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Abstract—For families of n-dimensional linear differential systems (n ≥ 2) whose dependence
on a parameter ranging in a metric space is continuous in the sense of the uniform topology on
the half-line, we obtain a complete description of the ith Lyapunov exponent as a function of the
parameter for each i = 1, . . . , n. As a corollary, we give a complete description of the Lebesgue
sets and (in the case of a complete separable parameter space) the range of an individual
Lyapunov exponent of such a family.

DOI: 10.1134/S0012266117120011

1. INTRODUCTION. STATEMENT OF THE PROBLEM

Given an n ∈ N, let Mn be the space of linear systems

ẋ = A(t)x, x ∈ R
n, t ∈ R

+ ≡ [0,+∞), (1)

with continuous bounded matrix functions A on the half-line R
+ (which we identify with the cor-

responding systems) with the operations of addition and multiplication by a real number naturally
defined for functions. Let us fix some norm | · | on the space Rn and introduce two topologies on Mn

most frequently used in the theory of Lyapunov exponents, namely, the uniform topology defined
by the norm

‖A‖ = sup
t∈R+

|A(t)|, A ∈ Mn,

and the compact-open topology defined by the metric [1, p. 533]

�C(A,B) = sup
t∈R+

min{|A(t)−B(t)|, 1/t}, A,B ∈ Mn,

where |A(t)| = sup|x|=1 |A(t)x|. Since all norms on R
n are equivalent, it follows that the resulting

topological spaces, which will be denoted by Mn
U and Mn

C , respectively, are independent of the
choice of the norm on R

n.

Definition 1. The characteristic exponent of a function f : [t0,+∞) → R
m (where t0 ≥ 0 and

m ∈ N) is the (finite or infinite) number

λ[f ] = lim
t→+∞

ln |f(t)|1/t

(where we assume that ln 0 = −∞).
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1530 BYKOV

Definition 2. The Lyapunov exponents of system (1) are the numbers [2]

λi(A) = inf
L∈Gi(S(A))

sup
x∈L

λ[x], i = 1, . . . , n,

where S(A) is the solution space of system (1) and Gi(V ) is the set of i-dimensional subspaces of
a vector space V.

In our notation, in contrast to [2], the Lyapunov exponents are numbered in nondescending
order. The above definition of Lyapunov exponents of system (1) is equivalent to their classical
definition [2].

Let M be a metric space. Consider a family

ẋ = A(t, μ)x, x ∈ R
n, t ∈ R

+, (2)

of linear differential systems depending on the parameter μ ∈ M such that for each μ system (2)
belongs to the space Mn (that is, has continuous coefficients bounded on the half-line). Taking
an i ∈ {1, . . . , n} and assigning the ith Lyapunov exponent of system (2) to each μ ∈ M , we obtain
a function ΛA

i : M → R, which is called the ith Lyapunov exponent of the family (2).

It is well known and can readily be proved (e.g., see [3, Lemma 4]) that the continuity of the map-
ping A : R+×M → EndRn specifying the family (2) is equivalent to the continuity of the mapping
of M into Mn

C defined by the rule μ �→ A(· , μ). Simplest examples show (e.g., see [3, the exam-
ple before Definition 5]) that, starting already from n = 1, the functions ΛA

i , i = 1, . . . , n, for
a continuous bounded mapping A : R+ × [0, 1] → EndRn analytic in the first argument for each
value of the second one may prove to be everywhere discontinuous. Millionshchikov [4] suggested
to use the Baire classification of discontinuous functions to describe the dependence of these and
other characteristics of the asymptotic behavior of solutions of linear differential systems on their
coefficients. Recall the following definition [5, Sec. 39.2].

Definition 3. Let M be a metric space. The Baire classes with finite indices are defined by
induction as follows. The zeroth Baire class is the set of continuous functions M → R. If the classes
with numbers less than k ∈ N have already been defined, then the kth Baire class is the set of
functions M → R representable as the pointwise limit of a sequence of functions of the (k − 1)st
class.

Millionshchikov [6] established that, for each i = 1, . . . , n and every continuous mapping A
(not necessarily bounded with respect to t for fixed μ), the function ΛA

i can be represented as the
limit of a decreasing sequence of functions of the first Baire class. For the case in which the space M
is complete, he proved that the set of points of upper semicontinuity of the function ΛA

i contains
a dense Gδ set (that is, an intersection of countably many open sets). A complete description of the
n-tuples (ΛA

1 , . . . ,Λ
A
n ) for families (2) continuous in Mn

C was obtained in [7] for any space M , and
a complete description of the n-tuples (M1, . . . ,Mn), where Mi, i = 1, . . . , n, is the set of points
of upper semicontinuity (or lower semicontinuity) of the function ΛA

i for the same families and
a complete space M was obtained in [8].

Now we require that the mapping μ �→ A(·, μ) corresponding to the family (2) be continuous in
the uniform topology, that is, that the condition

lim
ν→μ

‖A(·, ν) −A(·, μ)‖ = 0, μ ∈ M, (3)

be satisfied. The collection of such families (identified with the mappings A defining them) will be
denoted by An(M).

It is well known that the function ΛA
1 is continuous for any space M and any family A ∈ A1(M).

Indeed, in this case the (unique) Lyapunov exponent of the family (2) is given by the formula

ΛA
1 (μ) = lim

t→+∞

1

t

t∫

0

A(τ, μ) dτ, μ ∈ M,
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FUNCTIONS DETERMINED BY THE LYAPUNOV EXPONENTS OF FAMILIES 1531

whence we find that |ΛA
1 (ν) − ΛA

1 (μ)| ≤ ‖A(·, ν) − A(·, μ)‖ for all μ, ν ∈ M and hence, by condi-
tion (3), the mapping ΛA

1 is continuous for A ∈ A1(M).

The dependence of the Lyapunov exponents ΛA
k , k = 1, . . . , n, on the parameter is much more

complicated for families A ∈ An(M) with n ≥ 2.

Perron [9] (see also [10, Sec. 1.4]) constructed an example of an analytic mapping A ∈ A2([0, 1])
such that the function ΛA

2 is not upper semicontinuous. He also proposed the first nontrivial
sufficient conditions under which system (1) is a point of continuity of all Lyapunov exponents on
the space Mn

U simultaneously. (At the same time, there exist no such points in the space Mn
C

even for n = 1.) It follows from the Perron–Bylov–Vinograd theorem [11, Th. 15.2.1] that the
continuity of all Lyapunov exponents on the space Mn

U holds at every point of the set of systems
with integral separation, which is open and dense in Mn

U [12]. However, an example of a family
A ∈ An([0, 1]) such that the function ΛA

i is everywhere discontinuous (and hence does not belong
to the first Baire class [5, Sec. 38.4]) was constructed in [13] for any n ≥ 2 and i ∈ {1, . . . , n}, and
an example of a space M and a family A ∈ An(M) for which the characteristic function of the set
{μ ∈ M : Λn(μ) ≤ 0} does not belong to the second Baire class was given in [14]. A complete
description of the set of upper (or lower) semicontinuity points of an individual Lyapunov exponent
for families in An(M), where M is a complete space, can be found in [15].

The aim of the present paper is to describe the set {ΛA
i : A ∈ An(M)} for every metric space M

and any n ≥ 2 and i ∈ {1, . . . , n}.

2. MAIN RESULT

Definition 4 (cf. [16]). A function f : M → R is called an upper-limit function if there exists
a sequence of continuous functions fk : M → R, k ∈ N, such that

f(μ) = lim
k→∞

fk(μ), μ ∈ M. (4)

Remark 1. The property of a function indicated in Definition 4 is equivalent to each of the
following conditions.

1. The function f can be represented as the pointwise limit of a decreasing sequence of functions
of the first Baire class.

2. The preimage of every ray [r,+∞) (r ∈ R) under the mapping f is a Gδ set. The functions
satisfying this condition form the class (∗, Gδ) [5, Sec. 37.1].

The equivalence of conditions 1 and 2 was proved in the monograph [5, Sec. 37.1], and the
equivalence of condition 2 and Definition 4 was demonstrated in [7, Remark 3].

The following theorem, which gives a complete description of the ith Lyapunov exponent,
i = 1, . . . , n, of a family (2) satisfying condition (3), is the main result of this paper.

Theorem. Let a metric space M, a function f : M → R, and numbers n ≥ 2 and i ∈ {1, . . . , n}
be given. A necessary and sufficient condition that there exists a family A ∈ An(M) such that

λi(A(·, μ)) = f(μ), μ ∈ M, (5)

is that f is upper-limit and has a continuous minorant and a continuous majorant. Moreover, if
f is bounded, then the mapping specifying the family can be chosen to be bounded.

Remark 2. In the case of n = 1 = i, there exists a family (2) with the desired properties if
and only if f is continuous. The necessity of this condition was shown in the introduction, and to
prove the sufficiency, we set A(t, μ) = f(μ) for all t ∈ R

+ and μ ∈ M .

For comparison, let us present the result in [7] for an individual Lyapunov exponent: given
a metric space M , a function f : M → R, and numbers n ≥ 1 and i ∈ {1, . . . , n}, there exists
a family (2) with a continuous mapping A satisfying Eq. (5) if and only if f is upper-limit and has
an upper semicontinuous minorant. One can readily show that, generally speaking, these conditions
on f are broader than those indicated in the statement of the theorem. Indeed, let M = [0, 1], and
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1532 BYKOV

let the function f : [0, 1] → R
+ be given by the formula

f(x) =

{
0 for x ∈ [0, 1] ∩Q,

1/x+ 1/(1 − x) for the other x.

Then the preimage of the ray [r,+∞) under f coincides with the closed interval [0, 1] for each r ≤ 0
and with the set {x ∈ [0, 1] \ Q : x(1 − x) ≤ r−1} for r > 0. It is easily seen that the latter is
a countable intersection of open sets; therefore, it follows from Remark 1 that f is an upper-limit
function. Since f is bounded below, we see that it satisfies Eq. (5) with some continuous family (2)
for any n ≥ 1 and i ∈ {1, . . . , n}. On the other hand, the function f is defined on a compact set
and is not bounded above; accordingly, it does not have a continuous majorant and hence does not
satisfy Eq. (5) for any family in An(M).

For any n ≥ 2 and i ∈ {1, . . . , n}, this theorem enables us to describe the set {ΛA
i (M) :

A ∈ An(M)} ≡ Rn
i (M) of ranges of the ith Lyapunov exponent of families in An(M) for the

case of a complete separable space M . In what follows, we denote the sets of nonempty Suslin
subsets [5, Sec. 32], bounded subsets, and at most countable subsets of the real line by S, B,
and C, respectively, and P(M) stands for the set of subsets of the real line whose cardinality does
not exceed the cardinality of M .

Corollary 1. Let a metric space M and numbers n ≥ 2 and i ∈ {1, . . . , n} be given. Then the
following assertions hold.

1. If the space M is compact, then Rn
i (M) = S ∩B ∩P(M).

2. If the space M is a union of a compact set and a countable set and is not compact, then
Rn

i (M) consists of all sets of the form S ∪ C, where S ∈ S ∩B ∩P(M) and C ∈ C.

3. If the space M is complete and separable and is not a union of a compact set and an at most
countable set, then Rn

i (M) = S.

The structure of the Lebesgue sets [5, Sec. 37.1] of the Lyapunov exponents of families in An(M)
is described in the following assertions.

Corollary 2. Let a metric space M and numbers n ≥ 2, i ∈ {1, . . . , n}, and r ∈ R be given.
Then the following assertions hold.

1. The collection of sets {μ ∈ M : ΛA
i (μ) ≥ r}, A ∈ An(M), consists of all Gδ subsets of M .

2. The collection of sets {μ ∈ M : ΛA
i (μ) > r}, A ∈ An(M), consists of all Gδσ subsets of M

(that is, countable unions of Gδ subsets).

Corollary 3. Let f : [0, 1] → R be a bounded upper-limit function. Then for any n ≥ 2
and i ∈ {1, . . . , n} there exists a bounded mapping A : R

+ × [0, 1] → EndRn that is infinitely
differentiable in the first argument and analytic in the second argument and satisfies condition (3)
and Eq. (5) for M = [0, 1].

3. PROOFS

To prove the above statements, we need some notation and three lemmas.

Set β̌ = −e3π/2/(e3π/2 − 1) ∈ (−
√
2,−1) and define functions ϕ, Φ, and Ψ by the formulas

ϕ(β, θ) = eθ(β − sin θ), β ∈ [β̌, 0], θ ∈ [−π, 0], (6)

Φ(β) = max
−π≤θ≤0

ϕ(β, θ), β ∈ [β̌, 0], (7)

Ψ(β) = max
0≤η≤2π

(Φ̃(β)e−η + sin η), β ∈ [β̌, 0], (8)

where

Φ̃(β) =

{
Φ(β), β ∈ [−1, 0],

Φ(β)e2π, β ∈ [β̌,−1).
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Lemma 1. The function Φ is continuous and strictly increasing and satisfies the relations

Φ(β) = ϕ(β, θβ), where θβ = −π

4
+ arcsin

β√
2
, β ∈ [β̌, 0], (9)

sgnΦ(β) = sgn(β + 1), β ∈ [β̌, 0], (10)

and the chain of inequalities

Φ(β) ≥ (β + 1)e−π/2 ≥ βe−2π, β ∈ [β̌, 0], (11)

and the function Ψ is continuous and strictly increasing and satisfies the relation

Ψ(β) = max
0≤η≤π

(Φ̃(β)e−η + sin η), β ∈ [β̌, 0], (12)

and the inequalities

2 > Ψ(β) ≥ 1, β ∈ [−1, 0], (13)

1 > Ψ(β) > 0, β ∈ [β̌,−1). (14)

Proof. The function Φ is strictly increasing, because so is each of the functions ϕ(·, θ),
θ ∈ [−π, 0]. The first inequality in (11) follows from the definition of the function Φ and the
relation ϕ(β,−π/2) = (β + 1)e−π/2, and the second inequality follows from the inequality β ≥ β̌.

Let us verify Eq. (9). Since

ϕ′
θ(β, θ) =

√
2eθ

(
β√
2
− sin

(
θ +

π

4

))
, β ∈ [β̌, 0], θ ∈ [−π, 0], (15)

we conclude that if β ∈ [−1, 0], then the function ϕ(β, ·) has a unique interior critical point θβ,

in which it has a maximum; if β ∈ [β̌,−1), then it has a minimum at the point −3π/2−θβ < θβ and
the maximum at the point θβ < −π/2. In the latter case, we note that ϕ(β, θβ) ≥ ϕ(β,−π/2) =
(β + 1)e−π/2 and ϕ(β,−π) = βe−π ≤ βe−2π and obtain the desired inequality ϕ(β,−π) ≤ ϕ(β, θβ)
from the second inequality in the chain of inequalities (11).

Using Eq. (9), we find that Φ(−1) = 0, whence Eq. (10) follows, because the function Φ is
increasing.

The function Ψ is continuous and strictly increasing, because so is the function Φ̃, which in turn
follows from the properties of the function Φ and Eq. (10). The second inequality in (13) and the
first inequality in (14) follow from the fact that the function Ψ is increasing and from the relation
Ψ(−1) = 1; the first inequality in (13) follows from the fact that the function Ψ is increasing and

from the inequality Ψ(0) ≤ e−π/4/
√
2 + 1; and the second inequality in (14) follows from the chain

of inequalities
Ψ(β) ≥ Φ(β)e3π/2 + 1 ≥ (β + 1)eπ + 1 > 0,

in which the first inequality follows from Eq. (8), the second inequality follows from the first
inequality in (11), and the third inequality follows from the inequality β ≥ β̌. Equation (12)
for β ∈ [−1, 0] follows from the chain of inequalities

Ψ(β) ≥ Φ(β)e−π/2 + 1 > max
η∈[π,2π]

(Φ(β)e−η + sin η),

in which the first inequality follows from (8), the second inequality follows from (10) and, for the
remaining β, from the second inequality in (14) and from the inequality

max
η∈[π,2π]

(Φ(β)e2π−η + sin η) < 0,

which in turn follows from Eq. (10). The proof of the lemma is complete.

The following lemma uses a construction similar to those proposed in [17, Lemmas 3 and 4]
and [14, Th. 3].
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Lemma 2. Let s : [1,+∞) → [0, 1] be an arbitrary continuous function equal to unity on the
closed intervals [τk+1e

−π, τk+1e
−π/8], where τk = exp(2πk), k ≥ 0. To each sequence (αk) of real

numbers we assign the system

ẋ = Bα(t)x, Bα(t) =

(
q′(t) s(t)bα(t)

0 0

)
, x ∈ R

2, t ≥ 1,

where q(t) = t sin ln t, t ≥ 1, and bα(t) = eαkt, t ∈ [τk−1, τk), k ∈ N. Set α = lim
k→∞

αk. Then the

following assertions hold.

1. If α ∈ (−1, 0), then λ2(Bα) = Ψ(α).

2. If α ∈ (β̌,−1), then λ1(Bα) = Ψ(α).

Proof. 1. To prove the first assertion, following [10, Sec. 1.4], we compute the characteristic
exponent of the function

Jα(t) = eq(t)
t∫

1

s(τ)bα(τ)e
−q(τ)d τ, t ≥ 1.

Fix an arbitrary number ε ∈ (0,−α) and set βε = α+ ε ∈ (−1, 0). Then there exists a Cε > 0 such
that |bα(τ)| ≤ Cεe

βετ for all τ ≥ 1. We make the change of variable τ = τke
θ in the integral and

obtain the estimate

τk∫

τke−π/2

exp{βετ − q(τ)} dτ ≤ τk

0∫

−π/2

exp{τkϕ(βε, θ)} dθ ≤ π

2
τk exp{τkΦ(βε)}, k ≥ 1,

where the functions ϕ and Φ are defined by formulas (6) and (7), respectively.

Assume that the inclusion t ∈ [τk, τke
π] holds for some k ∈ N. Then

|Jα(t)| ≤ Cεe
q(t)

(τke
−π/2∫

1

eβετ+τ dτ +

τk∫

τke−π/2

eβετ−q(τ) dτ +

t∫

τk

dτ

)

≤ Cεe
q(t)

(
1

βε + 1
exp{(βε + 1)τke

−π/2}+ 2τk exp{τkΦ(βε)}+ t

)
.

By setting t = τke
η and by applying definition (8), the first inequality in (11), and inequality (13),

we obtain the estimate

|Jα(t)| ≤ Cε

(
1

ε
exp{((βε + 1)e−π/2−η + sin η)t}+ 2t exp{(Φ(βε)e

−η + sin η)t}+ tet
)

≤ 4Cε

ε
t exp(Ψ(βε)t).

If the inclusion t ∈ [τke
π, τk+1] holds for some k ∈ N, then

|Jα(t)| ≤ Cε

t∫

1

eτ dτ ≤ Cεe
t.

Taking into account inequalities (13), we obtain the definitive estimate

|Jα(t)| ≤
4Cε

ε
t exp(Ψ(βε)t), t ≥ τ1,
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from which the inequality λ[Jα] ≤ Ψ(βε) follows, where we pass to the limit as ε → 0+ and obtain
the inequality λ[Jα] ≤ Ψ(α).

Let us establish the opposite inequality. By assumption, the sequence (αk) has a subsequence
(αkj

) converging to α. Fix an arbitrary ε ∈ (0,min{α + 1, π/8}) and set γε = α − ε ∈ (−1, 0).
Then there exists a j0 ∈ N such that αkj

≥ γε for all j ≥ j0. Let η0 ∈ [0, 2π] be a point at which
the maximum in the definition of the number Ψ(α) is attained. Consider the sequence tj = τkj

eη0 ,
j ∈ N. Note the chain of inequalities −π/2 < θγε

< θγε
+ε < −π/8, from which the relation s(τ) = 1

for all τ ∈ [τkj
exp(θγε

), τkj
exp(θγε

+ ε)] and the inequality τkj
exp(θγε

+ ε) < tj follow. Making
the change of variable τ = τkj

eθ in the integral and taking into account the fact that, by (15),
the function ϕ(γε, ·) decreases on the interval [θγε

, θγε
+ ε], we obtain the estimate

Jα(tj) ≥ exp(tj sin η0)

τkj exp(θγε+ε)∫

τkj exp(θγε )

exp(γετ − q(τ)) dτ = τkj
exp(tj sin η0)

θγε+ε∫

θγε

exp{ϕ(γε, θ)τkj
}eθ dθ

≥ ετkj
e−π/2 exp(tj sin η0) min

θ∈[θγε ,θγε+ε]
exp{ϕ(γε, θ)τkj

}

≥ ε exp{(sin η0 + ϕ(γε, θγε
+ ε)e−η0)tj}

for all j ≥ j0. Consequently,

λ[Jα] ≥ lim
j→∞

1

tj
ln Jα(tj) ≥ sin η0 + ϕ(γε, θγε

+ ε)e−η0 ,

whence, by passing to the limit as ε → 0+, we obtain the inequality λ[Jα] ≥ Ψ(α). Thus, we have
established that λ[Jα] = Ψ(α), where Ψ(α) ≥ 1 by virtue of inequality (13).

The vector functions

u1(t) =

(
eq(t)

0

)
, u2(t) =

(
Jα(t)

1

)
, t ≥ 1,

form a fundamental system of solutions of the system Bα. Now the desired result follows from the
relations

λ[u1] = 1 ≤ Ψ(α) = λ[Jα] = λ[u2].

The proof of the first assertion is complete.

2. To prove the second assertion, we compute the characteristic exponent of the function

Iα(t) = eq(t)
∞∫

t

s(τ)bα(τ)e
−q(τ)d τ, t ≥ 1.

Let us estimate λ[Iα] from above, simultaneously establishing the convergence of the improper
integral. Fix an arbitrary number ε ∈ (0,−1 − α) and set βε = α+ ε ∈ (β̌,−1). Then there exists
a Cε > 0 such that |bα(τ)| ≤ Cεe

βετ for all τ ≥ 1. We make the change of variable τ = τk+1e
θ in

the integral and obtain the estimate

τk+1∫

τkeπ

exp{βετ − q(τ)} dτ ≤ τk+1

0∫

−π

exp{τk+1ϕ(βε, θ)} dθ ≤ πτk+1 exp{τk+1Φ(βε)}, k ≥ 0,

where the functions ϕ and Φ are defined by formulas (6) and (7), respectively.
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Suppose that the inclusion t ∈ [τk, τk+1] holds for some k ≥ 0. Then

Iα(t) ≤ Cεe
q(t)

( τke
π∫

τk

exp(βετ) dτ +

τk+1∫

τkeπ

exp{βετ − q(τ)} dτ +

+∞∫

τk+1

exp{βετ + τ} dτ
)

≤ Cεe
q(t)

(
− 1

βε

exp(βετk) + πτk+1 exp{τk+1Φ(βε)} −
1

βε + 1
exp{(βε + 1)τk+1}

)
.

By setting t = τke
η and by applying inequalities (11) and Definition (8), we obtain the estimate

|Iα(t)| ≤ Cε

(
− 1

βε

exp{(βεe
−η + sin η)t} + πe2πt exp{(Φ(βε)e

2π−η + sin η)t}

− 1

βε + 1
exp{((βε + 1)e2π−η + sin η)t}

)
≤ 3Cε

|βε + 1|πe
2πt exp(Ψ(βε)t), t ≥ 1,

whence the inequality λ[Iα] ≤ Ψ(βε) follows. We pass to the limit as ε → 0+ and obtain the
inequality λ[Iα] ≤ Ψ(α).

Let us establish the opposite inequality. By assumption, the sequence (αk) has a subsequence

(αkj
) converging to α. Fix an arbitrary number ε ∈ (0, α − β̌) and set γε = α − ε ∈ (β̌,−1).

Then there exists a j0 ∈ N such that αkj
≥ γε for all j ≥ j0. Let η0 ∈ [0, π] be a point at

which the maximum in (12) is attained. Consider the sequence tj = τkj−1e
η0 , j ∈ N. Note the

chain of inequalities −3π/4 < θγε
< θγε

+ ε < −π/8, which implies the relation s(τ) = 1 for
all τ ∈ [τkj

exp(θγε
), τkj

exp(θγε
+ ε)] and the inequality τkj

exp(θγε
) > tj . Making the change of

variable τ = τkj
eθ in the integral and taking into account the fact that, by (15), the function ϕ(γε, ·)

decreases on the interval [θγε
, θγε

+ ε], we obtain the estimate

Iα(tj) ≥ exp(tj sin η0)

τkj exp(θγε+ε)∫

τkj exp(θγε )

exp(γετ − q(τ)) dτ = τkj
exp(tj sin η0)

θγε+ε∫

θγε

exp{ϕ(γε, θ)τkj
}eθ dθ

≥ ετkj
e−3π/4 exp(tj sin η0) min

θ∈[θγε ,θγε+ε]
exp{ϕ(γε, θ)τkj

}

≥ ε exp{(sin η0 + ϕ(γε, θγε
+ ε)e2π−η0)tj}

for all j ≥ j0. Consequently,

λ[Iα] ≥ lim
j→∞

1

tj
ln Iα(tj) ≥ sin η0 + ϕ(γε, θγε

+ ε)e2π−η0 ,

whence, passing to the limit as ε → 0+, we obtain the estimate λ[Iα] ≥ Ψ(α). Thus, we have
established that λ[Iα] = Ψ(α), where Ψ(α) ∈ (0, 1) by virtue of inequality (14).

The vector functions

u1(t) =

(
−Iα(t)

1

)
, u2(t) =

(
eq(t)

0

)
, t ≥ 1,

form a fundamental system of solutions of the system Bα. By what has been proved above, we
obtain the relations

λ[u1] = Ψ(α) < 1 = λ[u2],

whence the desired result follows. The proof of the lemma is complete.

Proof of the theorem. 1. Necessity. The following formulas were obtained in [6] for the
Lyapunov exponents:

λi(A) = inf
m∈N

sup
q∈N

ϕmq
i (A), ϕmq

i (A) = inf
L∈Gi(Rn)

max
t∈[m,m+q]

1

t
ln |XA(t, 0)|L|, A ∈ Mn,
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where XA(· , ·) is the Cauchy operator of system (1) and Y |L is the restriction of the mapping Y to
the set L. Further, it was proved there that the functions ϕmq

i : Mn
C → R, m, q ∈ N, are continuous.

Thus,
f(μ) = λi(A(·, μ)) = inf

m∈N

sup
q∈N

ϕmq
i (A(·, μ)), μ ∈ M.

By condition (3) the mapping ofM into Mn
C defined by the rule μ �→ A(·, μ) is continuous. By twice

applying the assertion in [5, Sec. 37.1.I], we find that the function f belongs to the class (∗, Gδ); i.e.,
the preimage of any ray [r,+∞) (r ∈ R) under the mapping f is a Gδ set. Then f is an upper-limit
function by Remark 1. The existence of a continuous minorant and a continuous majorant follows
from the estimate [11, p. 20]

−‖A(·, μ)‖ ≤ λi(A(·, μ)) ≤ ‖A(·, μ)‖, μ ∈ M,

and the inequality

|‖A(·, ν)‖ − ‖A(·, μ)‖| ≤ ‖A(·, ν) −A(·, μ)‖, μ, ν ∈ M.

2. Sufficiency. Using Theorem 1.4.1 in [18], take an arbitrary infinitely differentiable function
r : R → [0, 1] supported in the interval (−2π, 0) and identically equal to unity on the closed interval
[−π,−π/8]. Define a function s : [1,+∞) → [0, 1] by setting

s(x) =

∞∑
k=1

r

(
ln

x

τk

)
, x ≥ 1, (16)

where τk = exp(2πk), k ∈ N. Note that the supports of the terms of the series (16) are pairwise dis-
joint; therefore, the series (16) converges everywhere, and the function s is infinitely differentiable,
is identically equal to unity on the set

⋃
k∈N

[τke
−π, τke

−π/8], and vanishes in some neighborhood of
each of the points τk, k ∈ N.

By assumption, there exist continuous functions g, h : M → R satisfying the inequalities

g(μ) ≤ f(μ) ≤ h(μ), μ ∈ M,

and we will assume that h(μ)− g(μ) ≥ 1 for all μ ∈ M . (Otherwise, h is replaced by h+ 1.)

Let fk : M → R, k ∈ N, be a sequence of continuous functions satisfying Eq. (4). Without loss
of generality, we can assume that the following chain of inequalities holds for each k ∈ N :

g(μ) ≤ fk(μ) ≤ h(μ), μ ∈ M.

(Otherwise, the function fk is replaced by the function max{min{fk(·), h(·)}, g(·)}.)
Set I = (−1,−1/2) if i ≥ 2 and I = (β̌,−1) otherwise, where the number β̌ is defined before

Lemma 1. Take an arbitrary closed interval [p1, p2] ⊂ I such that p1 < p2.

Fix a μ ∈ M . Let lμ : s �→ ξμs + υμ be the increasing linear function taking the interval
[g(μ), h(μ)] to the interval [Ψ(p1),Ψ(p2)], where the function Ψ is defined in (8). By Lemma 1, the
function Ψ : [p1, p2] → R is strictly increasing and continuous; consequently, the inverse function is
well defined and continuous on the interval [Ψ(p1),Ψ(p2)]. Define a sequence αμ by the formula

αμ
k = Ψ−1(lμ(fk(μ))), k ∈ N.

We set
Ãμ(t) = diag[Bαμ(t+ 1), 2, . . . , 2︸ ︷︷ ︸

n−2

], t ≥ 0,

if i ≤ 2 and
Ãμ(t) = diag[ 0, . . . , 0︸ ︷︷ ︸

i−2

, Bαμ(t+ 1), 2, . . . , 2︸ ︷︷ ︸
n−i

], t ≥ 0,
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if i > 2, where Bαμ is the system constructed in Lemma 2 from the function s defined in (16).
By Lemma 2, we have the relations

λi(Ãμ) = λmin{i,2}(Bαμ) = Ψ
(

lim
k→∞

αμ
k

)
= lμ

(
lim
k→∞

fk(μ)
)
= lμ(f(μ)).

Let τ �→ ημτ + ζμ be the inverse function of lμ. Set A(t, μ) = ημÃμ(ημt) + ζμE, t ∈ R
+, where

E is the identity matrix. Now if a function x �= 0 is a solution of the system Ãμ, then the function
y : t �→ x(ημt)e

ζμt is a solution of the system A(·, μ) with y(0) = x(0) and λ[y] = ημλ[x] + ζμ.

Therefore, λi(A(·, μ)) = ημλi(Ãμ) + ζμ = f(μ).

The coefficients of the system Ãμ are bounded (by the number 2) and infinitely differentiable,
because the function bαμ in the definition of the system Bαμ is infinitely differentiable on the intervals
(τk, τk+1) and the function s is infinitely differentiable everywhere and vanishes in a neighborhood
of each of the points τk, k ∈ N. Therefore, the system A(·, μ) has infinitely differentiable coefficients
and is bounded on the half-line R

+.

Now let us show that the mapping A satisfies condition (3). Given an ε ∈ (0, 1), take a T > 1
such that e−T/2 < ε. By virtue of the uniform continuity of the function sbαμ on the interval
[1, 3T + 1], there exists a δ ∈ (0, ε) such that the inequality |s(t′)bαμ(t′) − s(t′′)bαμ(t′′)| < ε holds
for any t′, t′′ ∈ [1, 3T + 1] with |t′ − t′′| < δ. The relations

ξν =
Φ(p2)− Φ(p1)

h(ν)− g(ν)
=

1

ην
, υν = Φ(p1)− ξνg(ν), ζν = −υνην , ν ∈ M, (17)

imply that the functions ν �→ αν
k, ν �→ ην , and ν �→ ζν , k ∈ N, are continuous. Consequently,

there exists a neighborhood U of the point μ such that |ην − ημ| < δ/(2T ) and |ζν − ζμ| < ε for
all ν ∈ U . Take an m ∈ N such that τm > T and a neighborhood V ⊂ U of the point μ such that
|αν

k − αμ
k | < ln(1 + ε)/τm for all ν ∈ V and k = 1, . . . ,m. Then for any ν ∈ V, k = 1, . . . ,m, and

t ∈ [τk−1, τk), we have the chain of inequalities

|eαν
kt − eα

μ
k t| = eα

μ
k t|e(αν

k−αμ
k)t − 1| ≤ e|α

ν
k−αμ

k |t − 1 < ε,

which implies that |(sbαν )(t)− (sbαμ)(t)| ≤ |bαν (t)− bαμ(t)| < ε for all ν ∈ V and t ∈ [1, T ]. At the

same time, 0 ≤ s(t)bαν (t) ≤ e−t/2 for all ν ∈ M and t ≥ 1, and hence

|(sbαν )(t)− (sbαμ)(τ)| ≤ e−T/2 < ε

for all ν ∈ M and τ, t ≥ T.

Inequalities (13) and (14) imply the inequality Ψ(p2)−Ψ(p1) < 1, and hence ην > 1 for all ν ∈ M.
Consequently, |ην − ημ| < ημ/2 for all ν ∈ V . It follows from the preceding that

|(sbαμ)(ηνt+ 1)− (sbαμ)(ημt+ 1)| < ε

for all ν ∈ V and t ≥ 2T/ημ. If t ∈ [0, 2T/ημ], then ηνt+ 1 ∈ [1, 3T + 1] and |ηνt− ημt| < δ for all
ν ∈ V, and hence

|(sbαμ)(ηνt+ 1)− (sbαμ)(ημt+ 1)| < ε.

Further, for all ν ∈ V one has the chain of inequalities

|q′(ηνt+ 1)− q′(ημt+ 1)| ≤ max
θ∈[ημt+1,ηνt+1]

∣∣∣∣cos(ln θ)− sin(ln θ)

θ

∣∣∣∣|ην − ημ|t

≤ 2

(ημ/2)t+ 1
|ην − ημ|t < 2ε, t ≥ 0.

Since property (3) is independent of the choice of the matrix norm, in the following estimates,
we use the column norm

|T |1 = max
1≤j≤n

n∑
i=1

|tij |, T ∈ EndRn.

DIFFERENTIAL EQUATIONS Vol. 53 No. 12 2017



FUNCTIONS DETERMINED BY THE LYAPUNOV EXPONENTS OF FAMILIES 1539

Since |Ãμ(t)|1 ≤ 2, t ∈ R
+, we obtain the following relations for every ν ∈ V :

|A(t, ν)−A(t, μ)|1 = |(ηνÃν(ηνt) + ζνE)− (ημÃμ(ημt) + ζμE)|1
≤ |ζν − ζμ|+ ην |Ãν(ηνt)− Ãμ(ηνt)|1
+ |ην − ημ||Ãμ(ηνt)|1 + ημ|Ãμ(ηνt)− Ãμ(ημt)|1

≤ ε+ 2ημ|(sbαν )(ηνt+ 1)− (sbαμ)(ηνt+ 1)|+ ε

+ ημ max{|(sbαμ)(ηνt+ 1)− (sbαμ)(ημt+ 1)|, |q′(ηνt+ 1)− q′(ημt+ 1)|}
≤ 2ε+ 4ημε < 6ημε, t ∈ R

+.

3. If the function f is bounded, then for the minorant g and the majorant h in the constructions of
part 2 of the proof, we take the constants g0 ≡ infμ∈M f(μ) and h0 ≡ supμ∈M f(μ)+1, respectively.
Then, by Eqs. (17), the values ημ ≡ η and ζμ ≡ ζ are independent of μ, and so the mapping
constructed in part 2 of the proof satisfies the estimate

|A(t, μ)|1 ≤ η|Ãμ(ηt)|1 + ζ ≤ 2η + ζ, t ∈ R
+, μ ∈ M.

The proof of the theorem is complete.

The proof of Corollary 3 can be carried out by analogy with parts 2 and 3 of the proof of
the theorem. Let us indicate the necessary changes in the constructions. For the functions g and h,
just as in part 3 of the proof of the theorem, we take constants. Then lμ ≡ l, ημ ≡ η, and ζμ ≡ ζ,
μ ∈ M = [0, 1]. Set

α̃μ
k = Ψ−1(l(fk(μ))), k ∈ N, μ ∈ M.

As was proved in part 2 of the proof of the theorem, the functions μ �→ α̃μ
k , k ∈ N, are continuous,

and therefore, by the Weierstrass theorem [19, Ch. XVI , Sec. 4, Th. 2], for every k ∈ N there exists
a polynomial pk such that

sup
μ∈M

|pk(μ)− α̃μ
k | < 1/k.

Set αμ
k = pk(μ), k ∈ N, μ ∈ M. Then for every t ∈ R

+ the function μ �→ bαμ(t+ 1) is analytic, and

hence the function μ �→ A(t, μ) ≡ ηÃμ(ηt) + ζE is analytic as well. Since limk→∞ αμ
k = limk→∞ α̃μ

k

for all μ ∈ M , it follows that the Lyapunov exponents of this family and of the family constructed
in part 2 of the proof of the theorem coincide. The proof of the corollary is complete.

Definition 5 [20, Sec. 31.I]. Let X and Y be metric spaces. A function f : X → Y is said to
be B-measurable of class 1 if the preimage f−1(F ) of every closed set F ⊂ Y is a Gδ set.

Remark 3. For every metric space X, the set of B-measurable functions f : X → R of class 1
coincides with the first Baire class [5, Sec. 38.I].

Lemma 3. Let X be an uncountable Gδ set in a complete separable metric space, and let S ⊂ R

be a nonempty bounded Suslin set. Then there exists a B-measurable function f : X → R of class 1
(of the first Baire class) such that f(X) = S.

Proof. By the Aleksandrov–Hausdorff theorem [20, Sec. 33.VI], the set X is homeomorphic to
a complete metric space. By [20, Sec. 36.V, Corollary 2], there exists a Gδ subset N ⊂ X home-
omorphic to the space N of irrational numbers. Using the theorem of [20, Sec. 35.VI], we extend

a homeomorphism h : N → N to a B-measurable function ĥ : X → N of class 1. According
to [5, Sec. 35.III], there exists a continuous function g : N → R such that g(N ) = S. Then
f(X) = S and f is B-measurable of class 1 as the composition of a function of class 1 and a con-
tinuous function [20, Sec. 31.III, Th. 2]. The proof of the lemma is complete.

Proof of Corollary 1. 1. Let M be a compact space. For every family A ∈ An(M), it follows
from the theorem and Remark 1 that the function ΛA

i : M → R belongs to the second Baire class.
Then, by [5, Sec. 39.IX], its image ΛA

i (M) is a Suslin set. Further, by the theorem, the function ΛA
i
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has continuous (and hence bounded) minorant and majorant. Consequently, the set ΛA
i (M) is

bounded. Finally, the cardinality of ΛA
i (M) does not exceed the cardinality of M. Thus, we obtain

the inclusion Rn
i (M) ⊂ S ∩B ∩P(M).

Let us establish the opposite inclusion. Given S ∈ S ∩B ∩P(M), let us construct a function
f : M → R of the first Baire class such that f(M) = S. If M is uncountable, then the existence of
the desired function follows from Lemma 3 (because every compact metric space is complete and
separable). Now consider the case in which M is at most countable. Since S ∈ P(M), it follows
that there exists a surjection f : M → S. The preimage of every (in particular, open) subset of R
under f is an at most countable union of singletons. Passing to complements, we see that the
preimage of every closed subset of R under f is a Gδ set. Hence the function f belongs to the first
Baire class (see Remark 3).

Since every function of the first Baire class is upper-limit, it follows from the theorem that there
exists a family A ∈ An(M) such that ΛA

i (M) = f(M) = S. The proof of part 1 of the corollary is
complete.

2. Assume that the space M is noncompact and can be represented in the formK∪D, whereK is
a compact set and D is a countable set. We apply the assertion already proved in part 1 and find
that ΛA

i (K) ∈ S∩B∩P(M) for every family A ∈ An(M). The relation ΛA
i (M) = ΛA

i (K)∪ΛA
i (D)

and the inclusion ΛA
i (D) ∈ C give the inclusion

R
n
i (M) ⊂ {R : R = S ∪C, S ∈ S ∩B ∩P(M), C ∈ C}.

Let us establish the opposite inclusion. Let S ∈ S∩B∩P(M) and C ∈ C. By Lemma 3, there
exists a function ϕ : K → R of the first Baire class such that ϕ(K) = S. Since M is noncompact,
it follows that there exists an unbounded continuous function u : M → R

+. Fix a surjection
c : N → C. Then, by the choice of the function u, there exists a sequence (di) of pairwise distinct
points of the set D \K such that u(di) > |ci| for all i ∈ N. Take an arbitrary point s ∈ S and define
a function f : M → R by setting

f(μ) =

⎧⎨
⎩

ϕ(μ), μ ∈ K,
ci, μ = di, i ∈ N,
s for the other μ.

By construction, f(M) = S ∪ C, and the functions

μ �→ max{u(μ), supS}, μ �→ min{−u(μ), infS}

are a majorant and a minorant, respectively, of f . By Theorem 1 in [20, Sec. 31.IV], the function f
is B-measurable of class 1 and hence belongs to the first Baire class (see Remark 3). Since every
function of the first Baire class is upper-limit, it follows by the theorem that there exists a family
A ∈ An(M) such that ΛA

i (M) = f(M) = S ∪ C. The proof of part 2 of the corollary is complete.

3. Assume that the space M is complete and separable and cannot be represented as a union
of a compact set and an at most countable set. We denote the set of its condensation points
by C [20, Sec. 23.III]. The set M \C is countable, and so the set C is uncountable and noncompact.
Hence there exists an unbounded continuous function u : C → R

+. Take a sequence (ci) of points
of the set C such that the inequality u(ci) + 2 < u(ci+1) is satisfied for each i ∈ N. Since the
set C is closed [20, Sec. 23.IV], it follows by the Tietze theorem [20, Sec. 14.IV] that there exists
a continuous extension of the function u to the entire space M ; this extension will be denoted by
the same letter.

Fix an arbitrary point s ∈ S. For any i ∈ N, take an open neighborhood Ui of the point ci in M
such that |u(μ)− u(ci)| < 1 for all μ ∈ Ui. Set

Si = (S ∩ [−u(ci), u(ci)]) ∪ {s}.

By Lemma 3, there exists a B-measurable function fi : Ui → R of class 1 such that fi(Ui) = Si.
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Finally, we define a function f : M → R by the formula

f(μ) =

{
fi(μ) for μ ∈ Ui, i ∈ N,

s for all other μ.

Note that the neighborhoods Ui, i ∈ N, are pairwise disjoint, and so the function f is well defined.
By Theorem 1 in [20, Sec. 31.IV], the function f is B-measurable of class 1, and hence belongs
to the first Baire class (see Remark 3). By construction, the functions μ �→ max{u(μ) + 1, s} and
μ �→ min{−u(μ)−1, s} are a majorant and a minorant, respectively, of the function f . By the choice
of the sequence (ci), we have

⋃
i∈N

Si = S, whence we obtain f(M) = S. By applying the theorem,
we obtain the desired result. The proof of part 3 and of the entire corollary is complete.

Proof of Corollary 2. Let A ∈ An(M). Then it follows from the theorem that the function
ΛA

i is upper-limit. By Remark 1, the set {μ ∈ M : ΛA
i (μ) ≥ q} is a Gδ set for every q ∈ R. It follows

from the obvious relation

{μ ∈ M : ΛA
i (μ) > r} =

⋃
k∈N

{μ ∈ M : ΛA
i (μ) ≥ r + k−1}

that the set {μ ∈ M : ΛA
i (μ) > r} is a Gδσ set.

Conversely, let S ⊂ M be a Gδ set. Set f = χS + r − 1, where χS : M → {0, 1} is the
characteristic function of the set S. Since the preimage of every ray [q,+∞), q ∈ R, under f is
a Gδ set, it follows from Remark 1 that the function f is upper-limit. By the theorem, there exists
a family A ∈ An(M) such that ΛA

i = f . Then S = {μ ∈ M : ΛA
i (μ) ≥ r}.

Now let S =
⋃

k∈N
Sk, where Sk ⊂ M, k ∈ N, are Gδ sets. Define a function f : M → [r, r + 1]

by the formula

f(μ) = r +

∞∑
k=1

2−kχSk
(μ), μ ∈ M. (18)

For each k ∈ N, the preimage of every ray [q,+∞), q ∈ R, under the mapping χSk
is a Gδ set,

and hence the function χSk
can be represented as the limit of a decreasing sequence of functions

of the first Baire class by Remark 1. The partial sums of the series (18), as well as its sum f ,
have the same property, because the series converges uniformly. By Remark 1, the function f
is upper-limit. By the theorem, there exists a family A ∈ An(M) such that ΛA

i = f . Then
S = {μ ∈ M : ΛA

i (μ) > r}. The proof of the corollary is complete.

4. CONCLUSION

As said in the introduction, a complete description of the n-tuples (Λ1, . . . ,Λn) of Lyapunov
exponents of the families (2) was obtained in [7] for any metric space M for the case in which the
families are given by mappings μ �→ A(·, μ) continuous in the compact-open topology and such
that for each μ ∈ M the coefficients of system (2) are continuous and bounded on the half-line R

+.
A complete description of the same tuples is given in [21, 22] in the absence of the boundedness
condition on the half-line for the coefficients of the systems in the family. (One simply needs to
discard the requirement for the existence of a semicontinuous minorant.)

In the present paper, for mappings μ �→ A(·, μ) continuous in the uniform topology and such
that for each μ ∈ M system (2) has continuous bounded coefficients on the half-line R+, a complete
description of each individual function Λi is given. The following two questions remain open.
What is each of these functions if the boundedness condition on the half-line for the coefficients
of the systems in the family is not satisfied? What are the n-tuples of these functions for families
continuous in the uniform topology under the condition that the coefficients of the systems in the
family are bounded and without this condition?
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