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Abstract—The eigenvalue problem is studied for a quasilinear second-order ordinary differential
equation on a closed interval with Dirichlet’s boundary conditions (the corresponding linear
problem has an infinite number of negative and no positive eigenvalues). An additional (local)
condition imposed at one of the endpoints of the closed interval is used to determine discrete
eigenvalues. The existence of an infinite number of (isolated) positive and negative eigenvalues
is proved; their asymptotics is specified; a condition for the eigenfunctions to be periodic is
established; the period is calculated; and an explicit formula for eigenfunction zeroes is provided.
Several comparison theorems are obtained. It is shown that the nonlinear problem cannot be
studied comprehensively with perturbation theory methods.
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1. PROBLEM STATEMENT AND INTRODUCTORY REMARKS

The theory of propagation of electromagnetic waves in dielectric waveguides filled with a linear
medium is currently a fully fledged scientific discipline (see, for example, [1–7]). Tikhonov and
Samarskii [1] laid a foundation to linear waveguide theory. If the permittivity of a medium that
guides waves depends on electromagnetic field (the nonlinear medium) then we arrive at nonlinear
eigenvalue problems [8–12], with no theory developed for them. However, the method of integral
dispersion equations [10–12] proves effective for a certain class of such nonlinear problems.

Let us consider a planar waveguide Σ := {(x, y, z) : 0 ≤ x ≤ h, (y, z) ∈ R
2} with perfectly

conductive walls that a monochromatic TE-polarized wave (E,H)e−iωt travels through, where ω is
the circular frequency,

E = (0,Ey(x), 0)
TBeiγz; and H = (Hx(x), 0,Hz(x))

TBeiγz (1.1)

are the complex amplitudes [8], and γ is a real unknown parameter. The medium permittivity ε
in a layer has the form εl + α

∑q

i=1 αi|E|2i, where εl is a real constant, α > 0, αq = 1, and αi ≥ 0
(i = 1, . . . , q − 1).

The tangential components of electric field E (in this case, it is field’s yth component) are
known [13, p. 85] to turn zero on perfectly conductive walls. It is natural to take that the zth
component of magnetic field H has a fixed (given) value on one of the boundaries, for example,
at x = 0. The field (1.1) satisfies Maxwell’s equations

rotH = −iωεE, rotE = iωμH, (1.2)

where μ > 0 is the (constant) permeability of free space.

Values γ = γ̂ such that there exists a nontrivial field (1.1) that meets the above requirements
are referred to as waveguide’s propagation constants. Having the full set of propagation constants
(or the essential properties thereof) known is important when designing waveguide systems.
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To the best of our knowledge, the solvability of the thus-stated problem has not been established
even at q = 2. Results on the solvability at q = 1 for an open waveguide were first obtained
in [11, 14]; similar results for a closed waveguide follow from the results in the present paper
(Section 2.2); see [15] for some results at q = 2 for an open waveguide.

The above nonlinearity at q = 1, 2, 3 is being actively studied, in particular, in nonlinear op-
tics [9, 16, 17] and Schrödinger-equation theory [18]. Of particular significance in physics is also
the case of q > 3, as the above nonlinearity results from expanding the polarization vector in
powers of the field [16, p. 22]. Truncating this expansion to a finite number of terms, one obtains
a nonlinearity in the form of a polynomial (q = 1, 2, 3 represent the simplest of possible situations).
The mathematical theory of propagation of polarized waves in circular cylindrical waveguides filled
with a nonlinear medium is far from being completed even for a nonlinearity of the form |E|2 [19, 20].

Substituting the expressions (1.1) in Eqs. (1.2), allowing for the conditions for the tangential
components of electric field to vanish at the waveguide boundaries, and denoting ω2μεl − γ2 by −λ
and Ey by y, we arrive at the following eigenvalue problem:

−y′′ = −λy + α

q∑

i=1

αiy
2i+1, y ≡ y(x), x ∈ [0, h], (1.3)

with Dirichlet’s boundary conditions

y(0) = y(h) = 0 (1.4)

and the additional condition
y′(0) = p, (1.5)

where p is a real constant (without loss of generality p > 0), q is a natural number, α > 0, αq = 1
and αi ≥ 0 (i = 1, . . . , q−1) are real constants, λ is an unknown real spectral parameter. We assume
that

y(x) ∈ C2[0, h]. (1.6)

Problem (1.3)–(1.6) will be denoted as P = P (α, q, p).

Definition. A value λ = λ̂ such that there exists a function y ≡ y(x; λ̂ ) that satisfies problem P

is called an eigenvalue, while the function y(x; λ̂ ) is referred to as an eigenfunction of this problem.

Although of importance in waveguide theory are only those values λ that satisfy the condition
λ > −ω2μεl, problem P will be studied for all real values λ. In particular, this will make it possible
to view qualitative distinctions in the spectral properties of an operator defined by problem P for
negative and positive values λ.

At α = 0 we obtain a linear problem, which will be denoted as P0. This problem is known

to have an infinite number of simple (multiplicity 1) negative eigenvalues λ = λ̃−
n , where λ̃−

n =
−π2h−2(n − 1)2, n = 2, 3, . . . Given the above numbering, the eigenfunction that corresponds to

the eigenvalue λ̃−
n has precisely n zeroes within the closed interval [0, h].

There are no positive eigenvalues for problem P0. Those eigenvalues λ̃
−
n that satisfy the condition

ω2μεl + λ̃−
n > 0 correspond to the linear case of wave propagation.

Note that many problems in nonlinear waveguide theory remain out of reach for the avail-
able methods [21–25]. For example, the known methods based on seeking the minima of certain
functionals [21, 22] cannot be applied to studying problem P, because, among others, in the mono-
graph [21, p. 289], the additional condition (natural for the applicability of variational methods)
has the form ‖y‖ = const , while in the work [22], such a condition is not used at all. As shown
below (Theorem 2.4), neither the theory of ramification of solutions nor perturbation theory can
be used for the comprehensive study of problem P either. Special mention should be made of the
work [26], where, based on the theory set forth in the monograph [21], when solving the nonlinear
problem of waveguide theory, Kurseeva and Smirnov proved the existence of an infinite number of

DIFFERENTIAL EQUATIONS Vol. 54 No. 2 2018



ON A NONLINEAR EIGENVALUE PROBLEM RELATED TO THE THEORY . . . 167

eigenvalues under the additional condition ‖y‖ = const, with different values of const correspond-
ing to different eigenvalues. In addition, it can be inferred from the work [26] that the theory from
the monograph [21] is inapplicable in the case where, at least, one of the waveguide boundaries is
open or the nonlinearity is not a power function.

2. MAIN RESULTS

2.1. Dispersion Equation

Let a function T ≡ T (λ) have the form

T (λ) =

+∞∫

−∞

ds

w(s;λ)
, (2.1)

where

w(s;λ) = s2 − λ+ α

q∑

i=1

αiτ
i, (2.2)

and a function τ ≡ τ(s;λ) be implicitly defined by the relation

F (s, τ ;λ, p) = 0, (2.3)

where F (s, τ ;λ, p) = α
∑q

i=1 αi(i+ 1)−1τ i+1 + (s2 − λ)τ − p2.

The following is an important result.

Theorem 2.1 (on spectral equivalence). A number λ̂ is an eigenvalue of problem P if and only

if there exists an integer n = n̂ ≥ 2 such that λ = λ̂ is a solution of the equation

(n− 1)T (λ) = h (2.4)

for n = n̂; the eigenfunction y(x; λ̂ ) has n̂ (simple) zeroes xi, where

xi = (i− 1)T (λ̂) = (i− 1)
h

n̂ − 1
, i = 1, . . . , n. (2.5)

Relation (2.4) is a family (but not a system) of equations for different n. In order to find all
eigenvalues, it is necessary to solve for λ each of the equations in (2.4). Equation (2.4) is called the
dispersion equation [10, 11].

Let us separately formulate the following assertion.

Assertion 2.1. A function T ≡ T (λ) possesses the following properties.

1. T (λ) ∈ C(−∞,+∞).

2. Let δ > 0 be an arbitrary fixed number ; then for all λ < −δ the following estimate holds true :

π√
−λ+ αα∗

< T (λ) <
π√
−λ

, (2.6)

where α∗ is a constant that only depends on δ.

3. For large λ > 0, we have the asymptotic formula

T =

(

1 +
1

q

)
lnλ

λ1/2
+

1

λ1/2
ln

(
22+2/q

p2

(
q + 1

α

)1/q)

+O(λ−r−1/2), (2.7)

where 0 < r ≤ 1/q.

DIFFERENTIAL EQUATIONS Vol. 54 No. 2 2018



168 VALOVIK

Of certain interest is the following theorem.

Theorem 2.2 (on periodicity). If an eigenfunction y(x; λ̂ ) has more than one zero for x ∈ (0, h),

it is periodic with the period 2T (λ̂).

2.2. Existence of Eigenvalues and Comparison Theorems

An eigenvalue λ that is a solution of Eq. (2.4) will be denoted, depending on the sign, as λ̂±
n

(previously, by λ̃−
n we denoted the decreasingly ordered eigenvalues of problem P0); in this case,

we take the sequences λ̂−
n and λ̂+

n to be ordered decreasingly and increasingly, respectively. If for a
certain n = k, Eq. (2.4) has several like-sign roots (if multiple, then with the multiplicity taken into

account) then all such negative roots will be denoted as λ̂−
k , with the positive ones denoted as λ̂+

k .
When it does not lead to confusion, the indices may be dropped. The multiplicity of an eigenvalue
is understood to be its multiplicity as a root to dispersion equation (2.4).

Let δ > 0 be an arbitrary fixed number and n−
0 ≥ 2 be some integer number. The solvability of

problem P for λ < −δ is established by the following assertion.

Theorem 2.3. Problem P has an infinite number of negative eigenvalues λ̂−
n , where

n = n−
0 , n

−
0 + 1, . . . , with an accumulation point at infinity. Besides , the following assertions

hold true.

1. The asymptotics λ̂−
n+1 = O(n2) takes place.

2. lim
α→+0

λ̂−
n = λ̃−

n .

3. For any sufficiently large n, eigenvalue λ̂−
n is simple (of multiplicity 1).

4. For any n ≥ n−
0 there exists at least one pair (λ̂−

n , y(x; λ̂
−
n )) such that the eigenfunction

y(x; λ̂−
n ) has n simple zeroes (for any sufficiently large n this pair is unique).

5. The following inequalities hold for any sufficiently large n :

λ̃−
n ≤ λ̂−

n ≤ λ̃−
n−1. (2.8)

6. The following asymptotic formula is valid for sufficiently large |λ̂| :

max
x∈[0,h]

|y(x; λ̂)| = O(|λ̂|−1/2). (2.9)

The number n−
0 is defined as an integer such that (n−

0 − 1) max
λ∈(−∞,−δ)

T (λ) ≥ h, and

(n−
0 − 2) max

λ∈(−∞,−δ)
T (λ) < h.

Let n+
0 ≥ 2 be some integer number. The solvability of problem P for λ > 0 is established by

the following.

Theorem 2.4. Problem P has an infinite number of positive eigenvalues λ̂+
n , where n =

n+
0 , n

+
0 + 1, . . . , with an accumulation point at infinity. In addition, the following assertions are

true.

1. For large positive λ and an arbitrary fixed Δ > 0, the following asymptotic inequality is valid :

(1−Δ)λn ≤ λ̂+
n ≤ (1 + Δ)λn, (2.10)

where λn = g−1(hq/(n − 1)(q + 1)), g−1 is a function inverse with respect to the function g(t) =
t−1/2 ln t.

DIFFERENTIAL EQUATIONS Vol. 54 No. 2 2018



ON A NONLINEAR EIGENVALUE PROBLEM RELATED TO THE THEORY . . . 169

2. For sufficiently large λ̂, the following asymptotic formula holds :

max
x∈(0,h)

|y(x; λ̂)| = O(λ̂1/(2q)). (2.11)

The number n+
0 is defined similar to n−

0 .

Theorem 2.4 demonstrates that results on the positive eigenvalues of problem P cannot be
obtained using perturbation theory.

For negative λ, assertion 5 in Theorem 2.3 is essentially a comparison theorem for the eigenvalues
of the nonlinear and counterpart linear problems.

As problem P0 has no positive eigenvalues, results analogous to assertions 2 and 5 in Theorem 2.3
cannot be obtained for λ > 0. However, the formula (2.7) allows one to obtain essentially much more
interesting results, namely, comparison theorems for the eigenvalues of two nonlinear problems.
We failed to trace any results of the kind in scientific literature.

The following theorem holds true for the eigenvalues of two different problems of the type
P = P (α, q, p).

Theorem 2.5 (comparison). Let {λ̂+
n }∞n=2 and {θ̂+n }∞n=2 be the sequences of (increasingly ordered

positive) eigenvalues of problems P1 = P (α, q1, p1) and P2 = P (β, q2, p2), respectively. If either
condition q2 > q1 or conditions q1 = q2 = q and p2β > p1α are fulfilled , then for any sufficiently
large index n we have the inequality

λ̂+
n > θ̂+n . (2.12)

To conclude this section, we note that of interest is the case y′(0) = p, where p ≡ p(λ).
If limλ→+∞ p(λ) = 0, then the degree of p tending to zero affects the behavior of function T
as λ → +∞. If limλ→∞ T 
= 0 then there exists only a finite number of eigenvalues. New interesting
results arise when using Robin’s boundary conditions (including dependent on λ). In this case,
there may exist sign-constant periodic solutions [14].

3. PROOFS

3.1. Proof of Theorem 2.1

Equation (1.3) has the first integral

y′2 − λy2 + α

q∑

i=1

αi

i+ 1
y2i+2 ≡ C, (3.1)

where C is an arbitrary constant. Identity (3.1) and the conditions (1.4) at point x = 0 and
Eq. (1.5) imply the relation

C = p2. (3.2)

It follows from identity (3.1) at point x = h and the equality (3.2) that y′2(h) = p2. The sign
of number y′(h) is determined by the number of zeroes that eigenfunction y(x) has on the closed
interval (0, h), viz., if the number of zeroes is k then y′(h) = (−1)k+1p, as every root of function
y = y(x), as follows from relations (3.1) and (3.2), has the multiplicity of one.

Let us introduce new variables

τ(x) = y2(x), η(x) = y′(x)/y(x). (3.3)

Equation (1.3) can be written in the form of a system as

τ ′ = 2τη, η′ = −η2 + λ− α

q∑

i=1

αiτ
i. (3.4)

Allowing for relation (3.2), we obtain the first integral of system (3.4) in the form (2.3), where s = η.
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The second equation in system (3.4) can be written in the form

η′ = −w(η;λ), (3.5)

where the function w ≡ w(η;λ) is defined by relation (2.2), while the function τ ≡ τ(η;λ) is
implicitly defined by Eq. (2.3); in this case, it can be easily seen that any function τ(η;λ) is positive
and exists for any real η and λ.

If λ < 0 then, apparently, w > 0. However, it is not clear whether function w retains its sign
in the case of λ > 0. Suppose there exists λ for which the right-hand side in Eq. (3.5) turns zero.
Hence, we find η2−λ = −α

∑q

i=1 αiτ
i. Substituting this expression in the relation F (η, τ ;λ, p) = 0,

we arrive at

−α

q∑

i=1

iαi

i+ 1
τ i+1 = p2.

For α > 0, αq = 1, αi ≥ 0 (i = 1, . . . , q − 1) and τ ≥ 0 the latter relationship is fulfilled for no λ.
Thus, η′ < 0 for all λ ∈ (−∞,+∞).

As η′ < 0, function η(x) monotonically decreases on any segment contained within the inter-
val (0, h), where this function is defined. Relations (3.3) imply that function η(x) is discontinuous
at those, and only those, points x, where function y(x) vanishes. Let function y(x) have n ≥ 2
zeroes 0 = x1 < x2 < · · · < xn−1 < xn = h. In this case, function η(x) has precisely n discontinuity
points x1, . . . , xn ∈ [0, h], as y′(xi) 
= 0 for any i = 1, . . . , n by virtue of relations (3.1) and (3.2).
Hence, all the discontinuity points of function η(x) will be of the second kind.

By virtue of function η monotonically decreasing, we arrive at the relations

lim
x→x1+0

η(x) = +∞, lim
x→xi±0

η(x) = ±∞ (i = 2, . . . , n− 1), lim
x→xn−0

η(x) = −∞. (3.6)

On each of the intervals (x1, x2), (x2, x3), . . . , (xn−1, xn), we solve Eq. (3.5). Applying the method
described in the work [10], we arrive at the equalities

xi −
η(xi+1−0)∫

η(xi+0)

ds

w(s;λ)
− xi+1 = 0, i = 1, . . . , n− 1. (3.7)

Taking relations (3.6) and the definition (2.1) into account, we obtain from relations (3.7) that

0 < xi+1 − xi = T (λ), i = 1, . . . , n− 1. (3.8)

The convergence of the improper integrals follows from relations (3.7) and (3.8). The formula (2.5)
follows from relation (3.8). Summing the equalities (3.8) for all i, we obtain Eq. (2.4).

So, it has been proved that if λ̂ is an eigenvalue of problem P then λ = λ̂ satisfies Eq. (2.4) for
a certain n. Let us prove that any solution of Eq. (2.4) is an eigenvalue.

Let λ = λ̂ be a solution of Eq. (2.4) for some n = n̂. Since the right-hand side of Eq. (1.3) is
smooth in y, the solution of any Cauchy problem for this equation exists and is unique. In this case,

the existence of a unique solution y ≡ y(x; λ̂) of the Cauchy problem for Eq. (1.3) with the initial
conditions y(0) = 0, y′(0) = p, defined on the closed interval [0, h], follows from identity (3.1).

We use the solution y ≡ y(x; λ̂) of the above-indicated Cauchy problem to construct functions
τ = y2 and η = y′/y. It is evident that τ(0) = 0 and limx→0+0 η(x) = +∞. At this step, we do not

assert that the condition limx→h−0 η(x; λ̂) = −∞ is fulfilled. For the sake of definiteness, we assume
that η(h) = y′(h)/y(h) = a > −∞. Using the thus found τ and η, we construct an expression that
is similar to Eq. (2.4) by defining it with the relation

+∞∫

a

ds

w(s; λ̂)
+ (n̂ − 2)

+∞∫

−∞

ds

w(s; λ̂)
= h. (3.9)
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At the same time, λ = λ̂ satisfies Eq. (2.4). Note that the integrand terms in Eqs. (3.9) and (2.4)
coincide. Subtracting Eq. (2.4) from Eq. (3.9), we arrive at

+∞∫

a

ds

w(s; λ̂)
−

+∞∫

−∞

ds

w(s; λ̂)
= 0. (3.10)

By virtue of the self-apparent estimates

+∞∫

−∞

ds

w(s; λ̂)
>

+∞∫

a

ds

w(s; λ̂)
> 0,

relation (3.10) is satisfied only if a = −∞, but the latter implies that λ̂ is an eigenvalue. This
established the theorem.

3.2. Proof of Assertion 2.1

It can be readily seen that the positive function τ ≡ τ(s;λ) implicitly defined by Eq. (2.3) exists
for all real λ and s. It is also clear that function τ(s;λ) continuously depends on both arguments.
As function w defined by the equality (2.2) is always positive (see the proof of Theorem 2.1) and
continuous for all real λ and s, function T (λ) belongs to space C(−∞,+∞).

Let λ < 0. Let us write Eq. (2.3) in the form

(s2 − λ)τ = p2 − α

q∑

i=1

αi

i+ 1
τ i+1. (3.11)

Relation (3.11) apparently implies that function τ ≡ τ(s;λ) remains bounded for any real s and
all λ < 0. Now, let λ < −δ, where δ > 0 is an arbitrary fixed number. Then relation (3.11) entails
the inequality

0 < τ(s;λ) <
p2

s2 − λ
< τ∗ =

p2

δ
. (3.12)

Let us denote α∗ :=
∑q

i=1 αiτ
i
∗. Using inequalities (3.12), we obtain the estimates

+∞∫

−∞

ds

s2 − λ+ αα∗
< T (λ) <

+∞∫

−∞

ds

s2 − λ
.

By calculating these integrals, we arrive at inequality (2.6).

Let λ > 0. Relation (2.3) implies that for any fixed value s, function τ ≡ τ(s;λ) > 0 increases
without limit together with λ. For this reason, the formula (2.3) is inconvenient for further analysis.
However, variables τ and s can be “normed” in such a way that function τ(s;λ) remains bounded
for all values λ. The “normed” variables have the form τ = λ1/q τ̄ and s = λ1/2s̄. In terms of these
variables, relation (2.3) takes on the form

(s̄2 − 1)τ̄ =
p2

λ1+1/q
− α

q∑

i=1

αi

(i+ 1)λ1−i/q
τ̄ i+1. (3.13)

Equation (3.13) implicitly defines a function τ̄ ≡ τ̄(s̄;λ) that is positive and bounded for all
real s and all λ > 0. Let us also take note that lims̄→∞ τ̄ (s̄;λ) = 0 regardless of λ. The boundedness
of function τ̄(s̄;λ) makes it possible to switch from the integral over the entire axis in Eq. (2.4) to
an integral over a finite interval.

DIFFERENTIAL EQUATIONS Vol. 54 No. 2 2018



172 VALOVIK

Changing variables in the integral (2.1), we obtain

T (λ) = 2

+∞∫

0

(

s2 − λ+ α

q∑

i=1

αiτ
i

)−1

ds =
2

λ1/2

+∞∫

0

(

s̄2 − 1 + α

q∑

i=1

αi

λ1−i/q
τ̄ i

)−1

ds̄. (3.14)

Now, using relation (3.13), let us change variable s̄ for τ̄ . As in the integral (3.14), variable s̄ varies
from 0 to +∞, then τ̄ varies from τ+ to 0, respectively, where τ+ is the unique positive root of
Eq. (3.13) for s̄ = 0. Thus, expressing s̄ from relation (3.13), we choose the sign “+.”

Using relation (3.13), we obtain

s̄2 =
1

τ̄

(
p2

λ1+1/q
+ τ̄ − α

q∑

i=1

αi

(i+ 1)λ1−i/q
τ̄ i+1

)

, (3.15)

and, hence, calculate the differential

ds̄=− 1

2
√
τ̄ 3

(
p2

λ1+1/q
+α

q∑

i=1

iαi

(i+ 1)λ1−i/q
τ̄ i+1

)(
p2

λ1+1/q
+ τ̄ −α

q∑

i=1

αi

(i+ 1)λ1−i/q
τ̄ i+1

)−1/2

dτ̄ . (3.16)

Now we use the formulae (3.15), (3.16) and the relation lim
s̄→∞

τ̄(s̄;λ) = 0 to transform relation (3.14)

to the form

T (λ) =
1

λ1/2

τ+∫

0

1√
τ̄

(
p2

λ1+1/q
+ τ̄ − α

q∑

i=1

αi

(i+ 1)λ1−i/q
τ̄ i+1

)−1/2

dτ̄ . (3.17)

The equation

p2

λ1+1/q
+ τ̄ − α

q∑

i=1

αi

(i+ 1)λ1−i/q
τ̄ i+1 = 0 (3.18)

is nothing else but the first integral (3.13) for s̄ = 0. Equation (3.18) has no fewer than two
real roots, including a unique positive root and at least one negative root. We are interested in
the greatest negative root, which we will denote by τ−, and the unique positive root, which we
previously denoted as τ+.

As λ → +∞, we obtain from Eq. (3.18) that τ̄(1−ατ̄ q/(q+1)) = 0. The latter equation has at
least two real roots τ 0

− = 0 and τ 0
+ = ((q +1)/α)1/q . It can be demonstrated that limλ→+∞ τ− = τ 0

−
and limλ→+∞ τ+ = τ 0

+.

It is evident that the expression in “larger” radicand in relation (3.17) turns to zero at points
τ̄ = τ− and τ̄ = τ+. Then this radicand can be written as

p2

λ1+1/q
+ τ̄ − α

q∑

i=1

αi

(i+ 1)λ1−i/q
τ̄ i+1 = (τ̄ − τ−)f1(τ̄), (3.19)

where f1(τ+) = 0 and limλ→+∞ f1(τ̄ ) = 1− ατ̄ q/(q + 1).

Taking the above notation into account, we write relation (3.17) in the form

T =
1

λ1/2

τ+∫

0

f(τ̄) dτ̄
√

τ̄ (τ̄ − τ−)
, (3.20)

where f(τ̄) = 1/
√

f1(τ̄).
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In what follows, we will need asymptotic expressions for τ− and τ+ for large values of λ. The quan-
tities τ 0

− and τ 0
+ are the first approximations to τ− and τ+, respectively. Using Eq. (3.18) and the

derived approximations, we calculate

τ− = − p2

λ1+1/q
+O(λ−3−1/q) and τ+ =

(
q + 1

α

)1/q

+O(λ−1/q). (3.21)

From the representation (3.20), we find

T =
1

λ1/2

τ+∫

0

f(τ̄) dτ̄
√

τ̄(τ̄ − τ−)
=

1

λ1/2

τ+∫

0

f(τ̄)− f(τ−)√
τ̄(τ̄ − τ−)

dτ̄ +
f(τ−)

λ1/2

τ+∫

0

dτ̄
√

τ̄(τ̄ − τ−)
. (3.22)

The first term on the right-hand side of relation (3.22) is estimated as follows :

τ+∫

0

f(τ̄)− f(τ−)√
τ̄(τ̄ − τ−)

dτ̄ = lim
λ→+∞

τ+∫

0

f(τ̄)− f(τ−)√
τ̄(τ̄ − τ−)

dτ̄ +O(λ−r1),

where r1 ≥ δq > 0. Hence, we calculate

lim
λ→+∞

τ+∫

0

f(τ̄)− f(τ−)√
τ̄(τ̄ − τ−)

dτ̄ =

((q+1)/α)1/q∫

0

((

1− α

q + 1
τ̄ q

)−1/2

− 1

)
dτ̄

τ̄

=

((q+1)/α)1/q∫

0

τ̄ q−1

(

1− α

q + 1
τ̄ q

)−1/2(

1 +

√

1− α

q + 1
τ̄ q

)−1

dτ̄ =
2 ln 2

q
.

The second term in relation (3.22) can be calculated precisely as

τ+∫

0

dτ̄
√

τ̄(τ̄ − τ−)
= 2 ln(

√
τ+ +

√
τ+ − τ− )− 2 ln

√
−τ−.

Using the asymptotic formulae (3.21), we find that

ln(
√
τ+ +

√
τ+ − τ− ) = ln 2 +

1

2q
ln

q + 1

α
+O(λ−1/q), ln

√
−τ− =

1

2
ln

p2

λ1+1/q
+O(λ−2).

From relation (3.19), we obtain

f1(τ−) = 1− α

q∑

i=1

αiτ
i
−

λ1−i/q
.

The last equality and the formula (3.21) imply

f(τ−) =

(

1− α

q∑

i=1

αiτ
i
−

λ1−i/q

)−1/2

= 1 +O(λ−2).

By combining the results, we arrive at the asymptotic formula (2.7), where r = min{r1, 1/q}.
This establishes the assertion.
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3.3. Proof of Theorem 2.2

Let 0 = x1 < x2 < · · · < xn−1 < xn = h be the zeroes of eigenfunction y(x; γ̂) and n > 3. Let us
write Eq. (1.3) in the form of the system

y′ = z, z′ = λy − α

q∑

i=1

αiy
2i+1.

It is evident that (y(x1), z(x1)) = (0, p). Analyzing the behavior of the derivative y′ at points
xi yields the equalities (y(x2), z(x2)) = (0,−p) and (y(x3), z(x3)) = (0, p). Thus, the relation
(y(x1), z(x1)) = (y(x3), z(x3)) holds true. Hence, the trajectory (y, z) is closed, and, therefore, the
solution y(x; γ̂) is a periodic function [27] with the period that equals the double distance between
neighboring zeroes, i.e., 2T. The theorem is thus proved.

A different method for proving the theorem has been given in the work [10].

3.4. Proof of Theorem 2.3

Inequalities (2.6) apparently imply the relation lim
λ→−∞

T (λ) = 0. Hence, there exists such an inte-

ger n−
0 ≥ 2 that Eq. (2.4) has, at least, one root λ̂−

n < 0 for every n = n−
0 , n

−
0 +1, . . . Thus, problem P

has an infinite number of negative eigenvalues λ̂−
n , where, evidently, lim n→+∞ λ̂−

n = −∞.

Further, Eq. (2.4) along with inequalities (2.6) provide the double-sided inequalities for eigen-
values

λ̃−
n < λ̂−

n < λ̃−
n + αα∗, (3.23)

where n = 2, 3, . . . Inequalities (2.6) and (3.23) show that for α → +0, Eq. (2.4) becomes the

dispersion equation of the linear problem, while λ̂−
n → λ̃−

n .

It follows from the definition (2.1) that T (λ) is a differentiable function of λ for λ ∈ (−∞,−δ].
Calculating the derivative dT/dλ, we obtain

dT

dλ
= −

+∞∫

−∞

(

−1 + α
∂τ

∂λ

q∑

i=1

iαiτ
i−1

)(

s2 − λ+ α

q∑

i=1

αiτ
i

)−2

ds.

From Eq. (3.11) we find ∂τ/∂λ = τ(s2 − λ + α
∑q

i=1 αiτ
i)−1 and, substituting the latter in the

expression for dT/dλ, we arrive at the relation

dT

dλ
=

+∞∫

−∞

(

s2 − λ− α

q∑

i=1

αi(i− 1)τ i

)(

s2 − λ+ α

q∑

i=1

αiτ
i

)−3

ds.

By virtue of inequalities (3.12), the quantity τ(s;λ) is bounded for all s and all λ < 0. Thus, for all
λ < −α

∑q

i=1 αi(i−1)τ i
∗ the inequality dT/dλ > 0 holds true. Hence, it follows that any sufficiently

large eigenvalue of problem P is simple.

Assertion 4 in the theorem follows from the preceding assertions therein.

From inequalities (3.23), it is clear that there exists an integer n0 ≥ n−
0 such that for all n ≥ n0

we have inequality (2.8).

Relations (3.1) and (3.2) imply that p2 ≥ y′2. Evidently, for every eigenfunction y(x; λ̂ ) there

exists at least one point x = x̄ ∈ (0, h) where function y(x; λ̂ ) attains its maximum. As at this

point we have y′(x̄; λ̂ ) = 0, then by putting y′ = 0 in identity (3.1), we obtain

p2 = |λ̂|y2 + α

q∑

i=1

αi

i+ 1
y2i+2, (3.24)

where y = y(x̄; λ̂ ). Hence, p2 ≥ |λ̂|y2, but then maxx∈[0,h] |y(x; λ̂ )| → 0 for λ̂ → −∞.
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A more subtle result can be obtained in the following manner. In relation (3.24), we perform

the change y2 = |λ̂|1/qz; then we have

p2|λ̂|−1−1/q − α

q∑

i=1

αi(i+ 1)−1zi+1|λ̂|−1+i/q = z.

The maximum that we are interested in is the only positive root z̄ of this equation; by directing

|λ̂| to infinity, we obtain the relation αzq+1/(q + 1) = −z. Hence it follows that z = 0 is the
first approximation to z̄. Calculating the second approximation, we obtain the asymptotic estimate

z̄ = O(|λ̂|−1−1/q), which, in an evident way, entails the formula (2.9). The theorem is proved.

3.5. Proof of Theorem 2.4

The asymptotic formula (2.7) apparently implies that limλ→+∞ T (λ) = 0. This proves the

existence of such an integer n+
0 ≥ 2 that Eq. (2.4) has at least one root λ̂+

n > 0 for every

n = n+
0 , n

+
0 + 1, . . . Thus, problem P has an infinite number of positive eigenvalues λ̂+

n and,

evidently, limn→+∞ λ̂+
n = +∞. The asymptotic inequality (2.10) follows from the formula (2.7).

The asymptotic behavior of maxx∈[0,h] |y(x; λ̂ )| for large λ̂ > 0 can be established as follows.

Apparently, for any eigenfunction y(x; λ̂ ) there exists, at least, one point x = x̄ ∈ (0, h) where

function y(x; λ̂ ) has a maximum. Since y′(x̄; λ̂ ) = 0, by putting y′ = 0 in identity (3.1), we obtain

p2 − α

q∑

i=1

αi(i+ 1)−1y2i+2 = −λ̂y2,

where y = y(x̄; λ̂ ). By performing the change y2 = λ̂1/qz in the last relation, we have

p2

λ̂1+1/q
− α

q∑

i=1

αi

i+ 1

zi+1

λ̂1−i/q
= −z.

The maximum that we are interested in is the only positive root z̄ of this equation; directing λ̂ to
infinity, we obtain the relation αzq+1/(q + 1) = z. Hence it follows that z = ((q + 1)/α)1/q is the
first approximation to z̄. Calculating the second approximation, we obtain an asymptotic estimate
z̄ = O(1) that, in an evident manner, implies the formula (2.11). This established the theorem.

3.6. Proof of Theorem 2.5

Integrals T ≡ T1(λ) and T ≡ T2(θ) correspond to problems P1 and P2, respectively. The asymp-
totic expansions for these integrals, according to the formula (2.7), have the form

T1(λ) =

(

1 +
1

q1

)
lnλ

λ1/2
+

1

λ1/2
ln

(
22+2/q1

p21

(
q1 + 1

α

)1/q1)

+O(λ−r1−1/2),

T2(θ) =

(

1 +
1

q2

)
ln θ

θ1/2
+

1

θ1/2
ln

(
22+2/q2

p22

(
q2 + 1

β

)1/q2)

+O(θ−r2−1/2),

where r1, r2 > 0 and r1 ≤ 1/q1, r2 ≤ 1/q2.

Then for the difference T1(λ)− T2(λ) we have the asymptotic relation

T1(λ)−T2(λ)=

(
1

q1
− 1

q2

)
lnλ

λ1/2
+

1

λ1/2
ln

(
22/q1p22
22/q2p21

(
q1 + 1

α

)1/q1( β

q2 + 1

)1/q2)

+O(λ−r−1/2), (3.25)

where r ≥ min{r1, r2}.
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If q2 > q1 then relation (3.25) implies that for sufficiently large values λ we have the inequality
T1(λ) > T2(λ), which entails inequality (2.12).

Now let q1 = q2 = q. Then, from Eq.(3.25) we obtain

T1(λ)− T2(λ) =
1

λ1/2
ln

(
p22
p21

(
β

α

)1/q)

+O(λ−r−1/2), (3.26)

where r ≥ min{r1, r2}. If p22p−2
1 (β/α)1/q > 1 then relation (3.26) implies that for sufficiently large

values λ we have the inequality T1(λ) > T2(λ), which entails inequality (2.12). The theorem is
proved.
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15. Schürmann, H.W. and Serov, V.S., Theory of TE-polarized waves in a lossless cubic-quintic nonlinear
planar waveguide, Phys. Rev. A, 2016, vol. 93, no. 6, p. 063802.

16. Shen, Y.R., The Principles of Nonlinear Optics , New York: John Wiley & Sons, 1984.

17. Landau, L.D., Lifshitz, E.M., and Pitaevskii, L.P., Course of Theoretical Physics, Vol. 8, Electrodynam-
ics of Continuous Media, Oxford: Butterworth-Heinemann, 1984.

18. Cazenave, T., Semilinear Schrödinger equations, in Courant Lecture Notes in Mathematics, Amer. Math.
Soc., 2003, vol. 11.

19. Smirnov, Yu.G., Smol’kin, E.Yu., and Valovik, D.V., Nonlinear double-layer Bragg waveguide: analytical
and numerical approaches to investigate waveguiding problem, Adv. Numer. Anal., 2014, vol. 2014,
pp. 1–11.

DIFFERENTIAL EQUATIONS Vol. 54 No. 2 2018



ON A NONLINEAR EIGENVALUE PROBLEM RELATED TO THE THEORY . . . 177

20. Smol’kin, E.Yu. and Valovik, D.V., Guided electromagnetic waves propagating in a two-layer cylindrical
dielectric waveguide with inhomogeneous nonlinear permittivity, Adv. Math. Phys., 2015, vol. 2015,
pp. 1–11.

21. Vainberg, M.M., Variatsionnye metody issledovaniya nelineinykh operatorov (Variational Methods for
Studying Nonlinear Operators), Moscow: GITTL, 1956.

22. Ambrosetti, A. and Rabinowitz, P.H., Dual variational methods in critical point theory and applications,
J. Funct. Anal., 1973, vol. 14, no. 4, pp. 349–381.

23. Krasnosel’skii, M.A., Topologicheskie metody v teorii nelineinykh integral’nykh uravnenii (Topological
Methods in the Theory of Nonlinear Integral Equations), Moscow: GITTL, 1956.

24. Amrein, W.O., Hinz, A.M., and Pearson, D.B., Sturm–Liouville Theory: Past and Present, Basel:
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