(
kI −

s∑

j=1

Aj sin(kτj)

)
α2k = 0,

(
− kI +

s∑

j=1

Aj sin(kτj)

)
α2k−1 −

( s∑

j=1

Aj cos(kτj)

)
α2k = 0.

Therefore, for the existence of a nonzero 2π-periodic solution of Eq. (7), it is necessary and sufficient
to have the following nonstrict alternative: either det

∑s

j=1 Aj = 0 or detAk = 0 for some k ∈ N.
The proof of the lemma is compete.

3. PROPERTIES OF PERIODIC SOLUTIONS
OF THE LINEAR INHOMOGENEOUS EQUATION

Consider a well-known property of periodic solutions which we need below.

Proposition 1. Let the assumptions of Corollary 1 be satisfied for ω = 2π. Then the solution
x(·) of Eq. (1) is 2π-periodic if and only if x(0) = x(2π) for it.

Proof. The proof of this assertion readily follows from the 2π-periodicity of the functions g(·)
in the variable t and the fact that the existence and uniqueness conditions are satisfied for the
solution of the Cauchy problem (1), (4) (Corollary 1). The proof of the proposition is complete.

Consider the linear inhomogeneous equation

ẋ(t) =

s∑

j=1

Ajx(t+ τj) + ξ(t), t ∈ R, (12)

where Aj is a real n× n matrix, τj ∈ [0, 2π), j ∈ {1, . . . , s}, and ξ(·) ∈ C(1)(R;Rn) is a 2π-periodic
function. Along with Eq. (12), we consider the corresponding linear homogeneous equation (7).

Conditions I–IV for the right-hand sides of Eqs. (7) and (12) are obviously satisfied for μ∗ = 1.
We define the constant

M = max
1≤j≤s

‖Aj‖Rn . (13)

Then inequality (6) becomes

M

s∑

j=1

μ−|τj| < lnμ−1. (14)

Theorem 3. Assume that inequality (14) holds for some μ ∈ (0, 1). Then a necessary and
sufficient condition for the existence of a unique 2π-periodic solution of the inhomogeneous equa-
tion (12) is that the unique 2π-periodic solution of the corresponding homogeneous equation (7) is
identically zero.

Proof. Consider the fundamental matrix ϕ(t) of Eq. (7) normalized at zero. It is a solution of
the matrix equation

ϕ̇(t) =

s∑

j=1

Ajϕ(t+ τj), t ∈ R,
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with the initial condition ϕ(0) = I. The existence of such a matrix follows from Corollary 1,
which implies that any solution of the homogeneous equation (7) can be represented as x(t) =
ϕ(t)x(0) and an arbitrary solution of the inhomogeneous equation (12) can be represented as
x(t) = ϕ(t)x(0) + ψ(t), where ψ(t) is a particular solution of Eq. (12). We use this fact to proceed
directly to the proof of the theorem.

Sufficiency. Assume that the trivial solution is the unique 2π-periodic solution of the homoge-
neous equation (7). Then it follows from Proposition 1 and the fact that the solutions of the homo-
geneous equation (7) can be represented as x(2π) = ϕ(2π)x(0) that the equation x = ϕ(2π)x must
have only one solution x = 0. Therefore, we have det(I−ϕ(2π)) �= 0. On the other hand, for an ar-
bitrary solution x(·) of the inhomogeneous equation (12) we have x(2π) = ϕ(2π)x(0)+ψ(2π). Since
the periodic solution satisfies the condition x(0) = x(2π), the problem of determining the periodic
solution of the inhomogeneous equation is reduced to solving the equation (I − ϕ(2π))x = ψ(2π).
Since det(I − ϕ(2π)) �= 0, this implies the uniqueness of the 2π-periodic solution of the inhomoge-
neous equation (12).

Necessity. Assume that the inhomogeneous equation (12) has a unique 2π-periodic solution.
We argue by contradiction. Assume that the homogeneous equation (7) has at least one 2π-periodic
solution in addition to the zero solution. It follows that det(I−ϕ(2π)) = 0. In this case, the equation
(I−ϕ(2π))x = ψ(2π) has either no or infinitely many solutions, which contradicts the uniqueness of
the 2π-periodic solution of the inhomogeneous equation (12). The proof of the theorem is complete.

When proving the necessity of the conditions of the theorem, we have made the conclusion
that if the homogeneous equation (7) has a nonzero periodic solution, then the corresponding
inhomogeneous equation (12) can have either infinitely many periodic solutions or none of them.
Let us illustrate both of these possible cases by examples.

Consider the simplest one-dimensional ordinary differential equation ẋ(t) = ξ(t), for which
Aj ≡ 0, j = 1, . . . , s, and the corresponding linear homogeneous equation ẋ = 0 has infinitely many
periodic solutions x(t) = C, C ∈ R. If we take the function ξ(t) ≡ 1, then the family of solutions of
the inhomogeneous equation has the form x(t) = t+C, C ∈ R; i.e., there exist no periodic solutions.
On the other hand, if we set ξ(t) ≡ cos t, then the solutions of the inhomogeneous equation become
x(t) = sin t+ C, C ∈ R; i.e., all the solutions are periodic.

Now, we use Theorem 3 and Lemma 1 to state a corollary refining Theorem 3.

Corollary 2. Assume that inequality (14) holds for some μ ∈ (0, 1). The inhomogeneous
equation (12) has a unique 2π-periodic solution if and only if conditions (11) are satisfied for the
n× n matrices Aj , j = 1, . . . , s, and the deviations (τ1, . . . , τs) ∈ [0, 2π) × · · · × [0, 2π).

4. PERIODIC SOLUTION OPERATOR

Consider the linear homogeneous equation (7) in which the deviations τj ∈ [0, 2π), j ∈ {1, . . . , s},
are commensurable and for which conditions (11) are satisfied (and hence, by Corollary 2, the in-
homogeneous equation (12) has a unique 2π-periodic solution). Every homogeneous equation (7)
of this kind determines the operator P that takes each 2π-periodic function ξ(·) ∈ C(r)(R;Rn) to
the 2π-periodic solution x(·) of the inhomogeneous equation (12). The operator P thus defined is
called the periodic solution operator. Obviously, if ξ(·) ∈ C(r)(R;Rn), then Pξ(·) ∈ C(r+1)(R;Rn).

For each r ∈ N0, we define the spaces

C
(r)
2π (R;R

n) = {x(·) ∈ C(r)(R;Rn) : x(j)(t) = x(j)(t+ 2π), j = 0, . . . , r, t ∈ R}.

Therefore, the operator

P : C
(r)
2π (R;R

n) → C
(r+1)
2π (R;Rn), Pξ(·) = x(·)

is defined for each r ∈ N0. Obviously, the operator P is linear and injective. We neither write the
index r on the operator P nor indicate its dependence on Eq. (7); this will not lead to a misun-
derstanding. Moreover, the operator P for r ∈ N is the restriction of the similar operator with
index (r − 1).

DIFFERENTIAL EQUATIONS Vol. 54 No. 10 2018
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For each r ∈ N0, we introduce the spaces

C
(r),n
2π = {x(·) ∈ C(r)([0, 2π];Rn) : x(j)(0) = x(j)(2π), j = 0, . . . , r}.

In other words, the space C
(r),n
2π consists of restrictions of the functions in the space C

(r)
2π (R;R

n)
to the interval [0, 2π]. The norm in this space is the same as in the space C(r)([0, 2π];Rn).

Since the mapping ι : C(r)
2π (R;R

n) → C(r),n
2π that takes each function y(·) ∈ C(r)

2π (R;R
n) to its

restriction ŷ(·) to the interval [0, 2π] is obviously a bijection, we see that the operator P generates

the operator P̂ : C
(r),n
2π → C

(r+1),n
2π defined by the relation P̂ = ιPι−1. Obviously, the operator P̂ is

injective, and the mapping ι and its inverse are continuous.

Let J : C
(r+1),n
2π → C

(r),n
2π , r ∈ N0, be the operator of natural embedding. In what follows,

the operator of periodic solutions is understood as a linear operator JP̂ : C
(r),n
2π → C

(r),n
2π , r ∈ N0.

Obviously, the operator JP̂ is injective as well.

Proposition 2. Assume that inequality (14) holds and conditions (11) are satisfied for some
μ ∈ (0, 1). Then the operator

JP̂ : C
(0),n
2π → C

(0),n
2π

is continuous.

Proof. The proof readily follows from Theorem 2 and Remark 1.

In what follows, in addition to the continuity of the operator JP̂, we also need an exact estimate
of its norm. But it is a rather difficult problem to obtain such an estimate. In fact, it suffices to

have estimates for the restriction of the operator in question to the subspace C
(1),n
2π . To this end,

we set

A =

∥∥∥∥

( s∑

j=1

Aj

)−1∥∥∥∥
Rn

, D =

( ∞∑

k=1

‖A−1
k ‖2

R2n

)1/2

. (15)

Proposition 3. Let the assumptions of Proposition 2 be satisfied. Then the following estimate
holds :

sup
ξ̂(·)∈C

(1),n
2π

‖ξ̂(·)‖
C

(0),n
2π

=1

‖JP̂ξ̂(·)‖
C

(0),n
2π

≤
√
A2 + 2D2. (16)

Proof. 1. Construction of the action of the operator JP̂ on the functions ξ̂(·) of class C
(1),n
2π

in explicit form. We use Fourier series to construct the operator (JP̂)−1. We expand the periodic
solution x(·) of Eq. (12) and the function ξ(·) on the right-hand side in this equation in Fourier
series,

x(t) = α0 +

∞∑

k=1

(α2k−1 cos(kt) + α2k sin(kt)), ξ(t) = β0 +

∞∑

k=1

(β2k−1 cos(kt) + β2k sin(kt)).

Since

ξ̂(t) = ˙̂x(t)−
s∑

j=1

Ajx̂(t+ τj),

where the hat over a function means its restriction to the interval [0, 2π], we replace the functions
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with their Fourier expansions and match the coefficients of like basis functions to obtain

β0 = −
( s∑

j=1

Aj

)
α0,

β2k−1 = −
( s∑

j=1

Aj cos(kτj)

)
α2k−1 +

(
kI −

s∑

j=1

Aj sin(kτj)

)
α2k,

β2k =

(
− kI +

s∑

j=1

Aj sin(kτj)

)
α2k−1 −

( s∑

j=1

Aj cos(kτj)

)
α2k, k ∈ N.

For each k ∈ N, the coefficients β2k−1 and β2k satisfy the matrix equation

(
β2k−1

β2k

)
= Ak

(
α2k−1

α2k

)
,

where the 2n× 2n matrix Ak is defined by formula (8).

It follows from the assumption of Proposition 2 that such matrices are nonsingular, and hence
we have

α0 = −
( s∑

j=1

Aj

)−1

β0 and

(
α2k−1

α2k

)
= A

−1
k

(
β2k−1

β2k

)
, k ∈ N.

Thus, the operator JP̂ has the following explicit form:

(JP̂ξ̂(·))(t) = α0 +

∞∑

k=1

(α2k−1 cos(kt) + α2k sin(kt))

= −
( s∑

j=1

Aj

)−1

β0 +

∞∑

k=1

{((A 2

k +A2
k)

−1A kβ2k−1 − (A
2

k +A2
k)

−1A kβ2k) cos(kt)

+ ((A
2

k +A2
k)

−1A kβ2k−1 + (A
2

k +A2
k)

−1Akβ2k) sin(kt)}, t ∈ [0, 2π].

2. Majorant for the norm ‖JP̂ξ̂(·)‖
C

(0),n
2π

, ξ̂(·) ∈ C
(1),n
2π , ‖ξ̂(·)‖

C
(0),n
2π

≤ 1. To prove the esti-

mate (16), we need to solve the following extremal problem:

‖JP̂ξ̂(·)‖
C

(0),n
2π

→ sup
ξ̂(·)

(17)

under the condition
ξ̂(·) ∈ C

(1),n
2π , ‖ξ̂(·)‖

C
(0),n
2π

≤ 1. (18)

By the obvious inequality αi,2k−1 cos(kt)+αi,2k sin(kt) ≤
√

α2
i,2k−1 + α2

i,2k (here the αi,m and βi,m

are the ith coordinates of the vectors αm and βm, respectively, i = 1, . . . , n, m ∈ N0), we have the
estimate

‖α2k−1 cos(kt) + α2k sin(kt)‖Rn ≤
√

‖α2k−1‖2Rn + ‖α2k‖2Rn .

Further, it is easily seen that

‖α2k−1‖2Rn + ‖α2k‖2Rn =

∥∥∥∥

(
α2k−1

α2k

) ∥∥∥∥
2

R2n

=

∥∥∥∥A
−1
k

(
β2k−1

β2k

)∥∥∥∥
2

R2n

≤ ‖A−1
k ‖2

R2n

∥∥∥∥

(
β2k−1

β2k

)∥∥∥∥
2

R2n

= ‖A−1
k ‖2

R2n(‖β2k−1‖2Rn + ‖β2k‖2Rn).
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With regard to the above-derived inequalities, we obtain the estimate

‖α2k−1 cos(kt) + α2k sin(kt)‖Rn ≤
√

‖A−1
k ‖2

R2n(‖β2k−1‖2Rn + ‖β2k‖2Rn) .

Thus, for each function ξ̂(·) ∈ C
(1),n
2π , ‖ξ̂(·)‖

C
(0),n
2π

= 1, the norm ‖JP̂ξ̂(·)‖
C

(0),n
2π

can be majorized

as follows:

‖JP̂ξ̂(·)‖
C

(0),n
2π

≤
∥∥∥∥

( s∑

j=1

Aj

)−1

β0

∥∥∥∥
Rn

+

∞∑

k=1

(
‖A−1

k ‖R2n

√
‖β2k−1‖2Rn + ‖β2k‖2Rn

)
.

Below, we show that the series on the right-hand side of this inequality converges.

3. Auxiliary extremal problem required to complete the estimation of the norm ‖JP̂ξ̂(·)‖
C

(0),n
2π

.

It is rather difficult to estimate the right-hand side of the last inequality. Thus, we replace such
a problem by a simpler one. To this end, we maximize the value of the right-hand side of this
inequality on the wider set of functions, ‖ξ̂(·)‖L2([0,2π];Rn) ≤

√
2π . Then the extremal problem is

stated as follows:

∥∥∥∥

( s∑

j=1

Aj

)−1

β0

∥∥∥∥
Rn

+

∞∑

k=1

(
‖A−1

k ‖R2n

√
‖β2k−1‖2Rn + ‖β2k‖2Rn

)
→ sup

βk, k∈N0

(19)

under the constraint
‖ξ̂(·)‖L2([0,2π];Rn) ≤

√
2π. (20)

Obviously, the supremum of the functional in problem (19), (20) is in this case not less than
the supremum of the functional in problem (17), (18). By the Parseval identity with respect to the
orthogonal basis {1, cos(kt), sin(kt)}k∈N of the spaceL2([0, 2π];R

n), we have

‖ξ̂(·)‖2L2([0,2π];Rn) =

2π∫

0

‖ξ̂(t)‖2
Rn dt = 2π‖β0‖2Rn + π

∞∑

k=1

‖βk‖2Rn .

Therefore, the extremal problem (19), (20) can be rewritten in equivalent form as follows: Find
the supremum (19) under the constraint

‖β0‖2Rn +
1

2

∞∑

k=1

‖βk‖2Rn ≤ 1. (21)

4. Completion of the proof of the proposition. Consider the Hilbert space l2 of numerical
sequences and its elements r1 and r2 that we define as

r1 =

{
1√
2

∥∥∥∥

( s∑

j=1

Aj

)−1∥∥∥∥
Rn

, ‖A−1
1 ‖R2n , ‖A−1

2 ‖R2n , . . .

}
,

r2 =

{√
2‖β0‖Rn ,

√
‖β1‖2Rn + ‖β2‖2Rn ,

√
‖β3‖2Rn + ‖β4‖2Rn , . . .

}
.

One can readily see that the sequence r1 belongs to the space l2, because, as was proved in 2,
‖A−1

k ‖2
R2n = O(1/k2) as k → ∞, and this just implies the inequality ‖r1‖l2 < +∞. The optimization

problem (19), (21) has the following form in the new terminology: (r1, r2)l2 → sup r2∈l2
under the

condition ‖r2‖2l2 ≤ 2. Applying the Cauchy–Schwarz inequality, we obtain the estimate

(r1, r2)l2 ≤ ‖r1‖l2‖r2‖l2 ≤
√
2 ‖r1‖l2 .
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The norm of the element r1 has the form

‖r1‖2l2 =
1

2

∥∥∥∥

( s∑

j=1

Aj

)−1∥∥∥∥
2

Rn

+

∞∑

k=1

‖A−1
k ‖2

R2n .

It is well known that the equality in the Cauchy–Schwarz inequality is attained only in the case of
collinear vectors. Therefore, if we take βk, k ∈ N0, such that the vector r2 becomes collinear to the
vector r1 and the relation ‖r2‖l2 =

√
2 holds, then the original maximization problems is solved.

Obviously, there exist βk, k ∈ N0, with this property. In this case, the objective functional (19) at
the point of maximum takes the value

∥∥∥∥

( s∑

j=1

Aj

)−1

β0

∥∥∥∥
Rn

+

∞∑

k=1

(‖A−1
k ‖R2n

√
‖β2k−1‖2Rn + ‖β2k‖2Rn)

=

(∥∥∥∥

( s∑

j=1

Aj

)−1∥∥∥∥
2

Rn

+ 2

∞∑

k=1

‖A−1
k ‖2

R2n

)1/2

=
√
A2 + 2D2,

which implies the estimate (16). The proof of the proposition is complete.

Remark 2. Similar estimates for the norm of the periodic solution operator JP̂ were obtained for
the case of scalar linearization in [1]. But in our case, the value of D in formula (15) is calculated in
terms of the norms of the matrices A−1

k , k ∈ N, while in [1], a similar quantity was calculated in terms
of 1/detAk (see formula (16) in [1]). This can be explained by the fact that, for the scalar case,

we have the relation ‖A−1
k ‖R2 = 1/

√
detAk. (The matrix Ak in [1] is an analog of the matrix Ak.)

Therefore, the result stated in this paper is a generalization of the result obtained in [1] for the scalar
linearization. Note that there is no relationship between the values of the determinant detAk and
the norm ‖Ak‖R2n except for the well-known inequality (detAk)

1/(2n) ≤ ‖Ak‖R2n in the nonscalar
case.

5. EXISTENCE AND UNIQUENESS OF A 2π-PERIODIC SOLUTION
OF THE NONLINEAR EQUATION

In this concluding section, we obtain conditions that ensure the existence and uniqueness of
periodic solutions of the nonlinear functional-differential equation of point type (1), where g(·) ∈
C(1)(R×R

n×s;Rn) is a 2π-periodic function in the variable t. Along with Eq. (1), we also consider
Eq. (2) obtained by linearizing Eq. (1). If the function g(·) in Eq. (1) satisfies the Lipschitz
condition with a constant Lg, then the function f (defined by formula (3)) in Eq. (2) satisfies the
Lipschitz condition with some constant Lf as well. Associated with each linearization (2) of Eq. (1)
is a linear inhomogeneous system (7). In turn, if the assumptions of Corollary 2 are satisfied for
the matrices Aj , j ∈ {1, . . . , s}, and the deviations (τ1, . . . , τs) ∈ [0, 2π) × · · · × [0, 2π), then the

operator JP̂ is well defined.

We define an operator

F : C
(r)
2π (R;R

n) → C
(r)
2π (R;R

n), r = 0, 1,

by the rule
F[x(·)](t) = f(t, x(t+ τ1), . . . , x(t+ τs)), t ∈ R.

The operator F generates the operator

F̂ : C(r),n
2π → C(r),n

2π , r = 0, 1,

F̂[x̂(·)](t) = f(t, x̂(t+ τ1), . . . , x̂(t+ τs)), t ∈ [0, 2π],

where, just as above, the hat over a function means its restriction to the interval [0, 2π]. In other

words, F̂ = ιFι−1, and in particular, the correspondence F → F̂ is bijective, because F = ι−1
F̂ι.
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Theorem 4. Let the following conditions be satisfied :

(a) The function g(·) ∈ C(1)(R × R
n×s;Rn) in the nonlinear equation (1) is 2π-periodic in the

variable t and satisfies the Lipschitz condition (5), and the Lipschitz constant of the function f(·)
is equal to Lf .

(b) Inequality (14) holds for some μ ∈ (0, 1) with the constant M given by relation (13).

(c) Conditions (11) are satisfied.

If the inequality

sLf

√
A2 + 2D2 < 1, (22)

holds, where the numbers A and D are defined by relations (15), then Eq. (1) has a 2π-periodic

solution. Such a solution is unique and belongs to the space C
(2)
2π (R;R

n).

Moreover, for any initial function x̂0(·) ∈ C
(1),n
2π the sequence x̂m(·) = (JP̂F̂)m[x̂0(·)], m ∈ N,

converges in the norm of the space C
(0),n
2π to the same function x̂(·) ∈ C

(2),n
2π , and the following

estimate of the convergence rate takes place :

‖(JP̂F̂)m[x̂0(·)] − x̂(·)‖
C

(0),n
2π

≤
(
sLf

√
A2 + 2D2

)m‖x̂0(·)− x̂(·)‖
C

(0),n
2π

. (23)

The periodic solution x(·) ∈ C
(2)
2π (R;R

n) of Eq. (1) is obtained by the 2π-periodic continuation of
the function x̂(·) to the entire real line R; i.e., x(·) = ι−1x̂(·).

Proof. In the space C
(0),n
2π , we define the operator equation

(JP̂F̂[x̂(·)])(t) = x̂(t), t ∈ [0, 2π]. (24)

By Corollary 2, the 2π-periodic continuation of any solution of Eq. (24) to the entire real line
determines a periodic solution of Eq. (2) (of Eq. (1), respectively), and vice versa. Since the
function g(·) ∈ C(1)(R× R

n×s;Rn) is 2π-periodic, it follows that each solution of Eq. (24) belongs

to the space C
(2),n
2π .

It follows from the Lipschitz conditions for the function f(·) that the inequality

‖F̂[ŷ(·)] − F̂[ẑ(·)]‖
C

(0),n
2π

≤ sLf‖ŷ(·)− ẑ(·)‖
C

(0),n
2π

holds for any ŷ(·), x̂(·) ∈ C
(0),n
2π . By Proposition 3, for any ŷ(·), ẑ(·) ∈ C

(1),n
2π we have the chain of

inequalities

‖JP̂F̂[ŷ(·)] − JP̂F̂[ẑ(·)]‖
C

(0),n
2π

= ‖F̂[ŷ(·)]− F̂[ẑ(·)]‖
C

(0),n
2π

∥∥∥∥JP̂
(

F̂[ŷ(·)]− F̂[ẑ(·)]
‖F̂[ŷ(·)] − F̂[ẑ(·)]‖

C
(0),n
2π

)∥∥∥∥
C

(0),n
2π

≤
√
A2 + 2D2‖F̂[ŷ(·)] − F̂[ẑ(·)]‖

C
(0),n
2π

≤ sLf

√
A2 + 2D2‖ŷ(·)− ẑ(·)‖

C
(0),n
2π

. (25)

By inequality (22), the estimate (25) means that the operator JP̂F̂ is contracting in the subspace

C
(1),n
2π of the metric space C

(0),n
2π . Since the subspace C

(1),n
2π is invariant under the action of the

operator JP̂F̂ (because, by assumption, g ∈ C(1)(R×R
n×s;Rn)) and is complete, it follows that this

operator has a unique fixed point x̂(·) in this subspace, and the sequence (JP̂F)m[x̂0(·)](t), m ∈ N0,

converges to this point at the rate (23) for any initial function x̂0(·) ∈ C(1),n
2π . The proof of the

theorem is complete.

We point out that when a linearization is chosen in Theorem 4, the linear part contains only
the deviations which are present in the right-hand side of the original functional-differential equa-
tion (1). This is essential, because if it turns out that the linearization is chosen so that the function
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f(·) has at least one deviation τ that does not coincide with any of the deviations τ1, . . . , τs, then
one can readily verify that the inequality sLf

√
A2 + 2D2 < 1 is, as a rule, violated.

Example. Consider an example in which the scalar linearization considered in [1] does not
permit proving the existence of a unique periodic solution, while the matrix linearization allows
one to prove the existence of such a solution.

Consider the problem

d

dt

(
x1(t)

x2(t)

)
=

(
−1 0

0 1

)(
x1(t)

x2(t)

)
+ εf(t, x1(t+ τ), x2(t+ τ)).

The function f(·) is 2π-periodic in the time variable with Lipschitz constant Lf , and the deviation τ
is chosen to be such that the nonresonance conditions (11) are satisfied. The quantity ε > 0 is
a sufficiently small parameter. In this problem, for the matrix linearization it is most natural to
take the matrix

A =

(
−1 0

0 1

)
.

One can readily see that if we take a sufficiently small value of the parameter ε > 0, then the
inequality 2εLf

√
A2 + 2D2 < 1 is satisfied, which, in turn, guarantees the existence of a unique

2π-periodic solution of such an equation.

Now let us verify whether it is possible to determine the existence of a unique 2π-periodic
solution for a given equation by isolating the scalar linear part. In this case, the equation must be
written in the form

d

dt

(
x1(t)

x2(t)

)
= a

(
x1(t)

x2(t)

)
+

(
−1 0

0 1

)(
x1(t)

x2(t)

)
− a

(
x1(t)

x2(t)

)
+ εf(t, x1(t+ τ), x2(t+ τ)),

and it is necessary to verify whether there exists a value of the parameter a ∈ R for which the
inequality 2Lf̃

√
A2 + 2D2 < 1 holds, where A = 1/|a|, D =

∑∞
k=1 1/detAk (see formula (16) and

Theorem 4 in [1]), and Lf̃ is the Lipschitz constant of the function

f̃(t, x(t), x(t + τ)) =

(
−1− a 0

0 1− a

)(
x1(t)

x2(t)

)
+ εf(t, x1(t+ τ), x2(t+ τ)).

Obviously, ∥∥∥∥∥

(
−1− a 0

0 1− a

)∥∥∥∥∥
R2

= 1 + |a|

and the inequalities Lf̃ ≥ 1 + |a| and
√
A2 + 2D2 > A = 1/|a| hold, which implies the estimate

2Lf̃

√
A2 + 2D2 > 2(1 + |a|)/|a| > 2. Therefore, the criterion 2Lf̃

√
A2 + 2D2 < 1 for the existence

of a 2π-periodic solution is not satisfied for the scalar linearization for any values of ε and a ∈ R,
despite the fact that such a solution exists for sufficiently small ε.

6. VARIATIONAL PROBLEM RELATED TO THE PROBLEM OF EXISTENCE
OF A 2π-PERIODIC SOLUTION OF THE NONLINEAR EQUATION

The existence and uniqueness of a 2π-periodic solution of the original nonlinear equation (1) was
established by studying the properties of the linearization of the right-hand side of Eq. (2). The cri-
terion for the existence and uniqueness of a periodic solution is stated as the strict inequality (22).
Therefore, the statement of the following variational problem is natural.

Variational problem. Minimize the functional

J(A1, . . . , As) = sLf

√
A2 + 2D2 → inf

A1,...,As∈Mn(R)
(26)
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under the constraints

M

s∑

j=1

μ−|τj| < lnμ−1,

where M = max1≤j≤s ‖Aj‖Rn ,
∑s

j=1 Aj ∈ GLn(R), and Ak ∈ GL2n(R) for all k ∈ N. Here Mn(R)

is the ring of real n × n matrices and GLn(R) is the group of invertible real n × n matrices.
The quantities A and D are determined by formulas (15), and the matrices Ak, k ∈ N are given
by formulas (8). Let us state a theorem on the existence and uniqueness of a periodic solution in
terms of the variational problem.

Theorem 5. Assume that the function g(·) ∈ C(1)(R × R
n×s;Rn) in the nonlinear functional-

differential equation (1) is 2π-periodic in the variable t and satisfies the Lipschitz condition (5).
If the infimum J∗ of the functional in the variational problem (26) satisfies the inequality

J∗ < 1,

then Eq. (1) has a 2π-periodic solution. This solution is unique and belongs to the space C
(2)
2π (R;R

n).

Moreover, for any initial function x̂0(·) ∈ C
(1),n
2π the sequence x̂m(·) = (JP̂F̂)m[x̂0(·)], m ∈ N,

converges in the norm of the space C(0)
2π (R;R

n) to one and the same function x̂(·) ∈ C(2),n
2π and the

rate of convergence satisfies the estimate

‖(JP̂F̂)m[x̂0(·)] − x̂(·)‖
C

(0),n
2π

≤ Jm
∗ ‖x̂0(·)− x̂(·)‖

C
(0),n
2π

. (27)

The periodic solution x(·) ∈ C
(2)
2π (R;R

n) of Eq. (1) is obtained by the 2π-periodic continuation of
the solution x̂(·) to the entire real line R.

Proof. Take a sequence (A1(k), . . . , As(k)), k ∈ N, such that J(A1(k), . . . , As(k)) → J∗
as k → ∞. Starting from a sufficiently large N , all assumptions of Theorem 4 are satisfied for the
linearization of the right-hand side of the original equation (1) with the matrices A1(k), . . . , As(k),
k ≥ N , belonging to this sequence. Therefore, for such an equation, there exists a unique
2π-periodic solution satisfying the following estimates for k ≥ N :

‖(JP̂F̂)m[x̂0(·)]− x̂(·)‖
C

(0),n
2π

≤ (sLf

√
A(k)2 + 2D(k)2)m‖x̂0(·) − x̂(·)‖

C
(0),n
2π

.

If we take the limit as k → ∞ of the right-hand side of this inequality, then it becomes the
corresponding inequality (27). The proof of the theorem is complete.
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