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INTRODUCTION

To solve linear operator equations considered in infinitely-dimensional Hilbert spaces, for exam-
ple, integral equations, numerically, it is first necessary to discretize the problem, i.e., reduce it to
a system of linear algebraic equations (SLAE). Then the following two basic questions arise:

1. How close is the solution obtained by using SLAE to the solution of the original problem?

2. Are the properties of the original operator, which permit using the iteration methods for
solving the SLAE, preserved when passing to a finite-dimensional operator?

The answer to the first question does not depend on the solution method but is determined
by the method of approximation of the original operator and its properties. Theoretically, it
is here important to prove the possibility of obtaining a solution with an arbitrary accuracy in
principle. The answer to the second question depends on the properties of the original operator,
the discretization method, and the applied iteration method.

In the paper, we introduce a sequence of finite-dimensional spaces belonging to the Hilbert space
under study and, in these spaces, write the equations approximating the original operator equation.
We prove several theorems ensuring that the approximate solutions converge to the solution of the
original problem. Then we consider the 3D singular integral equations describing the problems of
interaction of the electromagnetic field with three-dimensional inhomogeneous dielectric structures.
Based on the obtained theorems, we mathematically rigorously justify the possibility of numerically
solving these equations by using the Galerkin method and the collocation method.

OPERATOR EQUATIONS

Consider the operator equation
Âu = f (1)

with a bounded linear operator Â acting in a Hilbert space H.

First, we describe the methods for solving linear equation (1) based on the Galerkin method
and the iteration method of minimal discrepancies. Let HN ⊂ H be a finite-dimensional subspace
of dimension N with a basis {υ(N)

n }, n = 1, . . . , N . We seek an approximate solution uN of Eq. (1)
on the basis of the Galerkin method

uN =

N∑

n=1

α(N)
n υ(N)

n , (2)
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1226 SAMOKHIN et al.

where the unknown coefficients α(N)
n are determined from the system of N linear algebraic equations

N∑

n=1

α(N)
n A(N)

nm = (f, υ(N)
m ), (3)

A(N)
nm = (Âυ(N)

n , υ(N)
m ). (4)

Equations (3), (4) are obtained from the requirement that the discrepancy in the approximate

solution hN = ÂuN − f must be orthogonal to the subspace HN .

Let ÔN be the operator of orthogonal projection of the space H onto the subspace HN ; i.e., let
(v − ÔNv, ω) = 0 for any v ∈ H, ω ∈ HN . Then Eqs. (3), (4) can be written in the operator form

ÔN ÂuN = ÔNf, uN ∈ HN . (5)

Let us state the following conditions.

Condition A. A sequence of subspaces {HN} is ultimately dense in H; i.e., for any vector
u ∈ H there exist vectors ũN ∈ HN , N = 1, 2, . . . , such that

‖u− ũN‖ = inf
ω∈HN

‖u− ω‖ ≤ ε(u,N),

where the ε(u,N) are the approximation error estimates and ε(u,N) → 0 as N → ∞.

Condition B. For the operator ÔN of orthogonal projection of the space H onto the sub-
spaces HN and any vector vN ∈ HN , the inequality

‖(ÔN Â− Â)vN‖ ≤ δ(N)‖vN‖

is satisfied , and δ(N) → 0 as N → ∞. Moreover , ‖ÔNf − f‖ → 0 as N → ∞.

We have the following assertion [1, p. 26; 2, p. 9].

Theorem 1. Assume that Â is a bounded linear operator acting in the Hilbert space H and
such that for any v ∈ H the inequality

|(Âv, v)| ≥ p0(v, v), p0 > 0, (6)

holds. Then there exists a unique solution of Eq. (1) in the space H, the norm of the inverse

operator Â−1 satisfies the estimate ‖Â−1‖ ≤ 1/p0, and the iterations

un+1 = un − τnhn, hn = (Âun − f), τn =
(hn, Âhn)

(Âhn, Âhn)
, n = 0, 1, . . . , (7)

converge to the solution of Eq. (1) for any initial approximation u0 ∈ H.

An important special case of inequality (6) is the condition

| Im (Âv, v)| ≥ p0(v, v), p0 > 0, (8)

which is satisfied for many problems of mathematical physics and will be used below.

The iteration procedure (7) is called the iteration method of minimal discrepancies (MMD).
There exist many generalizations of the scheme (7) for which the convergence of iterations can be
faster but the convergence condition is the same.

Now we prove the following assertion.

Theorem 2. Assume that for any v ∈ H inequality (6) and condition A or condition B are
satisfied. Then there exists a unique solution of the system of linear equations (3), (4), which can
be obtained by using the iteration MMD. Here the sequence uN converges to the solution of Eq. (1);
i.e., limN→∞ ‖u− uN‖ = 0.
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Proof. Let b(N) = {b(N)
n } be an N -dimensional complex vector in the Euclidean space EN , and

let A(N) = (A(N)
nm ) be the linear operator defined in this space by the expression (4). Then, by (4)

and (6), we have

|(A(N)b(N), b(N))EN
| =

∣∣∣∣
N∑

n,m=1

A(N)
nm b(N)

n (b(N)
m )∗

∣∣∣∣

=

∣∣∣∣

(
Â

[ N∑

n=1

b(N)
n υ(N)

n

]
,

[ N∑

m=1

b(N)
m υ(N)

m

])

H

∣∣∣∣ ≥ ρ0q0(b
(N), b(N))EN

,

where q0 is the smallest eigenvalue of the Hermitian positive definite matrix βnm = (υ(N)
n , υ(N)

m ),
n,m = 1, . . . , N .

Thus, by Theorem 1, there exists a unique solution of system (3), (4), and a numerical solution of
it can be obtained by MMD iterations. Note that, by this theorem, there exists a unique solution
of Eq. (1) in the space H as well.

Further, multiplying (3) by (α(N)
m )∗ and summing over m with regard to (2) and (4), we obtain

(ÂuN , uN ) = (f, uN), (9)

whence, by inequality (6),

‖uN‖ ≤ p−1
0 ‖f‖. (10)

Let condition A be satisfied. Then the solution u of Eq. (1) can be represented as

u = ũN + xN , ũN ∈ HN , lim
N→∞

‖xN‖ = 0. (11)

By relations (6), (9), with regard to Âu = f , we obtain

p0‖u− uN‖2 ≤ |(Â(u− uN), (u − uN ))| = |(f − ÂuN , u− uN)| = |(f − ÂuN , u)|
= |(f − ÂuN , ũN ) + (f − ÂuN , xN)|. (12)

Further, since ũN ∈ HN , we have (f − ÂuN , ũN) = 0. Therefore, inequalities (10) and (12) imply
the estimate

‖u− uN‖2 ≤
1

p0

[
‖f‖+ ‖Â‖

p0
‖f‖

]
‖xN‖,

whence, with regard to representation (11), we conclude that ‖u− uN‖ → 0 as N → ∞.

Let condition B be satisfied. By Eqs. (5) and (1), we have

Â(uN − u) + (ÔN Â− Â)uN = ÔNf − f. (13)

Applying the operator Â−1 to both parts of (13) and taking into account the estimate (10) and
condition B, we obtain

‖u− uN‖ ≤ 1

p0

[
1

p0
δ(N)‖f‖ + ‖ÔNf − f‖

]
,

which implies that ‖u− uN‖ → 0 as N → ∞. The proof of the theorem is complete.
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Consider another method for solving operator equation (1). Assume that there is a sequence of
finite-dimensional Hilbert spaces (HN), HN ⊂ H, where N is the dimension of the space HN , and

linear operators P̂N projecting the space H onto the space HN are defined such that P̂N (H) = HN

and P̂ 2
N = PN . Note that, in general, P̂N need not be orthogonal projection operators. Obviously,

the operators P̂N do not change elements of HN . An example of such an operator is the following
one: P̂N projects the function space H into the space of piecewise constant functions whose values
are determined by the elements u ∈ H at isolated nodal points (the collocation method).

Consider the following two equations: the original equation (1) in the space H and the equation

P̂N ÂuN = P̂Nf, uN ∈ HN , (14)

in the subspace HN . Equation (1) is said to be exact, and Eq. (14) is said to be approximate. Note
that, by introducing a basis in the subspace HN , one can reduce Eq. (14) to an equivalent SLAE.

We write

Â1 =
Â+ Â∗

2
, Â2 =

Â− Â∗

2i
. (15)

Then Â = Â1 + iÂ2, and the operators Â1 and Â2 are obviously self-adjoint in the space H.

We introduce the following conditions.

Condition C. For any vector vN ∈ HN , the inequality

‖(P̂N Â− Â)vN‖ ≤ δ(N)‖vN‖

holds, and δ(N) → 0 as N → ∞. Moreover , ‖P̂
N
f − f‖ → 0 as N → ∞.

Condition D. The operators P̂N Â1 and P̂N Â2 are self-adjoint in the space HN , and for any
vector vN ∈ HN , the inequality

‖(P̂N Â2 − Â2)vN‖ ≤ δ(N)‖vN‖ (16)

holds, where δ(N) → 0 as N → ∞. Moreover , if u is a solution of Eq. (1), then

lim
N→∞

‖u− P̂Nu‖ = 0. (17)

Let us prove the following assertion.

Theorem 3. Assume that either inequality (6) and condition C or inequality (8) and con-
dition D are satisfied. Then there exists a value N0 such that for N ≥ N0 the solution of the
approximate equation (14) exists, is unique, and can be obtained by using MMD. In this case,
the sequence of approximate solutions converges to the exact solution; i.e., limN→∞ ‖u− uN‖ = 0.

Proof. First, consider condition C. We use the obvious inequality |a| ≥ |b|−|a−b|, set N ≥ N0,
where N0 is determined by the condition δ(N0) < p0, and obtain the following chain of inequalities
for any vN ∈ HN :

|(P̂N ÂvN , vN)| = |(ÂvN , vN ) + (P̂N ÂvN − ÂvN , vN )|
≥ |(ÂvN , vN )| − |(P̂N ÂvN − ÂvN , vN)| ≥ (p0 − δ(N))‖vN‖2.

Thus, by Theorem 1, the solution of Eq. (14) exists, is unique, and can be obtained by MMD, and
by Theorem 1, the norm of the solution uN satisfies the estimate

‖uN‖ ≤ ‖P̂Nf‖
p0 − δ(N)

≤ ‖f‖
p0 − δ(N)

+
‖P̂Nf − f‖
p0 − δ(N)

. (18)

DIFFERENTIAL EQUATIONS Vol. 54 No. 9 2018



DISCRETIZATION METHODS FOR THREE-DIMENSIONAL SINGULAR INTEGRAL . . . 1229

By Eqs. (1) and (14), we have

Â(uN − u) + (P̂N Â− Â)uN = P̂Nf − f.

Applying the operator Â−1 to both sides of this relation and taking into account condition C,
we obtain the inequality

‖uN − u‖ ≤ δ(N)

p0
‖uN‖+

1

p0
‖P̂Nf − f‖,

whence, with regard to the estimate (18) and condition C, we conclude that ‖u − uN‖ → 0
for N → ∞.

Let condition D and inequality (8) be satisfied. By setting N ≥ N0 with regard to the fact

that the inner products (P̂N Â1vN , vN) and (P̂N Â2vN , vN ) are real numbers, for any vN ∈ HN we
obtain the chain of inequalities

|(P̂N ÂvN , vN)| ≥ |(P̂N Â2vN , vN )| = |(Â2vN , vN) + (P̂N Â2vN − Â2vN , vN )|
≥ |(Â2vN , vN )| − |(P̂N Â2vN − Â2vN , vN )| ≥ (p0 − δ(N))‖vN‖2. (19)

Thus, just as in the case considered above, there exists a unique solution of Eq. (14), which can be
obtained by MMD, and the norm of the solution uN satisfies the estimate (18).

Let u be a solution of Eq. (1), and let uN be a solution of Eq. (14). Obviously,

‖u− uN‖ ≤ ‖u− P̂Nu‖+ ‖P̂Nu− uN‖. (20)

Further, with regard to inequality (19), we obtain

(p0 − δ(N))‖P̂Nu− uN‖2 ≤ |(P̂N ÂP̂Nu− P̂N ÂuN , P̂Nu− uN)|
= |(P̂N ÂP̂Nu− P̂N Âu+ P̂N Âu− P̂N ÂuN , P̂Nu− uN)|.

Then, since P̂N Âu = P̂N ÂuN = P̂Nf , we obtain the estimate

‖P̂Nu− uN‖ ≤ 1

p0 − δ(N)
‖P̂N Â(P̂Nu− u)‖. (21)

Now from relations (17), (20), (21) with regard to the boundedness of the operator Â, we find that
‖u− uN‖ → 0 as N → ∞. The proof of the theorem is complete.

INTEGRAL EQUATIONS

The results obtained in the preceding section are of general character as applied to linear op-
erator equations. Their main objective is to prove the possibility of solving the equations under
certain conditions in principle. But in the specific applications of the results obtained above, it is
extremely important to take into account the special properties of the equations. In what follows,
we consider the integral equations describing the problem of scattering of electromagnetic fields on
three-dimensional inhomogeneous anisotropic dielectric structures [3].

Consider the three-dimensional singular integral equation for the electric field in a bounded
domain of inhomogeneity Q :


E(x) +
1

3
(ε̂r(x)− Î) 
E(x) − p.v.

∫

Q

((ε̂r(y)− Î) 
E(y), grad) gradG(R) dy

− k2
0

∫

Q

(ε̂r(y)− Î) 
E(y)G(R) dy = 
E0(x), x ∈ Q, (22)
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where G(R) = exp(ik0R)/(4πR), R = |x − y|, x = (x1, x2, x3), y = (y1, y2, y3), ε̂r = ε̂/ε0, and
k0 = ω(ε0μ0)

1/2. We also use the equivalent integro-differential equation


E(x)− k2
0

∫

Q

(ε̂r − 1) 
E(y)G(R) dy − grad÷
∫

Q

(ε̂r − 1) 
E(y)G(R) dy = 
E0(x). (23)

First, consider the case in which the Galerkin method is used to solve integral equations. If we
multiply Eqs. (22) or (23) by the tensor function (ε̂− ε0Î)

∗, then the obtained equivalent equations
satisfy conditions of the form (6) and (8) [1, p. 94]. The finite-dimensional subspaces HN of the

Hilbert space 
L2(Q) satisfying condition A can be constructed by various methods. For example,
these can be spaces of piecewise constant or piecewise linear functions. One can also consider
spline functions. This means that, by Theorem 2, to solve the equations numerically, one can use
SLAE (3), (4), and uN → u as N → ∞. Thus, the Galerkin method can be used to solve the
corresponding integral equations numerically, and MMD iterations can be used to solve the SLAE
obtained by discretization.

To apply the Galerkin method, it is necessary to calculate the inner products of the form

(Â
U, 
V )�L2
, (24)

where 
U and 
V are known vector functions and Â is the integral operator of the equations. The inner

product in the Hilbert space 
L2(Q) is defined as an appropriate integral. Therefore, to calculate
the product (24), one can use not the three-dimensional singular integral equation (22) but the
equivalent equation (23) and introduce the differentiation operation grad div into the integrand in
the inner product. Indeed, summing over repeated indices, we obtain

(
gradx divx

∫

Q


U(y)
1

4πR
dy, 
V (x)

)

�L2(Q)

=

∫

Q

∫

Q

(3αnαm − δnm)

4πR3
Um(y)V

∗
n (x) dx dy, (25)

where the numbers α1, α2, and α3 are determined by formulas (6) in [3].

The integral (25) exists in the usual sense. The inner products of other integral operators in (23)
are calculated in the standard way.

Now consider how the collocation method is used to solve the three-dimensional singular integral
equation (22) numerically. Note an important fact. The kernels of the integral operator of Eq. (22)
depend only on the difference of Cartesian coordinates of the points x and y. Therefore, in the
discretization, it is expedient to take this fact into account and obtain a SLAE matrix that has
appropriate symmetry properties.

To this end, in rectangular Cartesian coordinates we introduce finitely many points, i.e., a grid
such that the domain Q completely lies in the rectangular parallelepiped Π with sides Nlhl,
l = 1, 2, 3, where hl are the grid steps in the Cartesian coordinates. The parallelepiped Π is di-
vided by this grid into cells (elementary parallelepipeds) Π(p), p = (p1, p2, p3), pl = 0, . . . , Nl − 1.

We define the domain Q̃ as the union NQ of cells whose centers lie inside the domain Q. Obviously,
NQ ≤ N1N2N3. Then the choice of the grid is determined by the shape of the domain Q and the
requirement that the desired solution, the external field, and the medium parameters vary inside
the cells weakly. The nodal points at which the values of the desired functions are determined are
the centers x(p) of the cells with coordinates

x1(p) = p1h1 + h1/2, x2(p) = p2h2 + h2/2, x3(p) = p3h3 + h3/2.

Using the results obtained in [3], we can the represent integro-differential equation (23), which
is equivalent to the three-dimensional singular equation (22), as the following three-dimensional
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singular integral equation:


E(x) + γ̂(ε̂r(x)− Î) 
E(x)− lim
δ→0

∫

Q\Π(δ)

((ε̂r(y)− Î) 
E(y), grad) gradG(R) dy

− k2
0

∫

Q

(ε̂r(y)− Î) 
E(y)G(R) dy = 
E0(x), x ∈ Q. (26)

Here Π(δ) is a parallelepiped of diameter δ centered at the point x = y and the tensor γ̂ is
determined by the shape of the parallelepiped.

Then the integral equation (26) can be approximated by the following SLAE of dimension NQ

for the values of the unknown field u(p) at the nodal points of the domain Q :

u(p)−
∑

y(q)∈Q

B(p− q)v(q)u(q) = u0(p), x(p) ∈ Q, (27)

where u(p) ≡ u(x(p)), u0(p) ≡ u0(x(p)), u(q) ≡ u(x(q)). Since the nodal points are at the
cell center, it follows that the accuracy of the integral operator approximation is of order h2,
h =

√
h2
1 + h2

2 + h2
3.

In system (27), u(p) and u0(p) are vectors, and B(p − q) and v(q) are 3 × 3 matrices whose
entries are determined by the formulas

vmk(q) = εmk(y(q))− δmk,

Bnm(p − q) =

∫

Πq

G(R)

[(
3

R2
− 3ik0

R
− k2

0

)
αnαm +

(
k2
0 +

ik0
R

− 1

R2

)
δnm

]
dy, p 
= q.

Here
R =

√
(y1 − x1(p))2 + (y2 − x2(p))2 + (y3 − x3(p))2,

and the numbers αn are given by the relations

αn =
xn(p)− yn
|x(p)− y| , n = 1, 2, 3.

To determine Bnm(0, 0, 0), consider an auxiliary relation. It was shown in [4] that if 
J = const
in the domain V , then

grad divx

∫

V

1

4πR

J dy = −γ̂ 
J,

where R = |x − y| and the tensor γ̂ is determined by the shape of the domain boundary. If the
domain V is a parallelepiped, the Cartesian axes are parallel to its edges, and the point x is at its
center, then the tensor γ̂ has the diagonal form γnm = γnδnm. Here γn = (1/4π)Ωn, and Ωn is the
double solid angle with vertex at the parallelepiped center spanned by the face perpendicular to
the xn-axis, n = 1, 2, 3. Obviously, γ1 + γ2 + γ3 = 1.

By appropriate transformations, one obtains

γ1 = f(h1, h2, h3), γ2 = f(h2, h1, h3), γ3 = f(h3, h1, h2),

f(h1, h2, h3) = 1− 2

π

{
arcsin

[
h1h3√

h2
1 + h2

2

√
h2
2 + h2

3

]
+ arcsin

[
h1h2√

h2
1 + h2

3

√
h2
2 + h2

3

]}
.

Note that if the domain V is a cube, then, just as in the case of a ball, we have γ1 = γ2 = γ3 = 1/3.
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With regard to the preceding, we obtain

Bnn(0, 0, 0) = −γn +

∫

Πp

{
k2
0G(R)(1 − α2

n) +
k2
0

4πR
[3Φ(R)α2

n −Φ(R)]

}
dy, Bnm(0) = 0, n 
= m,

Φ(R) = 1 + (1− ik0R)
exp(ik0R)− 1− ik0R

(k0R)2
.

Note that Φ(R) is an everywhere differentiable function of coordinates. Also note that the use of
multi-index numbering for the unknown vector and the right-hand side of the equations allows one
to represent the symmetry properties of the obtained SLAE matrix in the most transparent form.

The above argument implies symmetry relations for the elements of the array {B(p − q)},

Bnm = Bmn, Bnm(p− q) = sgn(pn − qn) sgn(pm − qm)Bnm(p̃), (28)

where p̃ = (|p1 − q1|, |p2 − q2|, |p3 − q3|) and sgn(a) =

⎧
⎨

⎩
1, a ≥ 0,

−1, a < 0.

Obviously, it follows from (28) that the number of elements of the array {B(p− q)}, which must
be calculated and stored in the computer memory, is proportional to N = N1N2N3.

The quantities B(p) are calculated either analytically if the cell size is small or by numerical inte-
gration formulas. In both cases, the computational expenditures for determining the array {B(p)}
are a small part of the total amount of computations necessary to solve the SLAE.

If the integral equations are solved by the Galerkin method on a rectangular grid with equal
basis functions inside each cell (elementary parallelepiped), then we have the same estimate for the
number of distinct entries of the SLAE matrix.

Now we show that all conditions of Theorem 3 (condition D and an inequality of the form (8))
are satisfied for the collocation method applied to Eq. (26). Consider the subspaces HN as the

spaces of piecewise constant vector functions in the domain Q. Obviously, HN ⊂ 
L2(Q). We write
Eq. (26) in symbolic form


E(x)− 1

ε0
Ŝ((ε̂ − ε0Î) 
E)(x) = 
E0(x), x ∈ Q. (29)

To simplify the calculations, we assume that Im ε0 = 0, but this restriction can be removed.

We multiply Eq. (29) by the tensor function δ̂∗ = (ε̂− ε0Î)
∗ and obtain

(Â 
E)(x) ≡ δ̂∗(x) 
E(x)− δ̂∗(x)

ε0
Ŝ(δ̂ 
E)(x) = δ̂∗(x) 
E0(x), x ∈ Q. (30)

We assume that there is damping in the medium, but it can be arbitrarily small. This means that
the Hermitian tensor function δ̂2(x) = (ε̂(x)− ε̂∗(x))/(2i) is positive definite in the domain Q. It is
shown in the monograph [1, p. 94] that in this case an inequality of the form (8) holds for the

operator Â in Eq. (30). We also note that Eqs. (29) and (30) are equivalent.

Let A, B, and C be linear operators in a Hilbert space. Then (ABC)∗ = C∗B∗A∗. Therefore,
Eq. (30) implies that

Â = δ̂∗ − δ̂∗

ε0
Ŝδ̂, Â∗ = δ̂ − δ̂∗

ε0
Ŝ∗δ̂. (31)

We use (31) to show that the operators P̂N Â1 and P̂N Â2 are self-adjoint in the space HN and

inequality (16) holds for any vector vN ∈ HN . Here the P̂N are linear operators projecting the

space 
L2(Q) onto the subspace HN , and the self-adjoint operators Â1 and Â2 are determined
by (15).
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It follows from (31) and (15) that

Â2 =
1

2i

[
(δ̂∗ − δ̂)− δ̂∗

ε0
(Ŝ − Ŝ∗)δ̂

]
. (32)

For the integral operator Ŝ2 = (Ŝ − Ŝ∗)/(2i), by Eqs. (23) and (29), we have the representation

(Ŝ2
v)(x) =

∫

Q

(
v(y), gradx) gradx G2(R) dy + k2
0

∫

Q


v(y)G2(R) dy

≡
∫

Q

Ĝ(x− y)
v(y) dy; G2(R) = sin(k9R)/(4πR), R = |x− y|. (33)

Obviously, this representation implies that the tensor function Ĝ(x− y) is a differentiable function
of the points x and y.

We define the domain Q as the union of M elementary parallelepipeds of the grid introduced
above. We also assume that the tensor dielectric permeability function is constant in the interior of
each cell. In all Hilbert spaces HN , N > M , the domain Q does not vary, and the tensor dielectric
permeability function in Q remains unchanged. For example, this can be attained by decreasing
each step of the grid by a factor of two when passing to the successive subspace.

With regard to the above restrictions, from (32) and (33) we obtain

(P̂N Â2 − Â2) = − δ̂∗

ε0
(P̂N Ŝ2 − Ŝ2)δ̂,

which implies that

‖(P̂N Â2 − Â2)vN‖ ≤ 1

ε0
max
x∈Q

‖δ̂(x)‖2‖(P̂N Ŝ2 − Ŝ2)‖‖vN‖. (34)

By the representation (33), we obtain the estimate

‖(P̂N Ŝ2 − Ŝ2)‖ ≤
( NQ∑

n=1

∫

Qn

‖Ĝ(xn − y)− Ĝ(x− y)‖2 dx dy
)1/2

, (35)

where NQ is the number of elementary parallelepipeds in the domain Q and n is the sequential
number of the parallelepiped.

Since the tensor function Ĝ(x − y) is a smooth function of the points x and y, we have

‖(P̂N Ŝ2 − Ŝ2)‖ → 0 as N → ∞. (This corresponds to the fact that the grid steps tend to zero.)
Thus, the estimates (34) and (35) imply inequality (16).

Now let us show that the operators P̂N Â1 and P̂N Â2 are self-adjoint in the space HN . The op-
erator Â2 has the form (32), and the operator Â1 can be represented as

Â1 =
1

2

[
(δ̂∗ + δ̂)− δ̂∗

ε0
(Ŝ + Ŝ∗)δ̂

]
.

First, consider the operator Â2. Obviously, the operators P̂N (δ̂
∗ − δ̂)/(2i) are self-adjoint opera-

tors in the space HN . Now consider the integral operator in (32). By the above assumptions about

the tensor dielectric permeability function, we have P̂N δ̂
∗U = δ̂∗P̂NU , where U is an arbitrary

function. Therefore, we have the obvious relations

(P̂N δ̂
∗Ŝ2δ̂
u,
v ) = (P̂N Ŝ2δ̂
u, δ̂
v ), (
u, P̂N δ̂

∗Ŝ2δ̂
v ) = (δ̂
u, P̂N Ŝ2δ̂
v ),
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where 
u,
v ∈ HN . We write 
U = δ̂
u and 
V = δ̂
v. By the above assumptions, it is obvious

that 
U, 
V ∈ HN .

We write the integral operator Ŝ2 componentwise in Cartesian coordinates,

(P̂N Ŝ2)
U)n(xp) =

NQ∑

q=1

3∑

m=1

∫

Qq

Gnm(xp − y)Um(q) dy, (36)

where n = 1, 2, 3 and p = 1, . . . , NQ; Um(q) is the value of the mth component of the vector

function 
U in the qth elementary parallelepiped, and xp is the center of the cell Qp. The specific
form of the functions Gnm can be obtained from the representation (33).

With regard to the representation (36), we have

(P̂N Ŝ2

U, 
V )�L2

= ΔQ

NQ∑

q=1

NQ∑

p=1

3∑

n=1

3∑

m=1

Um(q)V
∗
n (p)

∫

Qq

Gnm(xp − y) dy,

(
U, P̂N Ŝ2

V )�L2

= ΔQ

NQ∑

q=1

NQ∑

p=1

3∑

n=1

3∑

m=1

Un(p)V
∗
m(q)

∫

Qq

G∗
nm(xp − y) dy,

(37)

where ΔQ is the volume of the elementary parallelepiped. Since the integral operator Ŝ2 is self-

adjoint in the space 
L2, we have

G∗
nm(x− y) = Gmn(y − x). (38)

In the second relation in (37), we rearrange the indices as n → m, m → n, p → q, q → p. Then,
with regard to (38), we obtain

(
U, P̂N Ŝ2

V )�L2

= ΔQ

NQ∑

q=1

NQ∑

p=1

3∑

n=1

3∑

m=1

Um(q)V
∗
n (p)

∫

Qp

Gnm(y − xq) dy. (39)

Now the first relation in (37) and the expression (39) imply that

(P̂N Ŝ2

U, 
V )�L2

− (
U, P̂N Ŝ2

V )�L2

= ΔQ

NQ∑

q=1

NQ∑

p=1

3∑

n=1

3∑

m=1

Um(q)V
∗
n (p)Gnmpq , (40)

where

Gnmpq =

[ ∫

Qq

Gnm(xp − y) dy −
∫

Qp

Gnm(y − xq) dy

]
. (41)

We change variables in the integrals (41). In the first integral, y = xq + z, i.e., yl = xql + zl,
l = 1, 2, 3, and in the second integral, y = xp + z. Then we obtain

Gnmpq =

[ ∫

Π0

Gnm(xp − xq − z)dz −
∫

Π0

Gnm(xp − xq + z) dz

]
, (42)

where Π0 is an elementary parallelepiped centered at the origin. We introduce the notation d =
xp − xq to write the second integral in (42) in the form

∫

Π0

Gnm(d+ z) dz =

h1/2∫

−h1/2

h2/2∫

−h2/2

h3/2∫

−h3/2

Gnm(d1 + z1, d2 + z2, d3 + z3) dz1 dz2 dz3. (43)

DIFFERENTIAL EQUATIONS Vol. 54 No. 9 2018



DISCRETIZATION METHODS FOR THREE-DIMENSIONAL SINGULAR INTEGRAL . . . 1235

Changing the variables z1 → −z1, z2 → −z2, z3 → −z3 in the second integral in (43), we obtain

∫

Π0

Gnm(xp − xq + z) dz =

∫

Π0

Gnm(xp − xq − z) dz. (44)

It follows from (42) and (44) that all elements in the array Gnmpq are zero. Thus, (40) implies that

the operator P̂N Â2 is self-adjoint in the space HN . Precisely in the same way, it is proved that the
operator P̂N Â1 is also self-adjoint in the space HN .

Under the above restrictions, the solution of the integral equation is smooth inside the elementary
parallelepipeds. Therefore, it is obvious that (17) holds.

Thus, all requirements of Theorem 3 (inequality (8) and condition D) are satisfied, and hence, the
considered three-dimensional singular integral equation can be solved by the collocation method.
Further, as N → ∞ (the grid steps tend to zero), the solutions of SLAE converge to the exact
solution of the integral equation, and the SLAE can be solved by the iteration MMD.

The above proof is sound under certain restrictions on the shape of the domain Q and the
medium parameters. But numerical studies show that one can efficiently solve specific problems
without these restrictions. In particular, the problems of wave scattering in media without decay
are solved successfully.

CONCLUSION

The theorems obtained in the paper contain conditions under which approximate solutions
of linear operator equations converge to the exact solution. This guarantees that the solution can
be obtained with any prescribed accuracy. The results can be used to justify numerical solutions of
many integral equations of mathematical physics, in particular, the integral equations of acoustics.
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