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Abstract—We propose a one-parameter family of adaptive numerical methods for solving the
Kepler problem. The methods preserve the global properties of the exact solution of the problem
and approximate the time dependence of the phase variables with the second or fourth approx-
imation order. The variable time increment is determined automatically from the properties of
the solution.
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1. INTRODUCTION

The solution of the Kepler problem describes the evolution of the state of two gravitationally
interacting mass points in the plane of their motion. The global properties of the solution de-
termine the geometry of the problem phase space and the most important physical properties.
They include the symplecticity of the mapping of the initial state into the current state and the
conservation of the phase volume, the standard integrals of motion (total linear momentum, total
angular momentum, and total energy), and the components of the Laplace–Runge–Lenz vector
[1, pp. 40–45; 2, pp. 7–8, 170–175].

Widely used numerical methods for solving the Cauchy problem for systems of ordinary differ-
ential equations distort the most important properties of the exact solution of the Kepler problem.
This distortion is most noticeable on large time intervals. For example, the Verlet method [3] and
the variational method [4] are symplectic, conserve the total momentum and the total angular mo-
mentum, but do not conserve the total energy and the Laplace–Runge–Lenz vector. The discrete
gradient method [2, pp. 162–163; 5; 6] conserves the total momentum, the total angular momentum,
and the total energy but is not symplectic. Finally, the well-known explicit Runge–Kutta method
(1/6, 1/3, 1/3, 1/6) of the fourth approximation order [7, p. 144 of the Russian translation] is not
symplectic and does not conserve any of the first integrals of the Kepler problem except for the
total linear momentum. As a result, the methods listed above give approximate orbits of motion
qualitatively differing from the exact orbit.

In the case of strongly elongated orbits, the components of the solution of the Kepler problem
rapidly change on time intervals small compared with the orbit period. There arises a peculiar
boundary layer in a neighborhood of the minimum distance to the force center. In these cases,
methods with constant integration step turn out to be inefficient [8]. Therefore, a procedure for
choosing the increment value depending on the properties of the solution is needed. It is well known
that the standard step choice procedures like the Runge rule significantly distort the solution of
the Cauchy problem for Hamiltonian systems [2, p. 255]. Therefore, the development of adaptive
numerical methods that are of a sufficiently high approximation order and, in the framework of
exact arithmetics, conserve the global properties of exact solutions of the problem is an important
problem of computational mathematics.
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In the recent years, increased attention has been paid to the development of numerical methods
for solving the Kepler problem [9–13]. In particular, new methods based on the exact linearization
of the problem by the Levi-Civita transformation have been created [9, 12].

In the present paper, we state the Kepler problem, list the global properties of its solution, and
describe a time increment choice procedure based on a specific parametrization of the solution.
The main result is a new one-parameter family of one-step adaptive numerical methods conserving
all above-listed global properties of the solution of the Kepler problem and approximating the time
dependence of the phase variables with the second or the fourth approximation order. This family
differs from the previously proposed family [12, 13] in the integration step choice procedure. There
are reasons to assume that the new family of methods will be more efficient in the analysis of
strongly elongated orbits than the methods used in [13].

2. KEPLER PROBLEM

2.1. Statement of the Problem and Global Properties of Its Solutions

The problem on the motion of gravitationally interacting mass points of masses m1 and m2 in
the absence of an external force field can be reduced to the problem on the two-dimensional motion
of a single virtual point of unit mass in a central field [2, p. 7],

dvx/dt = −∂H(vx, vy, x, y)/∂x = −γMr−3x, (1)

dvy/dt = −∂H(vx, vy, x, y)/∂y = −γMr−3y, (2)

dx/dt = ∂H(vx, vy, x, y)/∂vx = vx, (3)

dy/dt = ∂H(vx, vy, x, y)/∂vy = vy, (4)

vx(0) = vx,0, vy(0) = vy,0, x(0) = x0, y(0) = y0. (5)

A fixed attracting force center is located at the origin (0, 0). The unknown functions x =
x(t), y = y(t) and vx = vx(t), vy = vy(t) determine the Cartesian coordinates and the velocity
components of the virtual point in the plane of motion at time t > 0. The numbers x0, y0, vx,0, and
vy,0 define the known initial state of the dynamical system. The Hamiltonian H = H(vx, vy, x, y) has
the formH(vx, vy, x, y) = 0.5v2−γMr−1, where v = (v2x+v2y)

1/2, r = (x2+y2)1/2, v0 = (v2x,0+v2y,0)
1/2,

r0 = (x2
0 + y2

0)
1/2, M = m1 +m2, and γ > 0 is the gravitational constant.

The motion is two-dimensional if the condition lz,0 = x0vy,0 − y0vx,0 �= 0 is satisfied. Otherwise,
the motion is one-dimensional and occurs along the line passing through the initial position of the
virtual point and the origin. In what follows, we assume that lz,0 �= 0.

The solutions (vx(t), vy(t), x(t), y(t)), t > 0, of the Kepler problem have several global properties
of important geometric and physical meaning [2, p. 7].

1. Any solution realizes a symplectic mapping φ(t) of the initial state into the current state,

(vx,0, vy,0, x0, y0)
φ(t)�−→ (vx(t), vy(t), x(t), y(t)), Φ(t)TJΦ(t) ≡ J,

where

Φ(t) =
∂(vx(t), vy(t), x(t), y(t))

∂(vx,0, vy,0, x0, y0)

is the Jacobian matrix of the mapping φ(t) and

J =

[
0 E

−E 0

]
, E =

[
1 0

0 1

]
.
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2. The angular momentum lz, the total energy H, the components of the Laplace–Runge–Lenz
vector eLRL, and the phase volume vph are conserved on any solution of problem (1)–(5),

lz(t) = x(t)vy(t)− y(t)vx(t) ≡ lz(0) = lz,0, (6)

H(t) = 0.5v2(t)− γMr(t)−1 ≡ 0.5v20 − γMr−1
0 = −H∗, (7)

eLRL,x(t) = v2y(t)x(t)− vx(t)vy(t)y(t)− γMr−1(t)x(t)

= vy(t)lz − γMr−1(t)x(t) ≡ eLRL,x(0) = eLRL,x,0, (8)

eLRL,y(t) = v2x(t)y(t)− vx(t)vy(t)x(t) − γMr−1(t)y(t)

= −vx(t)lz − γMr−1(t)y(t) ≡ eLRL,y(0) = eLRL,y,0, (9)

vph(t) ≡ vph(0) = vph,0.

The first integrals (6)–(9) are not functionally independent. They are related by the identity

2Hl2z = e2LRL,x + e2LRL,y − γ2M2.

2.2. Orbit and the Velocity Hodograph

The trajectory of the dynamical system lies in the intersection of the manifolds

lz(vx, vy, x, y) = lz,0, eLRL,x(vx, vy, x, y) = eLRL,x,0, eLRL,y(vx, vy, x, y) = eLRL,y,0

in the phase space. The projection of the trajectory onto the (x, y)-plane is the orbit O(x, y) = 0,
and its projection onto the (vx, vy)-plane is the velocity hodograph Hv(vx, vy) = 0. The equations
of the orbit and the velocity hodograph can be derived from the conservation laws (6)–(9). Indeed,
identities (6)–(9) imply that

r = (γM)(0.5v2 +H∗)−1, (10)

x = −(γM)−1(eLRL,x,0 − lz,0vy)r = −(eLRL,x,0 − lz,0vy)(0.5v
2 +H∗)−1, (11)

y = −(γM)−1(eLRL,y,0 + lz,0vx)r = −(eLRL,y,0 + lz,0vx)(0.5v
2 +H∗)−1. (12)

The sum of squared relations (11) and (12) gives the equation of the velocity hodograph,

Hv(vx, vy) = (eLRL,x,0 − lz,0vy)
2 + (eLRL,y,0 + lz,0vx)

2 − (γM)2 = 0. (13)

The hodograph is either the circle of radius (γMl−1
z,0)

2 centered at the point

(−eLRL,y,0l
−1
z,0, eLRL,x,0l

−1
z,0)

for H∗ � 0 or the arc v2 � −2H∗ of this circle for H∗ < 0.

We eliminate the variables vx and vy from (10) by using (11) and (12) and obtain the orbit
equation

O(x, y) = (γ2M2 − e2LRL,x,0)x
2 + (γ2M2 − e2LRL,y,0)y

2

− 2eLRL,x,0eLRL,y,0xy + 2l2z,0eLRL,x,0x+ 2l2z,0eLRL,y,0y − l4z,0 = 0. (14)

For H∗ > 0, the orbit is an ellipse with eccentricity

ε = (e2LRL,x,0 + e2LRL,y,0)
1/2(γM)−1, ε ∈ (0, 1).

For H∗ < 0 (respectively, H∗ = 0), the orbit is a hyperbola with ε > 1 (respectively, a parabola
with ε = 1).
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2.3. Reduction of the Equations of Motion and Parametrization of the Solution

The substitution of the expressions for r, x, and y from (10)–(12) into Eqs. (1) and (2) gives
nonlinear differential equations determining the dependence of the phase variables vx, vy on t,

dvx/dt = −γMr−3x = (γM)−2(eLRL,x,0 − lz,0vy)(0.5(v
2
x + v2y) +H∗)2,

dvy/dt = −γMr−3y = (γM)−2(eLRL,y,0 + lz,0vx)(0.5(v
2
x + v2y) +H∗)2.

For the exact linearization of these equations, we parametrize the solutions of the Cauchy prob-
lem. Instead of t, we introduce a new independent variable ω by setting

dt = r2(t(ω))dω, t(0) = 0 (15)

and obtain the system of linear Hamiltonian equations

dvx/dω = −lz,0vy + eLRL,x,0 = −∂W/∂vy, (16)

dvy/dω = lz,0vx + eLRL,y,0 = ∂W/∂vx (17)

with the Hamiltonian W (vx, vy) = (2lz,0)
−1Hv(vx, vy).

It follows from (10) and (15) that

dt/dω = (γM)2(0.5(v2x(ω) + v2y(ω)) +H∗)−2, (18)

or

t(ω) = (γM)2
ω∫

0

(0.5v2(x) +H∗)−2 dx. (19)

Note that the parametrization (15) differs from the parametrization dt = 2r(t(θ))dθ, t(0) = 0
considered in [12, 13].

2.4. Parametric Representation of the Exact Solution of the Problem

The exact solution of the Kepler problem can be obtained as a combination of elementary
functions by various methods [1, pp. 31–37; 13; 14, pp. 43–54]. In the present paper, we use the
parametrization (15), vx = vx(ω), vy = vy(ω), t = t(ω), x = x(vx(ω), vy(ω)), y = y(vx(ω), vy(ω)).

For system (16), (17), the exact solution of the Cauchy problem vx(0) = vx,0, vy(0) = vy,0 has
the form

vx(ω) = vx,0 − (vx,0 + eLRL,y,0l
−1
z,0)(1− cos η)− sgn(lz,0)(vy,0 − eLRL,x,0l

−1
z,0) sin η

= vx,0 − γMr−1
0 l−1

z,0[x0 sgn(lz,0) sin η − y0(1− cos η)], (20)

vy(ω) = vy,0 − (vy,0 − eLRL,x,0l
−1
z,0)(1− cos η) + sgn(lz,0)(vx,0 + eLRL,y,0l

−1
z,0) sin η

= vy,0 − γMr−1
0 l−1

z,0[y0 sgn(lz,0) sin η + x0(1− cos η)], (21)

where η = |lz,0|ω.
The substitution of the solution (20), (21) into (19) permits one to find a monotone increasing

dependence of the variable t on the parameter ω. An analysis shows that if H∗ > 0 (0 < ε < 1),
then the desired dependence exists for all ω ∈ [0,+∞). For H∗ < 0 (ε > 1), it exists on the
half-interval [0, ω∞). In the first case, it is convenient to write it as

t(ω) = Ttm+ t′(ω′), ω = 2π|lz,0|−1m+ ω′, (22)

ω′ ∈ [0, 2π|lz,0|−1], 0 < t′ < Tt = t′(2π|lz,0|−1),

where m is the number of periods Tω = 2π|lz,0|−1 of the solution (20), (21) on the interval [0, ω],
m = 0, 1, . . . , and Tt is the period of the solution in the variable t. In the second case, we write

t(ω) = t′(ω′), ω′ ∈ [0, ω∞), (23)

where ω∞ is the minimum value of ω for which 0.5v2(ω) +H∗ = 0, H∗ < 0.
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One can determine the dependence t′(ω′) for H∗ > 0 and H∗ < 0 as a combination of elementary
functions using reference literature, say, [15, pp. 163–164]. Since the formulas are very cumbersome,
we do not write out the dependence t′(ω′) in final form here.

Thus, for H∗ > 0 the solution of the problem is periodic with period Tω = 2π|lz,0|−1. The de-
pendence (22) of time t′ on the parameter ω′ is defined for ω′ ∈ [0, 2π|lz,0|−1]. The time period of
the solution is calculated by the formula

Tt = t′(2π|lz,0|−1) = 2π|lz,0|3(γM)−2(1− ε2)−3/2 = 2πγM (2H∗)−3/2. (24)

For H∗ < 0 (ε > 1), the motion is infinite, and the dependence (23) is defined on the half-interval
[0, ω∞), 0 < ω∞ < Tω. One has t → +∞ and v → (2H∗)1/2 as ω′ → ω∞ − 0 (see (19)).

Formulas (10)–(12) and (20)–(24) give a parametric representation of the exact solution of prob-
lem (1)–(5) as a combination of elementary functions. This solution permits developing an exact
numerical method for solving the Kepler problem. It is also used to test the family of numerical
methods proposed below.

3. FAMILY OF ADAPTIVE NUMERICAL METHODS
FOR SOLVING THE KEPLER PROBLEM

3.1. Construction of Numerical Methods

Based on the conservation laws (6)–(9), the parametrization (15), and two-stage symmetrically
symplectic Runge–Kutta methods [16, 17], we obtain a new family

(vx,i, vy,i, xi, yi, ti) �→ (vx,i+1, vy,i+1, xi+1, yi+1, ti+1)

of adaptive numerical methods conserving the global properties of the exact solution of the Kepler
problem. The requirement 0.5(v2x,i+1 + v2y,i+1)− γMr−1

i+1 = −H∗ of total energy conservation at any
step of the numerical method implies the following expression for ri+1 via vx,i+1 and vy,i+1 :

ri+1 = γM(0.5(v2x,i+1 + v2y,i+1) +H∗)−1, i = 0, 1, . . . (25)

The requirement of conservation of the components of the Laplace–Runge–Lenz vector, eLRL,x,i+1 =
eLRL,x,i, eLRL,y,i+1 = eLRL,y,i, and the angular momentum, lz,i+1 = lz,i, i = 0, 1, . . . , allows one to
express the coordinates via the velocity in the approximate solution as

xi+1 = −(γM)−1(eLRL,x,i − lz,ivy,i+1)ri+1

= −(eLRL,x,i − lz,ivy,i+1)(0.5(v
2
x,i+1 + v2y,i+1) +H∗)−1

= −(eLRL,x,0 − lz,0vy,i+1)(0.5(v
2
x,i+1 + v2y,i+1) +H∗)−1, (26)

yi+1 = −(γM)−1(eLRL,y,i + lz,ivx,i+1)ri+1

= −(eLRL,y,i + lz,ivx,i+1)(0.5(v
2
x,i+1 + v2y,i+1) +H∗)−1

= −(eLRL,y,0 + lz,0vx,i+1)(0.5(v
2
x,i+1 + v2y,i+1) +H∗)−1. (27)

Squaring relations (26) and (27) and summing the results, one obtains

Hv(vx,i+1, vy,i+1) = (eLRL,x,0 − lz,0vy,i+1)
2 + (eLRL,y,0 + lz,0vx,i+1)

2 − (γM)2 = 0, (28)

which means that the point (vx,i+1, vy,i+1) in the approximate solution belongs to the exact velocity
hodograph (see Eq. (13)). Eliminating the variables vx,i+1 and vy,i+1 from (25) with the use of
relations (26) and (27), one obtains

O(xi+1, yi+1) = (γ2M2 − e2LRL,x,0)x
2
i+1 + (γ2M2 − e2LRL,y,0)y

2
i+1

− 2eLRL,x,0eLRL,y,0xi+1yi+1 + 2l2z,0eLRL,x,0xi+1 + 2l2z,0eLRL,y,0yi+1 − l4z,0 = 0,

which means that the point (xi+1, yi+1) in the approximate solution belongs to the exact orbit (14).

Thus, the conditions that the first integrals are conserved in the approximate solution at any step
of the proposed methods imply that the coordinates depend on the velocities according to (25)–(27)
and the exact velocity hodograph (13) and the exact orbit (14) are conserved.
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We associate the points (vx,i+1, vy,i+1) of the velocity hodograph and accordingly the points
(xi+1, yi+1) of the orbit to the time ti+1; i.e., we approximate Eqs. (16)–(18) so as to satisfy condi-
tion (28). This can be done with the use of symmetrically symplectic Runge–Kutta methods [16, 17].
It is well known that these methods conserve the quadratic first integrals of the equations to be
approximated [2, p. 97]. Recall that Eqs. (16), (17) have a first integral Hv that is a second-
order polynomial. Therefore, the numerical methods chosen to solve the Cauchy problem for
Eqs. (16), (17) automatically conserve the velocity hodograph.

We restrict ourselves to two-stage methods for approximating Eqs. (16)–(18). Obviously, sym-
plectic Runge–Kutta methods with more stages can be used to derive methods of higher approxi-
mation order.

All two-stage symmetrically symplectic Runge–Kutta methods are contained in the one-param-
eter family with a free parameter s, −1 < s < 0, and are described by the Butcher table shown in
the table below (see [7, p. 140 of the Russian translation]).

The methods are of least of the second approximation order. For s = 0, the two-stage method
degenerates and becomes a one-stage symmetrically symplectic method, the midpoint method.
For s = −3−1/2, the two-stage method is of the fourth approximation order.

The one-parameter family of two-stage symmetrically symplectic methods gives the system of
equations

kvx,1 = eLRL,x,0 − lz,0(vy,i + 0.5Δω(0.5kvy,1 + (0.5 + s)kvy,2)), (29)

kvx,2 = eLRL,x,0 − lz,0(vy,i + 0.5Δω((0.5 − s)kvy,1 + 0.5kvy,2)), (30)

kvy,1 = eLRL,y,0 + lz,0(vx,i + 0.5Δω(0.5kvx,1 + (0.5 + s)kvx,2)), (31)

kvy,2 = eLRL,y,0 + lz,0(vx,i + 0.5Δω((0.5 − s)kvx,1 + 0.5kvx,2)) (32)

for the unknowns kvx,1, kvx,2, kvy,1, and kvy,2 and the formulas (see Eq. (18))

kt,1 = (γM)2(0.5((vx,i + 0.5Δω(0.5kvx,1 + (0.5 + s)kvx,2))
2

+ (vy,i + 0.5Δω(0.5kvy,1 + (0.5 + s)kvy,2))
2) +H∗)−2,

kt,2 = (γM)2(0.5((vx,i + 0.5Δω((0.5 − s)kvx,1 + 0.5kvx,2))
2

+ (vy,i + 0.5Δω((0.5 − s)kvy,1 + 0.5kvy,2))
2) +H∗)−2

for calculating kt,1 and kt,2. The solution of Eqs. (29)–(32) has the form

kvx,1 = ((eLRL,x,0 − lz,0vy,i)(1 − 0.25s(s + 1)(Δω)2l2z,0)

+ 0.5(eLRL,y,0 + lz,0vx,i)(Δω)lz,0(−(s+ 1) + 0.25s3(Δω)2l2z,0))Δ
−1,

kvx,2 = ((eLRL,x,0 − lz,0vy,i)(1 − 0.25s(s − 1)(Δω)2l2z,0)

+ 0.5(eLRL,y,0 + lz,0vx,i)(Δω)lz,0((s− 1)− 0.25s3(Δω)2l2z,0))Δ
−1,

kvy,1 = ((eLRL,y,0 + lz,0vx,i)(1 − 0.25s(s + 1)(Δω)2l2z,0)

− 0.5(eLRL,x,0 − lz,0vy,i)(Δω)lz,0(−(s+ 1) + 0.25s3(Δω)2l2z,0))Δ
−1,

kvy,2 = ((eLRL,y,0 + lz,0vx,i)(1 − 0.25s(s − 1)(Δω)2l2z,0)

− 0.5(eLRL,x,0 − lz,0vy,i)(Δω)lz,0((s− 1)− 0.25s3(Δω)2l2z,0))Δ
−1,

where Δ = 1 + 0.25(1 − 2s2)(Δω)2l2z,0 + (1/16)s4(Δω)4l4z,0.

Table

0.5(1 + s) 0.25 0.25 + 0.5s

0.5(1− s) 0.25− 0.5s 0.25

0.5 0.5
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The velocity values and the time increment at the (i+1)st step are determined by the formulas

vx,i+1 = vx,i + 0.5Δω(kvx,1 + kvx,2)

= vx,i + 0.5Δω[(eLRL,x,0 − lz,0vy,i)(1 − 0.25s2(Δω)2l2z,0)− 0.5(eLRL,y,0 + lz,0vx,i)(Δω)lz,0]Δ
−1

= vx,i + 0.5Δω[(eLRL,x,0 − lz,0vy,i)q1 − 0.5(eLRL,y,0 + lz,0vx,i)q2], (33)

vy,i+1 = vy,i + 0.5Δω(kvy,1 + kvy,2)

= vy,i + 0.5Δω[(eLRL,y,0 + lz,0vx,i)(1 − 0.25s2(Δω)2l2z,0) + 0.5(eLRL,x,0 − lz,0vy,i)(Δω)lz,0]Δ
−1

= vy,i + 0.5Δω[(eLRL,y,0 + lz,0vx,i)q1 + 0.5(eLRL,x,0 − lz,0vy,i)q2], (34)

ti+1 = ti + 0.5Δω(kt,1 + kt,2), (35)

where q1 = (1− 0.25s2(Δω)2l2z,0)Δ
−1, q2 = (Δω)lz,0Δ

−1.

To calculate xi+1 and yi+1, we use (25)–(27).

4. MAIN RESULT

We have constructed a new one-parameter family of adaptive numerical methods with com-
putational formulas (33)–(35), (26), and (27) for the Kepler problem (1)–(5) starting from the
conservation laws for the angular momentum, the total energy, and the Laplace–Runge–Lenz vec-
tor. The construction is based on the parametrization (15) and two-stage symmetrically symplectic
Runge–Kutta methods [16, 17]. The above-described construction of the methods implies the fol-
lowing assertions.

Proposition 1. The methods are adaptive. The subsequent increment in time ti on the nonuni-
form grid Ωt = {ti : ti = ti−1 + τi, i = 1, 2, . . .} is chosen automatically based on the properties of
the solution of the problem. In a neighborhood of the force center, where the force and the velocity
vary most rapidly, the time increment is significantly less than on the other part of the trajectory
of motion. The increment scale is determined by the parameter Δω, which is a small fraction of
either the solution period Tω (H∗ > 0) or of the value ω∞ (H∗ < 0).

Proposition 2. The methods are conservative. For any admissible value of the parameter Δω,
in the framework of exact arithmetics, the methods conserve the angular momentum, the Laplace–
Runge–Lenz vector, the total energy, the orbit, and the velocity hodograph.

Proposition 3. For small values of the parameter Δω (Δω → 0) and s ∈ (−1, 0], the methods
for approximating the time dependence of the phase variables are at least of the second approxima-
tion order. For s = −3−1/2, the method is of the fourth approximation order.

Proposition 4. The methods realize a symplectic mapping

(vx,i, vy,i, xi, yi) �→ (vx,i+1, vy,i+1, xi+1, yi+1).

Using formulas (33), (34), (26), and (27) to calculate the matrix elements

Fi+1 = ∂(vx,i+1, vy,i+1, xi+1, yi+1)/∂(vx,i, vy,i, xi, yi),

one can readily see that all six nontrivial elements of the skew-symmetric symplectic defect matrix
ΔSi+1 = FT

i+1JFi+1 − J are zero.

The results of testing the new methods for solving the Kepler problem by using the exact solution
showed their high efficiency in the analysis of elliptic strongly elongated orbits compared with the
numerical methods listed in the introduction.
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