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Abstract—We study the problem on the construction of coverings by a given system of differ-
ential equations and the description of systems covered by it. This problem is of interest in view
of its relationship with the computation of nonlocal symmetries, recursion operators, Bäcklund
transformations, and decompositions of systems. We show that the distribution specified by the
fibers of the covering is determined by a pseudosymmetry of the system and is integrable in
the infinite-dimensional sense. Conversely, every integrable pseudosymmetry of a system defines
a covering by this system. The vertical component of the pseudosymmetry is a matrix analog of
the evolution differentiation, and the corresponding generating matrix satisfies a matrix analog
of the linearization of an equation.
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1. INTRODUCTION

An example of a covering is given by the well-known Cole–Hopf substitution u = 2wx/w, which
transforms the heat equation wt = wxx into the Burgers equation

ut = uux + uxx. (1)

To construct the inverse transformation, one should understand the variable w as a nonlocal variable
given by the system of equations

wx =
1

2
uw, wt =

1

2
uxw +

1

4
u2w. (2)

To compute the solution w(t, x) from the solution u = u0(t, x), it suffices to specify an initial value
w(t0, x0) = w0 and find a solution of system (2) with u = u0(t, x) and with this initial condition.
Thus, to one solution of the Burgers equation (1) there corresponds a set of solutions of the heat
equation. One says that the heat equation covers the Burgers equation.

Now consider an arbitrary system of differential equations for a function u = (u1, . . . , um) of the
variables x = (x1, . . . , xn) of the form

Gα(x, u, . . . , uσ, . . .) = 0, α = 1, . . . , r. (3)

Here and in the following, σ = i1 . . . ik is a multi-index, 1 ≤ ij ≤ n for all j = 1, . . . , k, |σ| = k, and

uσ =

(
∂|σ|u1

∂xi1 . . . ∂xik

, . . . ,
∂|σ|um

∂xi1 . . . ∂xik

)
.

The expression on the left-hand side in (3) means that the function Gα depends on x, u, and finitely
many derivatives of the form uσ. The maximum length |σ| of multi-indices σ occurring in Eqs. (3)
coincides with the order of the system.
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Consider a system of differential equations

wj
i = W j

i (x,w, u, . . . , uσ, . . .), i = 1, . . . , n, j = 1, . . . , q, (4)

for the functions u and w = (w1, . . . , wq) of the variables x such that for any j, i, and s the equation
wj

is = wj
si is a corollary of system (3), (4). Then one says that system (3), (4) covers system (3).

The variables w1, . . . , wq are said to be nonlocal, because, to compute their values, one has to
integrate system (4) of differential equations with given u(x). The existence of a solution of this
system follows from the equality of mixed derivatives.

A symmetry of system (3), (4) depending on the nonlocal variables w1, . . . , wq is called a nonlocal
symmetry of system (3).

The notion of covering of systems of differential equations was introduced in [1, 2] as a develop-
ment of the Wahlquist–Estabrook prolongation structures [3]. The language of coverings was used
to state some well-known differential substitutions in equations of mathematical physics, the no-
tions of nonlocal symmetry, Bäcklund transformation, and recursion operator [4; 5, Ch. 6], and also
dynamic feedback, dynamic linearizability [6], and decomposition [7] of control systems. The prob-
lem of finding coverings over a given system is related to the description of integrable systems [8, 9]
and was solved by numerous authors (e.g., see [1–5, 8–15]).

The present paper deals with the inverse problem (which is apparently simpler) of the description
of coverings by a given system and the search for systems covered by it. We consider invertible
transformations of a given system into a system of the form (3), (4) such that the independent
and dependent variables of one of the systems are expressed via the independent and dependent
variables and the derivatives of the dependent variables with respect to the independent variables
of the other system. Such transformations are called C-transformations [5, Ch. 4], or Lie–Bäcklund
isomorphisms. When using such transformations, one has to consider the infinite prolongations of
the systems to be transformed.

This problem is related to the decomposition problem, because system (3), (4) into which the
given system is transformed has a decomposable form. This explains the analogy between our
results and the well-known results in [16], where any decomposition of an affine control system is
associated with an affine distribution invariant with respect to that system. In our case, every
covering by a given system is associated with an invariant integrable distribution on the infinite
prolongation of the system.

Coverings by evolution equations with one spatial variable were considered in the paper [17],
where the notion of pseudosymmetry of an equation was introduced. We introduce the notion of
integrability of a pseudosymmetry, thus generalizing and strengthening the results in [17]. In par-
ticular, we prove that coverings by a system of differential equations determine and are determined
by integrable pseudosymmetries of that system.

In Sections 2 and 3, we present the notions and assertions of the infinite-dimensional geometry
of differential equations needed to state the results of the paper. The main results are stated in
Section 4 and proved in Section 5.

2. INFINITE PROLONGATIONS OF SYSTEMS OF DIFFERENTIAL EQUATIONS

A complete, more general exposition of the theory presented in this section and the next section
can be found in the monograph [5, Ch. 3 and Ch. 4].

For k ≥ 0, let Jk be the finite-dimensional space with coordinates

xi, uj , uj
i , . . . , uj

σ, . . . , (5)

where i = 1, . . . , n, j = 1, . . . ,m, and σ = i1 . . . il, l ≤ k. A k times differentiable vector function
s = (s1(x), . . . , sm(x))T and a point a = (a1, . . . , an) ∈ R

n in a neighborhood of which the function is
defined specify a point in Jk with coordinates

xi = ai, uj = sj(a), . . . , uj
σ =

∂|σ|sj(a)

∂xi1 . . . ∂xil

, . . . , σ = i1 . . . il,
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1430 CHETVERIKOV

which is called the k-jet of s(x) at a. The space Jk is called the k-jet space with n independent
and m dependent variables.

System (3) of equations of order ≤ k defines a surface E ⊂ Jk. This surface is an invariant
object, in contrast to its representation in the form of system (3), because the equations of one
and the same surface may be different but equivalent. In what follows, we identify a system of
equations of order ≤ k with the surface defined by it in the space Jk.

If s = (s1(x), . . . , sm(x))T is a solution of system (3), then smust satisfy all differential corollaries
of system (3), in particular, the equations

∂Gα

∂xi

+
∑
j,σ

uj
σi

∂Gα

∂uj
σ

= 0, α = 1, . . . , r, i = 1, . . . , n. (6)

The union of systems (3) and (6) is called the first prolongation of system (3). Define the lth
prolongation of a system as the first prolongation of its (l − 1)st prolongation.The corresponding
surface in Jk+l will be denoted by E (l). By definition, E (l) = (E (l−1))(1).

For any k ≥ 0 and s > k, one had the projection of Js onto Jk, which “forgets” the coordinates uσ

for |σ| > k. We denote it by πs,k. System E ⊂ Jk is said to be formally integrable if for each positive
integer l the surface E (l) is a submanifold of Jk+l and the projection πk+l,k+l−1 : E (l) → E (l−1) is
a vector bundle.

The space J∞ of infinite jets is defined as the inverse (projective) limit of the chain of projections

J0 π1,0←− J1 ← · · · ← Jk πk+1,k←− Jk+1 ← · · ·

Namely, an element of J∞ is a sequence of points θk ∈ Jk, k ≥ 0, such that

θ0
π1,0 �−→θ1 �→· · · �→θk

πk+1,k�−→ θk+1 �→· · ·

The infinite jet of a function at a point is defined as the sequence of its k-jets at the point. Each
point of J∞ is the infinite jet of some function (see the proof in [5, Ch. 4, Sec. 1.1]). The canonical
coordinates on the finite jet spaces generate the canonical coordinates (5) on J∞, where the length
of the multi-index σ is an arbitrary positive integer. The projection of J∞ onto J l takes each
sequence {θk} to the point θl and is denoted by π∞,l.

The set J∞ is equipped with the structure of an infinite-dimensional smooth manifold. Namely,
one defines smooth (infinitely differentiable) functions, vector fields, and differential forms on J∞.
A smooth function on J∞ is a function smoothly depending on finitely many (but arbitrary)
coordinates (5). The algebra of smooth functions on J∞ will be denoted by F(J). Every derivation
of this algebra is a sum (in the general case, infinite) of the form

n∑
i=1

gi
∂

∂xi

+

m∑
j=1

∑
|σ|≥0

gjσ
∂

∂uj
σ

,

where gi and gjσ are some smooth functions on J∞. Each such derivation is a smooth vector field
on J∞. For i = 1, . . . , n, the vector field

Di =
∂

∂xi

+

m∑
j=1

∑
|σ|≥0

uj
σi

∂

∂uj
σ

(7)

is called the total derivative with respect to xi on J∞.

A differential 1-form on J∞ is a 1-form depending on finitely many variables (5), i.e., a finite
sum

n∑
i=1

gidxi +

m∑
j=1

∑
0≤|σ|≤q

gjσdu
j
σ, gi, g

j
σ ∈ F(J),
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where q is a nonnegative integer. Smooth functions, vector fields, and differential forms on J∞ are
related by the usual algebraic operations. In particular, the Lie derivative of a function g along
a vector field X will be denoted by Xg.

We define the infinite prolongation E∞ (or the diffiety) of a system E ⊂ Jk as the subset
of J∞ formed by the points θ = {θl} ∈ J∞ such that for each positive integer l the point θk+l

belongs to E (l).

The diffiety of system (3) is given by the infinite system of equations

DσGα = 0, |σ| ≥ 0, α = 1, . . . , r,

where Dσ = Di1 ◦ · · · ◦Dis for σ = i1 . . . is.

The structure of an infinite-dimensional smooth manifold on J∞ is inherited by E∞. For example,
a smooth function on E∞ is the restriction to E∞ of a smooth function in F(J). The algebra
of smooth functions on E∞ is denoted by F(E). For the case of a system E of the form (3),
for the coordinates on E∞ one can take part of the coordinates (5). Let Fl(E) be the algebra of
restrictions to E∞ of functions in F(J) depending only on those coordinates (5) for which |σ| ≤ l.
The derivations of the algebra F(E) are called vector fields on E∞. It follows from the definition
of E∞ that the fields (7) are tangent to E∞. The restriction of the field Di to E∞ will again be
denoted by Di.

Any infinite solution jet of system (3) lies in E∞. The set of all infinite jets of a given so-
lution s(x) is an n-dimensional manifold, which is called the graph of the solution s(x) in E∞.
The fields D1, . . . ,Dn are tangent to the graphs of solutions in E∞. Further, every n-dimensional
submanifold of E∞ tangent to these fields is locally the graph of some solution in E∞. (The precise
statement and proof of this assertion can be found in [5, Ch. 4, Assertion 2.3].) Hence the infinite-
dimensional manifold E∞ and the fields D1, . . . ,Dn defined on it uniquely determine system (3)
and its solutions. The distribution generated by the fields D1, . . . ,Dn on E∞ (or on J∞) is called
the Cartan distribution. The plane of the Cartan distribution at a point θ ∈ E∞ will be denoted
by Cθ(E).

3. TRANSFORMATIONS OF SYSTEMS OF DIFFERENTIAL EQUATIONS

A smooth mapping of a diffiety E∞ into a diffiety S∞ is a mapping

F : E∞ → S∞ (8)

such that the induced mapping F ∗ takes smooth functions to smooth functions; i.e., F ∗(F(S)) ⊂
F(E), where F ∗(g) = g◦F. The mapping (8) is called a diffeomorphism if it is smooth and one-to-one
and if the inverse mapping is smooth as well.

An arbitrary smooth mapping of diffieties does not preserve differential constraints between
variables. The Cartan distribution is the geometric structure defining these constraints. Hence
smooth mappings preserving the Cartan distribution are of interest.

A diffeomorphism (8) is called a C-diffeomorphism (or a Lie–Bäcklund isomorphism) if it pre-
serves the Cartan distribution; i.e.,

F∗(Cθ(E)) = CF (θ)(S), θ ∈ E∞. (9)

Further, systems are said to be C-diffeomorphic if their diffieties are related by a C-diffeomorphism.
The definition of C-diffeomorphism in a neighborhood of a point θ ∈ E∞ is obtained if one replaces
the manifolds E∞ and S∞ in the above definitions by neighborhoods of the points θ ∈ E∞ and
F (θ) ∈ S∞, respectively. Since the n-dimensional integral manifolds of the Cartan distribution
coincide with the graphs of solutions of the corresponding system, it follows from condition (9)
that each C-diffeomorphism takes the graphs of solutions of one system to the graphs of solutions
of the other system. Thus, C-diffeomorphic systems are equivalent systems.

A smooth mapping (8) is called a covering if the following conditions hold at each point θ ∈ E∞.

1. The tangent mapping F∗,θ is a vector space epimorphism.

2. Relation (9) holds.

3. The dimension of the kernel F∗,θ is constant.
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The dimension of the covering is defined as the dimension of the kernel of F∗,θ. For any point

θ̃ ∈ S∞, the set F−1(θ̃) is called the fiber of the covering F. If the mapping (8) is a covering and
E∞ and S∞ are the diffieties of systems E and S, respectively, then one says that the system E
covers the system S, or that F is a covering of the system S by the system E .

Note the following properties of coverings. A composition of coverings is a covering. Every
C-diffeomorphism is a covering of dimension zero. The dimension of a covering coincides with the
dimension of any fiber of the covering. The graph of each solution of the system E is taken by
the covering (8) to the graph of a solution of the system S. Conversely, for each solution s of the
system S defined in a neighborhood of a point a ∈ R

n and for an arbitrary point θ of the fiber
F−1([s]∞a ), where [s]∞a is the infinite jet of the solution s at the point a, there exists a unique
solution s̃ of the system E such that [s̃]∞ã = θ and the covering (8) takes the graph of the solution s̃
to the graph of the solution s.

Consider a finite-dimensional covering ν of system (3) by some system E . Let w = (w1, . . . , wq)
be the coordinates in the fiber of ν in a neighborhood of the point in question. Then the derivatives
wj

i = Di(w
j) are functions of finitely many coordinates x,w, u, . . . , uσ, . . . Hence the system E has

the form (3), (4) in the variables (x,w, u).

4. MAIN RESULTS

Let us state conditions satisfied by the fibers of the covering of system (3) by system (3), (4).
Note that for i = 1, . . . , n the total derivative with respect to xi in system (3), (4) has the form

Di = Ďi +

q∑
j=1

W j
i (x,w, u, . . . , uσ, . . .)

∂

∂wj
,

where Ďi is the total derivative with respect to xi in system (3). It is easily seen that the column
X = (∂/∂w1, . . . , ∂/∂wq)T of vector fields on the diffiety of system (3), (4) satisfies the relations

[X,Di] = AiX, i = 1, . . . , n, (10)

where [X,Di] is the column of commutators [∂/∂ws,Di], s = 1, . . . , q, and AiX is the product of
the function matrix Ai = (∂W j

i /∂w
s)s,j=1,...,q by the column X.

Conditions (10) are not invariant with respect to C-diffeomorphisms. Indeed, a C-diffeomorphism
does not necessarily preserve independent variables. At the same time, the total derivatives with
respect to the new independent variables define the same Cartan distribution and hence are linear
combinations of the fields D1, . . . ,Dn. Hence relations (10) are taken by such a transformation to
the relations

[X,Di] = AiX +BiD, i = 1, . . . , n, (11)

where Bi is a q × n matrix of functions on the diffiety E∞ of system (3), (4) and D is the column
of the vector fields D1, . . . ,Dn.

The columns of vector fields X = (X1, . . . ,Xq)
T defined on the diffiety E∞ of system E and

satisfying relations (11) are called pseudosymmetries of the system E [15, 17]. The distribution
generated by the fields X is said to be invariant with respect to the system (see [16]).

The relations (11) and the Jacobi identity imply the relations

Dj(Ai)−Di(Aj) +AjAi −AiAj = 0 for any i, j, (12)

which, in turn, imply that the matrix differential operators Di+Ai and Dj +Aj commute for any i
and j.

If q = 1 and Ai ≡ 0 for all i, then Eq. (11) means that X1 defines a higher symmetry of the
system. The following two theorems are generalizations of Theorems 2.5 and 3.8 in [5, Ch. 4],
characterize higher symmetries, and were proved in [17] for the special case of 1 + 1 evolution
equations.
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Theorem 1. A column X = (X1, . . . ,Xq)
T of vector fields is a pseudosymmetry of the infinite

jet space J∞ if and only if
X = Eϕ,A +MD; (13)

here ϕ is a q×m matrix of arbitrary functions on J∞, A = (A1, . . . , An) is a tuple of q×q matrices
satisfying relations (12), MD is the product of a q×n matrix M of arbitrary functions in F(J) by
a column D = (D1, . . . ,Dn)

T of vector fields, and the term Eϕ,A in the canonical coordinates on J∞

has the form

Eϕ,A =
∑
σ

(D +A)σ(ϕ)
∂

∂uσ

, (14)

where (D + A)σ, σ = i1 . . . is, is the composition (Di1 + Ai1) ◦ · · · ◦ (Dis + Ais) of q × q matrix
differential operators acting on the function matrix ϕ and the summand on the right-hand side

in (14) is the product of the resulting matrix by the column
∂

∂uσ

=

(
∂

∂u1
σ

, . . . ,
∂

∂um
σ

)T

.

Note that if an n-tuple A of matrices satisfies relations (12), then the operators Di + Ai,
i = 1, . . . , n, pairwise commute, and hence the right-hand side of Eq. (14) is independent of the
order of elements i1, . . . , is in the multi-indices σ. However, this is not the case if relations (12) are
not satisfied. In the general case, we assume that for each σ = i1 . . . is the elements i1, . . . , is are
arranged in nondescending order; i.e., i1 ≤ i2 ≤ · · · ≤ is.

Matrices A1, . . . , An satisfying relations (12) will be called coefficient matrices, the matrix ϕ will
be called the generating matrix of the pseudosymmetry (13), and the corresponding columns Eϕ,A

will be called evolution pseudosymmetries.

Theorem 2. A column X = (X1, . . . ,Xq)
T of vector fields is a pseudosymmetry of a formally

integrable system (3) if and only if it is the restriction to E∞ of a column of the form (13), where
the restrictions to E∞ of the matrices A1, . . . , An satisfy relations (12) and the generating matrix
ϕ = (ϕij) satisfies the system of equations

∑
j,σ

∂Gα

∂uj
σ

(D +A)σ(ϕj)|E∞ = 0, α = 1, . . . , r, ϕj = (ϕ1j , . . . , ϕqj)
T, (15)

at the points of E∞.

Along with conditions (11), the distribution generated by the fields ∂/∂w1, . . . , ∂/∂wq satisfies
the integrability condition. Note that the manifold E∞ on which the distribution is considered is
infinite-dimensional. Hence the regularity and involutivity of this distribution do not necessarily
imply its integrability. Following the paper [18], where conditions for the integrability of vector
fields defining higher symmetries were obtained, we give the following definition.

Definition. A set of vector fields X1, . . . ,Xq on a diffiety E∞ is called an integrable pseudosym-
metry if the following conditions are satisfied.

A. The fields X1, . . . ,Xq generate an involutive distribution on E∞.

B. The column X = (X1, . . . ,Xq)
T of vector fields is a pseudosymmetry of the system E .

C. There exists a ring K of functions on E∞ such that F0(E) ⊂ K ⊂ Fl(E) for some integer
l ≥ 0, the entries of the matrices A1, B1, . . . , An, Bn in Eq. (11) belong to K, and Xi(K) ⊂ K for
each i = 1, . . . , q.

Note that conditions A and B in this definition imply the involutivity of the distribution gener-
ated by the fields X1, . . . ,Xq ,D1, . . . ,Dn.

Let E be a formally integrable system, and let K be a function ring on the diffiety E∞ such
that F0(E) ⊂ K ⊂ Fl(E) for some l ≥ 0. For s > 0, by DsK we denote the ring generated by
the functions Dσ(f), where f ∈ K and |σ| ≤ s. A point θ ∈ E∞ is called a generic point of the
ring K [18] if the subspaces {df |θ′ ∈ T ∗

θ′ : f ∈ K} and {df |θ′ ∈ T ∗
θ′ : f ∈ DlK} have constant

dimension in some neighborhood of this point.
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A regular point of an integrable pseudosymmetry is a generic point of the corresponding ring K
at which the fields X1, . . . ,Xq ,D1, . . . ,Dn are linearly independent.

We say that an integrable pseudosymmetry defines a covering if the fibers of the covering coincide
with the maximal integral manifolds of the distribution generated by the fields of the pseudosym-
metry.

Theorem 3. Let E be a formally integrable system.

1. Each integrable pseudosymmetry of the system E in a neighborhood of a regular point defines
a covering by E .

2. Each covering by the system E is defined by some integrable pseudosymmetry of E .

If an integrable pseudosymmetry defines a covering by the system E of a system S, then the
system S will be called a quotient of E by this integrable pseudosymmetry (covering).

To construct the covering (8) and the quotient S corresponding to an integrable pseudosymmetry
X = (X1, . . . ,Xq) of E in a neighborhood of a regular point θ ∈ E∞, we need to find common
first integrals of the vector fields X1, . . . ,Xq . The ring of common first integrals of these fields
must coincide with the image of the ring F(S) under the induced mapping F ∗ of the covering (8).
The desired independent variables z1, . . . , zn of the quotient must be chosen from common first
integrals such that the matrix (Di(zj)) is nonsingular. In the following, we show that if g is
a common first integral of the pseudosymmetry fields, then for each i = 1, . . . , n the total derivative
Dzi(g) is a common first integral as well. The dependent variables u1, . . . , um of the quotient must
be chosen from the common first integrals in such a way that the following conditions be satisfied:

1. u1, . . . , um ∈ K.

2. du1, . . . , dum are linearly independent at the point θ.

3. The set {u1, . . . , um} is a maximal set of common first integrals of the distribution fields such
that conditions 1 and 2 are satisfied; i.e., if g ∈ K is a common first integral of the vector fields
X1, . . . ,Xq, then g is a function of u1, . . . , um.

The variables u1, . . . , um are related by equations of the form (3). We take functions w1, . . . , wq

on E such that the matrix (Xi(w
j)) is nonsingular at the point θ for the coordinates in the fiber

of the covering, compute their derivatives according to system E , and obtain the equations of
system (4).

Example. One can readily verify that the covering of the Burgers equation by the heat equa-
tion corresponding to the Cole–Hopf substitution (see the introduction) is determined by the one-
dimensional (q = 1) pseudosymmetry

X1 =
∂

∂w
+

wx

w

∂

∂wx

+
wxx

w

∂

∂wxx

+ · · ·

with generating matrix ϕ = 1 and coefficient matrices Ax = wx/w and At = wxx/w.

5. PROOFS OF THE THEOREMS

First, let us prove that the property of a set of vector fields to be an integrable pseudosymmetry is
invariant under C-diffeomorphisms. Consider an integrable pseudosymmetry (X1, . . . ,Xq) of a sys-
tem E . Any diffeomorphism preserves involutivity and linear independence, and a C-diffeomorphism
preserves the Cartan distribution. Hence a C-diffeomorphism F : E∞ → S∞ takes the regular
involutive distribution generated by the fields X1, . . . ,Xq,D1, . . . ,Dn, to the regular involutive dis-

tribution generated by the fields F∗(X1), . . . , F∗(Xq), D̃1, . . . , D̃n, where D̃1, . . . , D̃n are the total
derivatives with respect to the independent variables of the system S. This proves the invariance
of condition B. The invariance of condition A can be proved in a similar way.

To prove the invariance of condition C, consider a function ring K on E∞ such that F0(E) ⊂
K ⊂ Fl(E) and Xi(K) ⊂ K for each i = 1, . . . , q. It follows from the smoothness of F that
F ∗(F0(S)) ⊂ Fr0(E) for some r0 ≥ 0. Since F−1 is a C-diffeomorphism, and since a C-diffeomorphism

preserves the Cartan distribution, it follows that F−1 takes every total derivative D̃i on S∞ to
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a linear combination of total derivativesD1, . . . ,Dn on E∞.On the other hand, every total derivative
Di on E∞ maps Fr0(E) into Fr0+1(E). Hence for each function g ∈ F0(S) we have F ∗(D̃i(g)) =

(F−1)∗(D̃i)(F
∗(g)) ∈ Fr0+1(S). Each function in F1(S) is a function of finitely many functions of the

form g ∈ F0(S) and D̃i(g), i = 1, . . . , n. Consequently, F ∗(F1(S)) ⊂ Fr0+1(E). By induction over s,
we prove the relation F ∗(Fs(S)) ⊂ Fr0+s(E) for each s ≥ 0. Likewise, for the C-diffeomorphism F−1

there exists an r1 ≥ 0 such that for each s ≥ 0 one has the inclusion (F−1)∗(Fs(E)) ⊂ Fr1+s(S),
and hence Fs(E) ⊂ F ∗(Fs+r1(S)).

Finally, taking into account the definition of the ring DsK, we obtain the inclusions

F ∗(F0(S)) ⊂ Fr0(E) ⊂ Dr0K ⊂ Fr0+l(E) ⊂ F ∗(Fr1+r0+l(S))
and hence F0(S) ⊂ (F−1)∗(Dr0K) ⊂ Fr1+r0+l(S).

On the other hand, it follows from Eqs. (11) that

X(Di(g)) = Di(X(g)) +AiX(g) +BiD(g) ∈ D1K
for each function g ∈ K, and hence Xi(D

1K) ⊂ D1K for each i = 1, . . . , q. Likewise, Xi(D
sK) ⊂

DsK and
F∗(Xi)((F

−1)∗(DsK)) ⊂ (F−1)∗(DsK), s ≥ 0.

Thus, condition C holds for the fields F∗(X1), . . . , F∗(Xq) and the ring (F−1)∗(Dr0K).

To prove assertion 2 of Theorem 3, recall that if a system E covers system (3), then, for some
choice of independent and dependent variables, the system E has the form (3), (4). A change of
variables in a system is a C-diffeomorphism, and the definitions of covering and integrable pseu-
dosymmetry are invariant under C-diffeomorphisms. Hence it suffices to prove that the column of
the fields ∂/∂w1, . . . , ∂/∂wq is an integrable pseudosymmetry of system (3), (4) defining a cover-
ing of system (3) by system (3), (4). For the ring K in condition C for these fields one can take
the ring F0(E), i.e., the ring of smooth functions of (t, u, w). Part of condition B has been proved
earlier, and the remaining part, condition A, and the fact that the fields ∂/∂w1, . . . , ∂/∂wq define
a covering by system (3), (4) of system (3) are obvious.

The proof of assertion 1 of Theorem 3 consists of the following eight steps.

Step 1. We use the following theorem proved in [18] (see Theorem 1).

Theorem 4. Let E be a formally integrable system, and let K be a function ring on the diffi-
ety E∞ of that system such that F0(E) ⊂ K ⊂ Fl(E) for some l ∈ N. Then for each generic point of
the ring K, there exists a C-diffeomorphism F of some neighborhood of that point into the diffiety
S∞ of some system S such that K ⊂ F ∗(F0(S)) and each element of F ∗(F0(S)) is a function of
finitely many elements of K.

LetX = (X1, . . . ,Xq) be an integrable pseudosymmetry of the system E , letK be the correspond-

ing ring, and let θ̃ ∈ E∞ be a regular point of the system. Let us construct a C-diffeomorphism F of
some neighborhood U∞ ⊂ E∞ of the point θ̃ into the diffiety S∞ of some system S ⊂ Jp such that
F is related to the ring K as indicated in Theorem 4. Then, in view of the invariance of integrable
pseudosymmetries, the fields Z1 = F∗(X1), . . . , Zq = F∗(Xq) form an integrable pseudosymmetry
of the system S. For its ring one can take the ring F0(S). Indeed, for each function g in F0(S),
we have F ∗(g) ∈ K, and hence Xi(F

∗(g)) ∈ K and

Zi(g) = (F−1)∗(Xi(F
∗(g))) ∈ (F−1)∗(K) ⊂ F0(S), i = 1, . . . , q;

i.e., Zi(F0(S)) ⊂ F0(S) for each i = 1, . . . , q. Hence the mapping π∞,0|S∞ projects the fields
Z1, . . . , Zq into some fields Z0

1 , . . . , Z
0
q on S0 = π∞,0(S∞).

Step 2. Each function on S1 = π∞,1(S∞) is a function of finitely many functions of the form
g ∈ F0(S) and Di(g), i = 1, . . . , n, and the fields Z1, . . . , Zq satisfy relations similar to (11). Hence
for any j = 1, . . . , q and i = 1, . . . , n, we have

Zj(Di(g)) = Di(Zj(g)) +

q∑
l=1

al
jiZl(g) +

n∑
s=1

bsjiDs(g) ∈ F1(S),
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where al
ji and bsji are the entries of the matrices Ai and Bi, respectively. Thus, Zi(F1(S)) ⊂ F1(S),

and hence the mapping π∞,1|S∞ projects the fields Z1, . . . , Zq into some fields Z1
1 , . . . , Z

1
q on S1.

Since π∞,0 = π1,0◦π∞,1, it follows that π1,0|S1 projects the fields Z1
1 , . . . , Z

1
q into the fields Z0

1 , . . . , Z
0
q .

This argument can be generalized to the case of any s > 1. In particular, π∞,s|S∞ projects the
fields Z1, . . . , Zq into some fields Zs

1 , . . . , Z
s
q on Ss = π∞,s(S∞), and for k > s the mapping πk,s|Sk

projects the fields Zk
1 , . . . , Z

k
q into the fields Zs

1 , . . . , Z
s
q .

Step 3. It follows from the definition of regular point of an integrable pseudosymmetry that
the vectors Z1,θ, . . . , Zq,θ,D1,θ, . . . ,Dn,θ are linearly independent at the point θ = F (θ̃). Hence for
some k ≥ 0 the vectors

Zk
1,θk

, . . . , Zk
q,θk

, π∞,k,∗(D1,θ), . . . , π∞,k,∗(Dn,θ) (16)

are linearly independent at the point θk = π∞,k(θ). It follows from the definition of linear inde-
pendence that the vectors Zk

1,θk
, . . . , Zk

q,θk
are linearly independent. Since the fields Zk

1 , . . . , Z
k
q are

smooth, it follows that they are linearly independent at every point in some neighborhood of the
point θk ∈ Sk.

Step 4. Since the fields Z1, . . . , Zq are projected by the mapping π∞,k|S∞ into the fields
Zk

1 , . . . , Z
k
q , it follows that their commutators are projected into the commutators of the

fields Zk
1 , . . . , Z

k
q . The latter are fields on Sk, and hence it follows from condition A that the vec-

tor fields Zk
1 , . . . , Z

k
q generate a regular involutive distribution in some neighborhood of the point θk.

By the Frobenius theorem, this distribution is integrable and has a full set of first integrals.

Step 5. It follows from the linear independence of the vectors (16) that, in a neighborhood
of the point θk, the fields Zk

1 , . . . , Z
k
q have a set of common first integrals z1, . . . , zn such that the

matrix
(Di(zj)(θ)) = (π∞,k,∗(Di,θ)(zj))

is nonsingular. [Here and in the following, we identify the functions g ∈ Fk(S) and (π∞,k)
∗(g) ∈

F(S).] It follows from the smoothness of the fields D1, . . . ,Dn and the functions z1, . . . , zn that
the matrix (Di(zj)) is nonsingular at each point of some neighborhood of the point θ ∈ S∞.
Consequently, the functions z1, . . . , zn can be taken for the new independent variables.

Step 6. Since z1, . . . , zn are common first integrals of the fields Zk
1 , . . . , Z

k
q and hence of the

fields Z1, . . . , Zq, it follows from relations (11) for the fields Zi that

Bi = [Z,Dzi ](z) = Z(Dzi(z))−Dzi(Z(z)) = 0, i = 1, . . . , n, z = (z1, . . . , zn)
T.

Hence if g is a common first integral of the fields Z1, . . . , Zq, then

Z(Dzi(g)) = Dzi(Z(g)) +AiZ(g) = 0,

and hence Dzi(g) is a common first integral of these fields for each i = 1, . . . , n as well.

Step 7. We supplement the set z1, . . . , zn with some functions φ1, . . . , φs ∈ C∞(Sk) to a maximal
functionally independent set of common first integrals of the fields Zk

1 , . . . , Z
k
q in a neighborhood of

the point θk ∈ Sk. Since the vectors Zk
1,θk

, . . . , Zk
q,θk

are linearly independent, it follows that there

exist smooth functions w1, . . . , wq on Sk such that the matrix (Zk
i,θk

(wj)) is nonsingular. It follows

from the smoothness of the fields Zk
1 , . . . , Z

k
q and the functions w1, . . . , wq that the matrix (Zk

i (wj))
is nonsingular at each point in some neighborhood of the point θk. It follows that the functions
z1, . . . , zn, φ

1, . . . , φs, w1, . . . , wq form a coordinate system in a neighborhood of the point θk on Sk.

Since the mapping π∞,k projects the fields Z1, . . . , Zq into the fields Zk
1 , . . . , Z

k
q , it follows that

the functions z1, . . . , zn, φ
1, . . . , φs [more precisely, their images under the mapping (π∞,k)

∗] are
common first integrals of the fields Z1, . . . , Zq. Likewise, the functions w

1, . . . , wq have the property
det(Zi(wj)) �= 0. The derivatives Dzi(φ

j) are common first integrals of the fields Z1, . . . , Zq as well.
On the other hand, Dzi(φ

j) are functions on Sk+1, and π∞,k+1 projects the fields Z1, . . . , Zq into
the fields Zk+1

1 , . . . , Zk+1
q . Hence the functions φj , Dzi(φ

j) are common first integrals of the fields
Z1, . . . , Zq . From these functions, choose a maximal functionally independent set in a neighborhood
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of the point θk+1 = π∞,k+1(θ). We supplement it with the functions z1, . . . , zn and some functions
φs+1, . . . , φs+s1 ∈ C∞(Sk+1) to a maximal functionally independent set of common first integrals of
the fields Zk

1 , . . . , Z
k
q . Then the functions z1, . . . , zn, φ

1, . . . , φs+s1 , w1, . . . , wq and part of the deriva-

tives Dzi(φ
j) form a coordinate system in a neighborhood of the point θk+1 on Sk+1, the functions

φs+1, . . . , φs+s1 and part of the derivatives Dzi(φ
j) being the coordinate functions in the fibers of

the projection πk+1,k. Since one can take the coordinates on Sk+1 and part of the derivatives of the
coordinates in the fibers πk+1,k with respect to the independent variables for the coordinates on S∞,
it follows that the functions of the form zi, φ

j , ws,Dσ(φ
j) can be taken for the coordinates on S∞.

Step 8. The derivatives Dzi(w
j) are functions on Sk+1 and hence functions of the above-

mentioned coordinates on Sk+1. We obtain equations of the form

Dzi(w
j) = W j

i (z, w, φ,Dz(φ)). (17)

The remaining equations in the system S are equations for the common first integrals of the fields
Z1, . . . , Zq . Indeed, every equation in the system S can be written in these coordinates in the form

G(z, φ,w, . . . ,Dσ(φ), . . .) = 0.

The derivative of this equation along the field Zi has the form

q∑
j=1

G′
wjZi(w

j) = 0.

Since the matrix (Zi(w
j))i,j=1,...,q is nonsingular, it follows that G′

wj ≡ 0, j = 1, . . . , q, and hence
the function G is independent of w and satisfies

G(z, φ, . . . ,Dσ(φ), . . .) = 0. (18)

We apply a similar argument to the remaining equations in the system S. Let us denote the
functions φj by uj and the functions zi by xi. Then Eqs. (18) acquire the form (3), and Eqs. (17)
become Eqs. (4). The proof of Theorem 3 is complete.

Proof of Theorem 1. In view of relations (12), straightforward computations readily show
that the relation

[Eϕ,A,Di](g) = AiEϕ,A(g)

holds for the coordinate functions g = xs and g = uj
σ for any s, j, and σ. Hence [Eϕ,A,Di] = AiEϕ,A

and the column X = Eϕ,A +MD satisfies relations of the form (11).

Conversely, let a column X of vector fields satisfy relations (11). In the canonical coordinates
on J∞, the Cartan distribution is defined by the set of 1-forms

dCu
j
σ = duj

σ −
n∑

i=1

uj
σi dxi, j = 1, . . . ,m, |σ| ≥ 0.

Set ϕj
σ = X�dCuj

σ and Ms = X�dxs. Since Ds�dCuj
σ = 0 and Ds�dxi is the zero function for s �= i

and the unit function for s = i, it follows that the column X −
∑n

s=1 MsDs has zero components

for
∂

∂x1

, . . . ,
∂

∂xn

and hence

X =
∑
j,σ

ϕj
σ

∂

∂uj
σ

+

n∑
s=1

MsDs

for some ϕj
σ ∈ F(J).

We use the infinitesimal Stokes formula and the relation d(dCu
j
σ) =

∑n

i=1 dxi ∧ dCu
j
σi to obtain

[X,Di]�dCuj
σ = X�

(
Di�

n∑
s=1

dxi ∧ dCu
j
σi

)
+X(Di�dCuj

σ)−Di(X�dCuj
σ)

= X�dCuj
σi −Di(X�dCuj

σ) = ϕj
σi −Diϕ

j
σ.
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The substitution of the left-hand side of relation (11) into the form dCu
j
σ gives the relation

AiX�dCuj
σ +MD�dCuj

σ = Aiϕ
j
σ.

Consequently, ϕj
σi = (Di + Ai)ϕ

j
σ, which proves Eq. (13), where M = (M1, . . . ,Mn), ϕ =

(ϕ1
∅
, . . . , ϕm

∅
) and ∅ is the empty multi-index.

Proof of Theorem 2. Let X be a column of vector fields on J∞ of the form (13), (14), let the
restrictions of the matrices A1, . . . , An to E∞ satisfy relations (12), and let the generating matrix
ϕ = (ϕij) satisfy (15). Since the term MD is tangent to the infinite prolongation of any system,
it follows that the tangency of the column X to the diffiety E∞ is equivalent to the tangency of the
column Eϕ,A to the same diffiety. The latter means that the functions Eϕ,A(Gα), α = 1, . . . , r, are
zero on E∞, which is equivalent to system (15). Hence the restriction of X to E∞ is well defined.

By arguing as in the proof of Theorem 1 while considering the restrictions to E∞ of Eϕ,A, Di,
xs, and uj

σ rather than these fields and functions themselves, we obtain the identity

[Eϕ,A|E∞ ,Di|E∞ ] = Ai|E∞Eϕ,A|E∞ ,

which means that the restriction of X to E∞ is a pseudosymmetry of system (3).

Conversely, let a columnX of vector fields on E∞ satisfy relations (11). By arguing as in the proof
of Theorem 1, we find that the column X is determined by the function columns ϕj = X�(dCuj |E∞)
and Ms = X�(dxs|E∞), where X�(dCuj

σ|E∞) = (D +A)σ(ϕj)|E∞ . In contrast to J∞, the forms dCu
j
σ

on E∞ are related by the differential constraints

dCGα|E∞ =
∑
j,σ

∂Gα

∂uj
σ

dCu
j
σ|E∞ = 0, α = 1, . . . , r.

Hence

X�dCGα|E∞ =
∑
j,σ

∂Gα

∂uj
σ

(D +A)σ(ϕj)|E∞ = 0, α = 1, . . . , r.

To complete the proof of Theorem 2, it suffices to note that for the coordinates on E∞ one can
take the restriction to E∞ of part of the coordinates (5); hence X is the restriction to E∞ of the
column (13).

CONCLUSION

We have obtained a complete description of finite-dimensional coverings by a given system of
differential equations. Furthermore, the results of the paper provide a theoretical substantiation
of the following algorithm for computing the coverings.

1. Find matrices A1, . . . , An satisfying relations (12).

2. Solve system (15) for ϕ.

3. From the obtained pseudosymmetries of the form (13), single out those satisfying conditions A
and C.

4. Construct the covering corresponding to the obtained integrable pseudosymmetry.

The search for the matrices A1, . . . , An is related to the search for zero curvature representations
(see [9]). The solution of a system of the form (15) is similar to the computation of higher symme-
tries (e.g., see [5, Ch. 4, Sec. 4]). See [18] concerning the verification of condition C. Finally, the
construction of a covering and the quotient by the obtained integrable pseudosymmetry has been
described above (see Section 4).
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