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Abstract—We study the existence, uniqueness, and nonnegativity of solutions of a family of
delay integral equations used in mathematical models of living systems. Conditions ensuring
these properties of solutions on an infinite time interval are obtained. The continuous depen-
dence of solutions on the initial data on finite time intervals is analyzed. Special cases in the form
of delay differential and integro-differential equations arising in population dynamics models are
presented.
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INTRODUCTION

Mathematical models of living systems use rather involved mathematical techniques. These
include integral and differential equations of various types, in particular, delay equations, which
take into account the development history of living systems. A necessary condition for a specific
differential or integral equation to be usable as a mathematical model of a living system is its well-
posedness, that is, the existence and uniqueness of solutions and their continuous dependence on the
parameters and the initial and boundary conditions. Models describing the population dynamics
of elements (animals, individuals, cells, virus particles, bacteria, molecules, etc.) of a living system
involve additional conditions of nonnegativity and boundedness of solutions of these equations on
the infinite time interval for nonnegative initial data.

The modern approach to the analysis of properties of solutions of delay integral and differential
equations takes into account the structure of the equations to be studied and is based on methods of
the theory of operator equations and methods for constructing a priori estimates of solutions [1–6].
Information on the structure of model equations and a priori estimates permit one to prove the
nonnegativity and boundedness of solutions and the existence of periodic positive solutions and also
study the asymptotic behavior of solutions under a number of conditions. Examples of analysis
of these properties of solutions for equations occurring in mathematical models of biophysics and
ecology can be found in [7–14].

Mathematical models in the form of integral equations arise, as a rule, when taking into account
the following factors for elements of living systems: (i) their age structure; (ii) the existence of
several stages of their development with regard to time the elements spend at these stages. Pop-
ulation dynamics models widely use partial differential equations containing functions μ(a) ≥ 0
that describe the death rate of individuals in a population depending on age a ≥ 0. The function
μ(a) determines the survival function L(a) = exp(−

∫ a

0
μ(s) ds), which specifies the fraction of in-

dividuals that have reached age a. The case of μ(a) = μ∗ = const > 0 specifies the exponential
survival function L(a) = exp(−μ∗a) and arises when using ordinary differential equations. Integra-
tion of differential equations results in integral equations, which permit one to study the properties
of solutions of the models with the use of well-known methods.

For example, the paper [15] deals with the solvability and stability of solutions of a system of
nonlinear Volterra integral equations with variable lower limit of integration, and the results are
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applied to the analysis of age-structured population dynamics models with one and two species.
Conditions for the exponential growth or decay of solutions of a nonlinear integral equation arising
in the integration of a family of quasilinear differential equations by variation of constants are
obtained based on the theory of integral operators in the paper [16], and the results are used to
analyze a broad family of age-structured models and models with bounded and unbounded delay.
The paper [17] presents an integral epidemic process model constructed with regard to a distributed
delay in the latent and immune stages of the disease. For some parameter values, this model reduces
to a system of delay differential equations of special structure supplemented with initial conditions.
The existence, uniqueness, and nonnegativity of the solution on the half-line [0,∞) are established.

The paper [17] gives a detailed derivation of population dynamics equations pertaining to stage-
dependent models (also known as stage-structured models). Yet another example of such a family
of equations is given in the paper [18], where the model equations are derived from the balance
relations used in an age-structured populations dynamics model. It is assumed that the birth
rate of new individuals and the death rate depend on the individual age and the total population
size. To construct the model equations, one uses integral equations, which are then reduced to
differential equations of neutral type. Stage-structured delay differential equations are given in the
papers [19] (an epidemic model), [20] (a version of the predator–prey model), and [21] (a model of
tick population dynamics).

Note that the straightforward representation of stage-structured models in the form of delay
differential equations requires imposing certain restrictions on the initial data. By way of example,
consider a typical differential equation with given initial condition arising in these models:

dy(t)

dt
= f(y(t))− μy(t)− e−μ τf(y(t− τ)), t ≥ 0, (1)

y(t) = y0(t), t ∈ [−τ, 0]. (2)

The variables in problem (1), (2) have the following meaning: y(t) is the population size at time t,
y0(t) is the initial population size, μ > 0 is a parameter, f(y) is a given function, and τ , 0 < τ < ∞,
is the duration of some stage of individuals in the population. Assume that the function f(y) is
defined in some neighborhood U0 of the point y = 0 and satisfies the Lipschitz condition in U0 and
that the inequality f(y) ≥ 0 holds for all y ∈ U0, y ≥ 0. Further, assume that the function y0(t)
is continuous and nonnegative on the interval [−τ, 0] and that y0(t) ∈ U0 for all t in that interval.
Obviously, problem (1), (2) is equivalent to the integral equation [22, p. 300]

y(t) = y0(0) +

t∫

0

(f(y(s))− μy(s)− e−μ τf(y(s− τ))) ds, t ≥ 0, (3)

with the initial condition (2).

It is easily seen that there exists an interval [0, τ0] on which there exists a unique continuous
solution of problem (1), (2) [or, which is the same, of problem (3), (2)]. [For t = 0, by dy(t)/dt we
mean the right-hand derivative.] We additionally assume that the function f(y) increases on the
interval {y ≥ 0}∩U0, the function y0(t) decreases on the interval [−τ, 0], and y0(0) = 0. Then there
exist μ and τ such that

dy(t)

dt

∣
∣
∣
∣
t=0

= f(y0(0)) − e−μτf(y0(−τ)) < 0.

This inequality, the condition y(0) = 0, and the continuity of the function y(t) imply that this func-
tion takes negative values for t ∈ (0, τ1), where 0 < τ1 ≤ τ0. The negativity of the function y(t) does
not agree with its biological meaning. Consequently, the initial function occurring in condition (2)
cannot be prescribed arbitrarily.

On the other hand, Eq. (1) with condition (2) can be integrated by variation of constants. Then
problem (1), (2) is replaced by the equation

y(t) =

t∫

t−τ

e−μ(t−a)f(y(a)) da, t ≥ 0, y(t) = y0(t), t ∈ [−τ, 0]. (4)
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CONDITIONS FOR WELL-POSEDNESS OF INTEGRAL MODELS 1129

It follows from Eq. (4) by the continuity of y(t) that the inequality

y0(0) =

0∫

−τ

eμaf(y0(a)) da (5)

necessarily holds, which shows that the function y0(t) used in condition (2) cannot be specified
arbitrarily. Further, if y0(0) = 0, then either f(y) ≡ 0 or the functions f(y) and y0(t) have a special
form.

Thus, there arises a functional relation between the functions y0(t) and f(y) in the model (1), (2)
and its integral analogs (3), (2), and (4); this relation should be taken into account when studying
the properties of the solution y(t). For example, if the continuous dependence of the solution on the
initial function y0(t) or the stability of an equilibrium y∗ is studied for problem (1), (2), then one
should require that the perturbed initial function y1(t) is not only “close” to y0(t) or y∗, respectively,
but also satisfies relation (5) in which y0(t) is replaced with y1(t). Hence, to use equations of the
form (1), (2), one has to impose additional restrictions on the function y0(t). At the same time,
it is apparently more natural and expedient to use an approach in which these restrictions follow
from the construction of the model at the stage where the model equations are derived.

The present paper studies one version of the integral model, which is a modification and gen-
eralization of models of the form (1), (2) and (4) to the multidimensional case in the presence
of delayed variables. The aim of the paper is to derive the model equations and find conditions
ensuring the well-posedness of these equations and expressed in terms of the mappings describing
the reproductive, death, and migration flow rates of elements of living systems.

1. MODEL EQUATIONS

Consider a living system consisting of elements of m types. Let xi(t) be the number of elements
of ith type at time t ∈ R = (−∞,∞), and let x(t) = (x1(t), . . . , xm(t))

T. Let ω ≥ 0 be a constant,
let Iω = [−ω, 0], and let xt : Iω → R

m be the section of the function x(t) at time t ≥ 0 defined by
the rule xt(θ) = x(t+ θ), θ ∈ Iω.

Take an i, 1 ≤ i ≤ m. Set

xi(t) = ψi(t), t ≤ 0, xi(t) = x
(0)
i (t) + x

(n)
i (t), t ≥ 0. (6)

The function ψi(t) in Eq. (6) describes the number of original elements of the ith type, i.e., el-
ements present in the system prior to t = 0. For t > 0, the number of original elements of the
ith type decreases owing to various causes (ageing, restrictions on the time spent in the system,
migration processes, etc.) unrelated to the interaction between elements and is described by the

function x
(0)
i (t). The mapping gi(t, xt) specifies the death rate of elements of the ith type for t ≥ 0

owing to the interaction between elements of distinct types in the system. The term

x
(0)
i (t) = exp

{

−
t∫

0

gi(s, xs) ds

}

ψi(t) (7)

occurring in (6) stands for the number of original elements of the ith type remaining in the system
by time t ≥ 0. The term

x
(n)
i (t) =

t∫

0

Pi(a) exp

{

−
t∫

t−a

gi(s, xs) ds

}

fi(t− a, xt−a) da (8)

in (6) stands for the number of elements of the ith type reproduced by the system itself or having
entered the system on the time interval [0, t] and survived by time t. The mapping fi(t − a, xt−a)
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in Eq. (8) describes the production rate of elements of the ith type reproduced by the system or
immigrating to the system at time t− a ≥ 0. The expression

Pi(a) exp

{

−
t∫

t−a

gi(s, xs) ds

}

(9)

is the fraction of elements of the ith type entering the system at time t − a ≥ 0 that are not
leaving the system on the time interval [t−a, t]. The function Pi(a) occurring in the expression (9)
represents the distribution of time spent by elements of the ith type in the system if all interactions
between system elements are neglected.

Set
ψ(t) = (ψ1(t), . . . , ψm(t))

T, f(s, xs) = (f1(s, xs), . . . , fm(s, xs))
T,

g(s, xs) = (g1(s, xs), . . . , gm(s, xs))
T, G(s, xs) = diag[g1(s, xs), . . . , gm(s, xs)],

exp

{

−
t∫

0

G(s, xs) ds

}

= diag

[

exp

{

−
t∫

0

g1(s, xs) ds

}

, . . . , exp

{

−
t∫

0

gm(s, xs) ds

}]

,

exp

{

−
t∫

t−a

G(s, xs) ds

}

= diag

[

exp

{

−
t∫

t−a

g1(s, xs) ds

}

, . . . , exp

{

−
t∫

t−a

gm(s, xs) ds

}]

,

P (a) = diag[P1(a), . . . , Pm(a)].

We use relations (6)–(9) and find that the dynamics of the vector x(t) is described by the
equations

x(t) = exp

{

−
t∫

0

G(s, xs) ds

}

ψ(t) +

t∫

0

P (a) exp

{

−
t∫

t−a

G(s, xs) ds

}

f(t− a, xt−a) da, t ≥ 0, (10)

x(t) = ψ(t), t ∈ Iω. (11)

Relations (10) and (11) form a system of nonlinear delay integral equations supplemented with
initial conditions. To study problem (10), (11), one can use well-known results given, say, in the
survey paper [23] or the monograph [24]. At the same time, to apply general theorems, one should
take into account the specific features of the functions and mappings occurring in Eqs. (10) and (11).

2. DEFINITIONS AND ASSUMPTIONS

Let I, J ⊂ R be intervals, let R+ = [0,∞) be the nonnegative half-axis, and let Ω ⊆ R
m be

a domain. Given a vector ξ = (ξ1, . . . , ξm)
T ∈ R

m, set Ωξ = [ξ1,∞)× . . .× [ξm,∞) ⊂ R
m. We adopt

the convention that the inequalities ξ < 0, u > 0, and v ≤ w for vectors ξ, u, v, w ∈ R
m are

understood componentwise.

Let C(I, J) and C(I,Ω) be the sets of all continuous functions y : I → J and x : I → Ω,
respectively. If x(1), x(2) ∈ C(I,Ω), then the inequality x(1)(t) ≤ x(2)(t), t ∈ I, is understood as
an inequality between the corresponding vectors for each t ∈ I.

Set I = [a, b], where a < b are some numbers. We make the linear space C(I,Rm) a Banach
space by equipping it with the norm

‖z‖ = max
θ∈I

‖z(θ)‖Rm , z ∈ C(I,Rm),

where ‖v‖Rm is the norm of a vector v ∈ R
m; in particular, ‖v‖Rm =

∑m

i=1 |vi|. Following [25, p. 11],
for a given γ > 0 we also define a norm on C(I,Rm) by the formula

‖z‖γ = max
θ∈I

(e−γθ‖z(θ)‖Rm), z ∈ C(I,Rm).
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The norms ‖z‖ and ‖z‖γ are equivalent, because the inequality e−γb‖z‖ ≤ ‖z‖γ ≤ e−γa‖z‖ holds
for all z ∈ C(I,Rm).

We say that a functional h : C(Iω,R
m
+ ) → R

m
+ is isotone if the inequality h(z(1)) ≤ h(z(2)) holds

for any z(1), z(2) ∈ C(Iω,R
m
+ ) such that z(1)(θ) ≤ z(2)(θ), θ ∈ Iω.

We make the following assumptions, which, taken together, will be denoted by (H0), about the
components of functions and mappings occurring in system (10), (11) :

(a) The function ψi is continuous and nonnegative on the interval [−ω,∞) and nonincreasing
on the interval [0,∞), 1 ≤ i ≤ m.

(b) The function Pi is nonincreasing and nonnegative on the interval [0,∞), and

Pi(0) = 1, 0 < P̂i =

∞∫

0

Pi(a) da < ∞, 1 ≤ i ≤ m.

(c) There exists a vector ξ ∈ R
m, ξ < 0, such that the mappings fi, gi : R+ ×C(Iω,Ωξ) → R are

continuous; moreover,

fi, gi : R+ × C(Iω,R
m
+ ) → R+, 1 ≤ i ≤ m.

(d) The mappings fi, gi are locally Lipschitz; namely, for each d ∈ R
m, d > 0, and any pair

z1, z2 ∈ C(Iω,Ωξ) such that z1(θ) ≤ d and z2(θ) ≤ d for θ ∈ Iω, the inequalities

|fi(t, z1)− fi(t, z2)| ≤ L
(i)
f ‖z1 − z2‖, |gi(t, z1)− gi(t, z2)| ≤ L(i)

g ‖z1 − z2‖,

where L
(i)
f = L

(i)
f (ξ, d) > 0 and L(i)

g = L(i)
g (ξ, d) > 0 are Lipschitz constants depending on the

vectors ξ and d, 1 ≤ i ≤ m, hold for all 0 ≤ t < ∞.

A solution of system (10), (11) on an interval [0, τ ], τ > 0, is a function x defined and continuous
on the interval [−ω, τ ] and satisfying Eq. (10) for all t ∈ [0, τ ] and the initial condition (11).

Let us introduce some notation. If d ∈ R
m, d > 0, then Nd = [0, d1] × . . . × [0, dm] ⊂ R

m
+ .

Fix a τ > 0. By Cψ,τ ⊂ C([−ω, τ ],Rm) we denote the set of all functions x ∈ C([−ω, τ ],Rm)
such that x(t) = ψ(t), t ∈ Iω. Let Cψ,τ,0 be the set of (componentwise) nonnegative functions
x ∈ Cψ,τ . Let υ = υ(t) = (υ1(t), . . . , υm(t))

T be a function with positive components defined on
the interval [−ω, τ ]. Further, we define Cψ,τ,0,υ as the set of functions x ∈ Cψ,τ satisfying the
inequalities 0 ≤ x(t) ≤ υ(t), t ∈ [−ω, τ ]. Note that the sets Cψ,τ,0,υ, Cψ,τ,0, and Cψ,τ are closed in
the space C([−ω, τ ],Rm). Consequently, they are complete metric spaces in the metric generated
by the norm ‖ · ‖ as well as in the metrics generated by the norms ‖ · ‖γ . Further, let E be the

identity matrix, and let P̂ = diag[P̂1, . . . , P̂m].

Consider the operator F that takes each function x ∈ Cψ,τ,0 to a function F (x) ∈ Cψ,τ,0 by the
formulas

F (x)(t) = ψ(t), t ∈ Iω, (12)

F (x)(t) = exp

{

−
t∫

0

G(s, xs) ds

}

ψ(t) +

t∫

0

P (a) exp

{

−
t∫

t−a

G(s, xs) ds

}

f(t− a, xt−a) da

= exp

{

−
t∫

0

G(s, xs) ds

}

ψ(t) +

t∫

0

P (t− α) exp

{

−
t∫

α

G(s, xs) ds

}

f(α, xα) dα, t ∈ [0, τ ]. (13)

Let us introduce additional assumptions taking into account the specific features of the mappings
f(t, xt) and g(t, xt) in various models of living systems. In these assumptions, inequalities for f(t, z)
for given (t, z) are understood componentwise:

(H1) The mapping f is bounded on the set R+×C(Iω,R
m
+ ); namely, there exists a vector q ∈ R

m
+

such that the inequality f(t, z) ≤ q holds for all (t, z) ∈ R+ ×C(Iω,R
m
+ ).
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(H2) The mapping f is linearly majorized on the set R+ × C(Iω,R
m
+ ); namely, the estimate

f(t, z) ≤ p+

0∫

−ω

dν(θ) z(θ)

holds for all (t, z) ∈ R+ ×C(Iω,R
m
+ ), where p ∈ R

m
+ , ν is the m×m matrix whose entries νij(θ) are

defined and nondecreasing on the interval Iω and the matrix Δν = ν(0) − ν(−ω) has at least one
positive entry.

(H3) The mapping f is h-majorized on the set R+ × C(Iω,R
m
+ ); namely, the estimate f(t, z) ≤

h(z), where h : C(Iω,R
m
+ ) → R

m
+ is a continuous isotone functional, holds for all (t, z) ∈ R+ ×

C(Iω,R
m
+ ).

(H4) The mapping f is r, g-majorized on the set R+ ×C(Iω,R
m
+ ); namely, there exists a vector

r ∈ R
m with components ri > 0, 1 ≤ i ≤ m, such that the estimate f(t, z) ≤ diag[r1, . . . , rm]g(t, z)

holds for all (t, z) ∈ R+ × C(Iω,R
m
+ ).

3. AUXILIARY RESULTS

Let us proceed to the study of the properties of the operator F given by formulas (12) and (13).

Lemma 1. Let assumption (H0) and (H1) be satisfied, and let

v(0) = max
{
sup
t∈Iω

ψ(t); ψ(0) + P̂ q
}
∈ R

m. (14)

Then for each τ > 0 the set Cψ,τ,0,v(0) is F -invariant, and there exists a constant γ > 0 such that
the operator F is a contraction in the norm ‖ · ‖γ on the set Cψ,τ,0,v(0) .

Proof. Fix a τ > 0. Let x ∈ Cψ,τ,0. In view of Eq. (14), we obtain the inequalities

0 ≤ F (x)(t) = ψ(t) ≤ sup
s∈Iω

ψ(s) ≤ v(0) for t ∈ Iω.

If t ∈ [0, τ ], then

0 ≤ F (x)(t) ≤ ψ(0) +

t∫

0

P (a)q da ≤ ψ(0) + P̂ q ≤ v(0). (15)

Consequently, the inclusion F (x) ∈ Cψ,τ,0,v(0) holds for each function x ∈ Cψ,τ,0,v(0) ⊂ Cψ,τ,0.

Let x(1), x(2) ∈ Cψ,τ,0,v(0). Since 0 ≤ x(k)(t) ≤ v(0), t ∈ [−ω, τ ], k = 1, 2, we can take the vector
d = v(0) > 0 for the vector d occurring in the definition of the local Lipschitz property of f

and g. The Lipschitz constants L
(i)
f and L(i)

g of the components of the mappings f and g depend

on ξ and v(0), 1 ≤ i ≤ m. In view of the boundedness condition for f, we have the inequalities
0 ≤ fi(t, z) ≤ qi, 1 ≤ i ≤ m, for all (t, z) ∈ [0, τ ]× C(Iω, Nv(0)).

Fix an i, 1 ≤ i ≤ m, and some constant γ > 0 and estimate the expression

e−γt|Fi(x
(1))(t)− Fi(x

(2))(t)|, t ∈ [−ω, τ ].

By the definition of F ,

e−γt|Fi(x
(1))(t) − Fi(x

(2))(t)| = 0

DIFFERENTIAL EQUATIONS Vol. 53 No. 9 2017
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for each t ∈ Iω. For t ∈ [0, τ ], we have

e−γt(Fi(x
(1))(t)− Fi(x

(2))(t)) = e−γtBi(t) + e−γtHi(t)

= e−γt

(

exp

{

−
t∫

0

gi(s, x
(1)
s ) ds

}

− exp

{

−
t∫

0

gi(s, x
(2)
s ) ds

})

ψi(t)

+ e−γt

t∫

0

Pi(t− α)

(

exp

{

−
t∫

α

gi(s, x
(1)
s ) ds

}

fi(α, x
(1)
α )

− exp

{

−
t∫

α

gi(s, x
(2)
s ) ds

}

fi(α, x
(2)
α )

)

dα.

Let us estimate |Bi(t)|. Since |e−w1 −e−w2 | ≤ |w1−w2| for all w1, w2 ∈ R+, we use the nonnegativity
of the functions gi(s, x

(1)
s ) and gi(s, x

(2)
s ), set ν(t) = ‖x(1)(t)−x(2)(t)‖Rm , and arrive at the relations

|Bi(t)| =
∣
∣
∣
∣ exp

{

−
t∫

0

gi(s, x
(1)
s ) ds

}

− exp

{

−
t∫

0

gi(s, x
(2)
s ) ds

}∣
∣
∣
∣ψi(t)

≤
t∫

0

|gi(s, x(1)
s )− gi(s, x

(2)
s )| dsψi(t) ≤

t∫

0

L(i)
g ‖x(1)

s − x(2)
s ‖ dsψi(t)

≤ L(i)
g ψi(0)

t∫

0

eγse−γs max
θ∈Iω

(ν(s + θ)) ds ≤ L(i)
g ψi(0)

t∫

0

eγs max
θ∈Iω

(e−γ(s+θ)ν(s+ θ)) ds

≤ L(i)
g ψi(0)

t∫

0

eγs max
s∈[0,t]

max
θ∈Iω

(e−γ(s+θ)ν(s+ θ)) ds

≤ L(i)
g ψi(0)

t∫

0

eγs max
s+θ∈[−ω,τ ]

(e−γ(s+θ)ν(s+ θ)) ds

= eγt
L(i)

g ψi(0)

γ
‖x(1) − x(2)‖γ(1− e−γt), t ∈ [0, τ ].

Further, we obtain the relations

|Hi(t)| =
∣
∣
∣
∣

t∫

0

Pi(t− α)

(

exp

{

−
t∫

α

gi(s, x
(1)
s ) ds

}

fi(α, x
(1)
α )− exp

{

−
t∫

α

gi(s, x
(2)
s ) ds

}

fi(α, x
(2)
α )

)

dα

∣
∣
∣
∣

≤
t∫

0

Pi(t− α)

∣
∣
∣
∣ exp

{

−
t∫

α

gi(s, x
(1)
s ) ds

}

fi(α, x
(1)
α )− exp

{

−
t∫

α

gi(s, x
(2)
s ) ds

}

fi(α, x
(2)
α )

∣
∣
∣
∣ dα

≤
t∫

0

Pi(t− α)

(

L
(i)
f ‖x(1)

α − x(2)
α ‖+ qi

t∫

α

L(i)
g ‖x(1)

s − x(2)
s ‖ ds

)

dα

≤ L
(i)
f

t∫

0

eγαe−γα‖x(1)
α − x(2)

α ‖ dα + qiL
(i)
g

t∫

0

P (t− α)

( t∫

α

eγse−γs‖x(1)
s − x(2)

s ‖ ds
)

dα

for t ∈ [0, τ ].
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It follows that

e−γt|Hi(t)| ≤
L

(i)
f

γ
‖x(1) − x(2)‖γ(1− e−γt) + e−γtqiL

(i)
g ‖x(1) − x(2)‖γ

t∫

0

Pi(t− α)

( t∫

α

eγs ds

)

dα

≤
L(i)

f

γ
‖x(1) − x(2)‖γ(1− e−γt) +

qiL
(i)
g P̂i

γ
‖x(1) − x(2)‖γ , t ∈ [0, τ ].

We combine the resulting estimates and obtain the inequality

e−γt|Fi(x
(1))(t)− Fi(x

(2))(t)| ≤ 1

γ
(L(i)

g ψi(0) + L(i)
f + qiL

(i)
g P̂i)‖x(1) − x(2)‖γ

for all t ∈ [0, τ ].

Let A > 1 be some constant. We define a constant γ > 0 by the formula

γ = A

m∑

i=1

(L(i)
g ψi(0) + L

(i)
f + qiL

(i)
g P̂i). (16)

We set 0 < λ = 1/A < 1 and arrive at the estimate

‖F (x(1))− F (x(2))‖γ = max
t∈[−ω,τ ]

(e−γt‖F (x(1))(t)− F (x(2))(t)‖Rm)

= max
t∈[−ω,τ ]

(

e−γt

m∑

i=1

|Fi(x
(1))(t)− Fi(x

(2))(t)|
)

≤ λ‖x(1) − x(2)‖γ

in view of Eq. (16). Consequently, F is a contraction operator in the norm ‖·‖γ on the set Cψ,τ,0,v(0) .
Since τ has been chosen arbitrarily, this completes the proof of the lemma.

Lemma 2. Let assumptions (H0) and (H2) be satisfied, and let

υ(t) = ceηt, t ∈ R, η ∈ R, η > 0, c ∈ R
m, c > 0. (17)

Then there exists a number η and a vector c in (17) such that, for each τ > 0, the set Cψ,τ,0,υ is
F -invariant and there exists a constant γ > 0 such that F is a contraction operator in the norm ‖·‖γ
on the set Cψ,τ,0,υ.

Proof. Consider the function υ(t) given by (17). Let us show that there exist η > 0 and c > 0
such that the inequalities

0 ≤ ψ(t) +

t∫

0

P (t− α)

(

p+

0∫

−ω

dν(θ)υ(α + θ)

)

dα ≤ υ(t), 0 ≤ t < ∞, (18)

are satisfied. The left inequality in (18) is obvious. Let us prove the right inequality. Note that
all entries of the matrix Δν are nonnegative by assumption (H2). Let us write the preliminary
estimate

ψ(t) +

t∫

0

P (t− α)

(

p+

0∫

−ω

dν(θ)υ(α+ θ)

)

dα ≤ ψ(0) +

t∫

0

P (t− α)

(

p+

0∫

−ω

dν(θ)ceη(α+θ)

)

dα

≤ ψ(0) + P̂ p+

t∫

0

P (t− α)eηα dαΔνc ≤ ψ(0) + P̂ p+

t∫

0

Ieηα dαΔνc

≤ ψ(0) + P̂ p+ η−1eηtΔνc, 0 ≤ t < ∞.
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For the last expression in this estimate, consider the inequality

ψ(0) + P̂ p+ η−1Δνceηt ≤ ceηt, 0 ≤ t < ∞. (19)

We introduce the matrix Q(η) = E − η−1Δν and rewrite inequality (19) in the form

eηtQ(η)c ≥ ψ(0) + P̂ p, 0 ≤ t < ∞. (20)

The matrix Q(η) has a special structure; namely, its off-diagonal entries are nonpositive. It is easily
seen that there exists an η0 > 0 such that

Q(η0)(1, . . . , 1)
T > 0. (21)

According to the theory of matrices of special form [26, Part 6], it follows from inequality (21)
that the matrix Q(η0) is a nondegenerate M-matrix. By the properties of M-matrices, we find that
the matrix Q−1(η0) exists and all of its entries are nonnegative. Obviously, each row of this
matrix contains at least one positive entry. Let u(0) ∈ R

m, u(0) > 0, be a given vector. Then

the vector c = c(0) = Q−1(η0)(ψ(0) + P̂ p + u(0)) > 0 satisfies inequality (20) with η = η0 for
all t ≥ 0. Consequently, the function υ(t) = c(0) exp(η0t) satisfies inequalities (19) and (18).
Consider inequality (18) together with the inequality

ψ(t) ≤ υ(t) = ceηt, t ∈ Iω. (22)

We can ensure that inequality (22) is satisfied by an appropriate choice of the vector u(0) in the
expression for the vector c = c(0). Obviously, there exists a vector u(0) such that the vector c(0)

satisfies the inequality
c(0) ≥ max

t∈Iω
(e−η0tψ(t)),

which guarantees that inequality (22) holds. As a result, we find that the function υ = υ(t) =
c(0) exp(η0t) satisfies inequalities (18) and (22).

Fix a τ > 0. Assume that x ∈ Cψ,τ,0,υ. Since the mapping f is linearly majorized, we have

0 ≤ F (x)(t) = ψ(t) ≤ υ(t), t ∈ Iω,

0 ≤ F (x)(t) ≤ ψ(t) +

t∫

0

P (t− α)f(α, xα) dα ≤ ψ(t) +

t∫

0

P (t− α)

(

p+

0∫

−ω

dν(θ)x(α+ θ)

)

dα

≤ ψ(t) +

t∫

0

P (t− α)

(

p+

0∫

−ω

dν(θ)υ(α + θ)

)

dα ≤ υ(t), t ∈ [0, τ ].

Consequently, F (x) ∈ Cψ,τ,0,υ for each x ∈ Cψ,τ,0,υ.

Let x(1), x(2) ∈ Cψ,τ,0,υ. Since 0 ≤ x(k)(t) ≤ υ(t), t ∈ [−ω, τ ], k = 1, 2, it follows that the
vector d = υ(τ) > 0 can be taken for the vector d occurring in the definition of the local Lipschitz

property of the mappings f and g. The Lipschitz constants L
(i)
f and L(i)

g of the components of f
and g depend on ξ and υ(τ), 1 ≤ i ≤ m. Since the mapping f is linearly majorized, we have the
inequality 0 ≤ f(t, z) ≤ p + Δνd for all (t, z) ∈ [0, τ ] × C(Iω, Nd), which in componentwise form
becomes

0 ≤ fi(t, z) ≤ S
(i)
f = pi + (Δνd)i, 1 ≤ i ≤ m.

Each of the constants S
(i)
f > 0 depends on υ(τ), 1 ≤ i ≤ m. By reproducing the argument in the

proof of Lemma 1 and by taking 0 < λ = 1/A < 1 and

γ = A

m∑

i=1

(L(i)
g ψi(0) + L

(i)
f + S

(i)
f L(i)

g P̂i),
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where A > 1 is some constant, we arrive at the inequality

‖F (x(1))− F (x(2))‖γ ≤ λ‖x(1) − x(2)‖γ .

Thus, F is a contraction operator in the norm ‖ · ‖γ on the set Cψ,τ,0,υ. Since τ has been chosen
arbitrarily, this completes the proof of the lemma.

Lemma 3. Let assumptions (H0) and (H3) be satisfied, and assume that there exists a vector
w(0) ∈ R

m, w(0) > 0, such that

ψ(t) ≤ w(0), t ∈ Iω, ψ(t) +

t∫

0

P (a) dah(w(0)) ≤ w(0), t ∈ [0,∞). (23)

Then for each τ > 0 the set Cψ,τ,0,w(0) is F -invariant, and there exists a constant γ > 0 such that
F is a contraction operator in the norm ‖ · ‖γ on the set Cψ,τ,0,w(0).

Proof. Fix a τ > 0. Let x ∈ Cψ,τ,0,w(0). Since h is isotone, we arrive at the inequalities
0 ≤ h(xt) ≤ h(w(0)), t ∈ [0, τ ]. We use inequalities (23) and the fact that f is h-majorized and find
that 0 ≤ F (x)(t) = ψ(t) ≤ w(0) for t ∈ Iω and the estimates

0 ≤ F (x)(t) ≤ ψ(t) +

t∫

0

P (t− α)f(α, xα) dα ≤ ψ(t) +

t∫

0

P (t− α)h(xα) dα

≤ ψ(t) +

t∫

0

P (t− α)h(w(0)) dα ≤ ψ(t) +

t∫

0

P (a) dah(w(0)) ≤ w(0)

hold for t ∈ [0, τ ]. Consequently, F (x) ∈ Cψ,τ,0,w(0) for each x ∈ Cψ,τ,0,w(0).

Let x(1), x(2) ∈ Cψ,τ,0,w(0). Since 0 ≤ x(k)(t) ≤ w(0), t ∈ [−ω, τ ], k = 1, 2, we can take the vector
d = w(0) > 0 for the vector d occurring in the definition of the local Lipschitz property of the

mappings f and g. The Lipschitz constants L
(i)
f and L(i)

g of the components of f and g depend

on ξ and w(0), 1 ≤ i ≤ m. Since the mapping f is continuous, we obtain 0 ≤ fi(t, z) ≤ M
(i)
f

for all (t, z) ∈ [0, τ ] × C(Iω, Nw(0)), where M
(i)
f > 0 are some constants depending on τ and w(0),

1 ≤ i ≤ m. By reproducing the argument in the proof of Lemma 1 and by taking 0 < λ = 1/A < 1
and

γ = A

m∑

i=1

(L(i)
g ψi(0) + L

(i)
f +M

(i)
f L(i)

g P̂i),

where A > 1 is some constant, we arrive at the inequality

‖F (x(1))− F (x(2))‖γ ≤ λ‖x(1) − x(2)‖γ .

As a result, we find that F is a contraction operator in the norm ‖ · ‖γ on the set Cψ,τ,0,w(0); since
τ has been chosen arbitrarily, this completes the proof of the lemma.

Lemma 4. Let assumptions (H0) and (H4) be satisfied, and let

u(0) = max
{
sup
t∈Iω

ψ(t); r
}
∈ R

m. (24)

Then for each τ > 0 the set Cψ,τ,0,u(0) is F -invariant, and there exists a constant γ > 0 such that
F is a contraction operator in the norm ‖ · ‖γ on the set Cψ,τ,0,u(0) .
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Proof. Fix a τ > 0. Let x ∈ Cψ,τ,0,u(0) . By (24), 0 ≤ F (x)(t) = ψ(t) ≤ sup
s∈Iω

ψ(s) ≤ u(0) for

t ∈ Iω . Let t ∈ [0, τ ]. Since the mapping f is r, g-majorized, we obtain

0 ≤ F (x)(t) = exp

{

−
t∫

0

G(s, xs) ds

}(

ψ(t) +

t∫

0

P (t− α) exp

{ α∫

0

G(s, xs) ds

}

f(α, xα) dα

)

≤ exp

{

−
t∫

0

G(s, xs) ds

}(

ψ(0) +

t∫

0

exp

{ α∫

0

G(s, xs) ds

}

diag[r1, . . . , rm] g(α, xα) dα

)

= exp

{

−
t∫

0

G(s, xs) ds

}(

ψ(0) +

t∫

0

d exp

{ α∫

0

G(s, xs) ds

}

r

)

= exp

{

−
t∫

0

G(s, xs) ds

}(

ψ(0) +

(

exp

{ t∫

0

G(s, xs) ds

}

− E

)

r

)

= exp

{

−
t∫

0

G(s, xs) ds

}

ψ(0) +

(

E − exp

{

−
t∫

0

G(s, xs) ds

})

r ≤ u(0).

Consequently, F (x) ∈ Cψ,τ,0,u(0) for each x ∈ Cψ,τ,0,u(0) ⊂ Cψ,τ,0. By analogy with the proofs
of Lemmas 1–3, one can readily see that F is a contraction operator in the norm ‖ · ‖γ on the
set Cψ,τ,0,u(0) . Since τ has been chose arbitrarily, this completes the proof of the lemma.

Remark. Lemmas 1, 2, and 4 hold for an arbitrary function ψ satisfying the conditions in
assumption (H0). This follows from the construction of the vector v(0), the function υ(t), and the
vector u(0) given by formulas (14), (17), and (24), respectively. For Lemma 3, the restriction on
the function ψ is important, because the vector w(0) may satisfy the second inequality in (23) but
not the first inequality for an arbitrary function ψ.

4. MAIN RESULTS

Let us proceed to the analysis of system (10), (11) under assumptions (H0) and (H1)–(H4).

Lemma 5. Let assumption (H0) be satisfied. If system (10), (11) has a solution x(∗) ∈ Cψ,τ,0,
then x(∗) is the unique solution of this system in Cψ,τ .

Proof. Let x(∗) ∈ Cψ,τ,0 be a solution of system (10), (11) on the interval [0, τ ]. Obviously,
x(∗) is a fixed point of F. Assume that x ∈ Cψ,τ is another solution of system (10), (11) on this
interval. By the definition of solution,

x(t) = ψ(t) ≥ 0, t ∈ Iω,

x(t) = exp

{

−
t∫

0

G(s, xs) ds

}

ψ(t) +

t∫

0

P (t− α) exp

{

−
t∫

α

G(s, xs) ds

}

f(α, xα) dα, t ∈ [0, τ ].

Further, the solution x may have negative components. This means that there may exist
0 ≤ t1 < τ1 ≤ τ such that x(t1) ≥ 0 and the inequalities ξj ≤ xj(t) < 0, t ∈ (t1, τ1], hold for
some j = 1, . . . ,m, where the vector ξ < 0 is indicated under assumption (H0). It follows from the
continuity of the solutions x(∗) and x that there exists a vector d = (d1, . . . , dm)

T ∈ R
m, d > 0, such

that

x(∗)(t), x(t) ∈ Nξ,d = [ξ1, d1]× · · · × [ξm, dm] ⊂ R
m, x(∗)(t) ≥ 0, t ∈ [−ω, τ ]. (25)
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Fix a 1 ≤ i ≤ m. Let us estimate the expression |x(∗)
i (t) − xi(t)|, t ∈ [−ω, τ ]. We introduce

constants L
(i)
f , L(i)

g , M
(i)
f , and M (i)

g , which characterize the numerical values of the mappings f

and g in view of (25). Here L(i)
f and L(i)

g are the Lipschitz constants of f and g. The constant

M
(i)
f = max

0≤t≤τ
|fi(t, xt)| estimates |fi|, while the constant

M (i)
g = max

0≤t≤τ
exp

{

max

(

0;

t∫

0

(gi(s, x
(∗)
s )− gi(s, xs)) ds

)}

characterizes the contribution of the solutions x(∗) and x into the estimate of the absolute values
of the expressions

exp

{

−
t∫

0

gi(s, x
(∗)
s ) ds

}

− exp

{

−
t∫

0

gi(s, xs) ds

}

, t ∈ [0, τ ],

and

exp

{

−
t∫

α

gi(s, x
(∗)
s ) ds

}

− exp

{

−
t∫

α

gi(s, xs) ds

}

, 0 ≤ α ≤ t,

with regard to the fact that some components of the solution x may be negative. The func-

tions x
(∗)
i (t) and xi(t) satisfy the relations

x
(∗)
i (t)− xi(t) = 0, t ∈ Iω, x

(∗)
i (t)− xi(t) = Z

(1)
i (t) + Z

(2)
i (t), t ∈ [0, τ ], (26)

where

Z(1)
i (t) =

(

exp

{

−
t∫

0

gi(s, x
(∗)
s ) ds

}

− exp

{

−
t∫

0

gi(s, xs) ds

})

ψi(t)

= exp

{

−
t∫

0

gi(s, x
(∗)
s ) ds

}(

1− exp

{ t∫

0

(gi(s, x
(∗)
s )− gi(s, xs)) ds

})

ψi(t),

Z
(2)
i (t) =

t∫

0

Pi(t− α)

(

exp

{

−
t∫

α

gi(s, x
(∗)
s ) ds

}

fi(α, x
(∗)
α )− exp

{

−
t∫

α

gi(s, xs) ds

}

fi(α, xα)

)

dα

=

t∫

0

Pi(t− α) exp

{

−
t∫

α

gi(s, x
(∗)
s ) ds

}

(fi(α, x
(∗)
α )− fi(α, xα)) dα

+

t∫

0

Pi(t− α)

(

exp

{

−
t∫

α

gi(s, x
(∗)
s ) ds

}

− exp

{

−
t∫

α

gi(s, xs) ds

})

fi(α, xα) dα.

Let us estimate |Z(1)
i (t)| using the finite increment formula for the function exp(−w), w ∈ [a, b],

where [a, b] is some closed interval on the real line. Fix a t ∈ [0, τ ]. Then

Z
(1)
i (t) = exp

{

−
t∫

0

gi(s, x
(∗)
s ) ds

}

ψi(t)

(

e0 − exp

{ t∫

0

(gi(s, x
(∗)
s )− gi(s, xs)) ds

})

= exp

{

−
t∫

0

gi(s, x
(∗)
s ) ds

}

ψi(t)(−eyi(t))

t∫

0

(gi(s, x
(∗)
s )− gi(s, xs)) ds,
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where the variable yi(t) lies in the range between 0 and
∫ t

0
(gi(s, x

(∗)
s )− gi(s, xs)) ds. Consequently,

|Z(1)
i (t)| = exp

{

−
t∫

0

gi(s, x
(∗)
s ) ds

}

ψi(t)e
yi(t)

∣
∣
∣
∣

t∫

0

(gi(s, x
(∗)
s )− gi(s, xs)) ds

∣
∣
∣
∣, t ∈ [0, τ ].

Hence for each t ∈ [0, τ ] one has the inequalities

exp

{

−
t∫

0

gi(s, x
(∗)
s ) ds

}

≤ 1, ψi(t)≤ψi(0),

eyi(t) ≤ exp

{

max

(

0;

t∫

0

(gi(s, x
(∗)
s )− gi(s, xs)) ds

)}

,

|Z(1)
i (t)| ≤ M (i)

g ψi(0)

t∫

0

|g(s, x(∗)
s )− g(s, xs)| ds ≤ M (i)

g ψi(0)L
(i)
g

t∫

0

‖x(∗)
s − xs‖ ds.

For the expression |Z(2)
i (t)|, we obtain the similar estimate

|Z(2)
i (t)| ≤

t∫

0

Pi(t− α)

(

L(i)
f ‖x(∗)

α − xα‖+M (i)
g M (i)

f L(i)
g

t∫

α

‖x(∗)
s − xs‖ ds

)

dα

≤ (L
(i)
f +M (i)

g M
(i)
f L(i)

g P̂i)

t∫

0

‖x(∗)
s − xs‖ ds, t ∈ [0, τ ].

By virtue of relations (26) and the estimates for the expressions |Z(1)
i (t)| and |Z(2)

i (t)|, we arrive
at the relations

‖x(∗)(t)− x(t)‖Rm = 0, t ∈ Iω,

‖x(∗)(t)− x(t)‖Rm ≤ M

t∫

0

‖x(∗)
s − xs‖ ds, t ∈ [0, τ ],

where

M =

m∑

i=1

(M (i)
g ψi(0)L

(i)
g + L

(i)
f +M (i)

g M
(i)
f L(i)

g P̂i) > 0.

Note that the constant M depends on τ, ξ, and d but is independent of t. Let t ∈ [0, τ ] and θ ∈ Iω.
Then

‖x(∗)(t+ θ)− x(t+ θ)‖Rm = 0, t+ θ ≤ 0,

‖x(∗)(t+ θ)− x(t+ θ)‖Rm ≤ M

t+θ∫

0

‖x(∗)
s − xs‖ ds ≤ M

t∫

0

‖x(∗)
s − xs‖ ds, t+ θ ≥ 0,

‖x(∗)
t − xt‖ = max

θ∈Iω
‖x(∗)(t+ θ)− x(t+ θ)‖Rm ≤ M

t∫

0

‖x(∗)
s − xs‖ ds.
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Let u(t) = ‖x(∗)
t −xt‖, t ∈ [0, τ ]. We apply the Bellman–Gronwall lemma to the function u(t) in the

last relations and obtain u ≡ 0. Consequently, x(∗)(t) = x(t) for all t ∈ [−ω, τ ], which completes
the proof of the lemma.

Theorem 1. Let assumptions (H0) and (H1) be satisfied. Then (i) system (10), (11) has
a unique solution x ∈ Cψ,τ on any interval [0, τ ], and x ∈ Cψ,τ,0,v(0), where the vector v(0) is
given by (14); (ii) the solution of system (10), (11) on each integral [0, τ ] continuously depends on
the variations in the function ψ on the interval [−ω, τ ].

Proof. Let us prove (i). Fix a τ > 0. We take into account Lemma 1, use the equivalence of the
norms ‖·‖ and ‖·‖γ , and apply the Banach fixed point theorem to the operator F . We find that there
exists a unique function x(∗) ∈ Cψ,τ,0,v(0) such that F (x(∗)) = x(∗). By Lemma 5, system (10), (11)
does not have solutions other than x(∗) on the interval [0, τ ]. Since the number τ > 0 is arbitrary,
it follows that system (10), (11) has a unique solution x = x(∗) on each finite interval [0, τ ].

Let us prove (ii). Fix an interval [0, τ ]. Let ψ(1) and ψ(2) be two functions each of which satisfies
the conditions imposed on the function ψ in assumption (H0). The operators F (1) and F (2) corre-
sponding to these functions coincide with the operator F for ψ = ψ(1) and ψ = ψ(2). The solutions
of system (10), (11) with F = F (1) and F = F (2) will be denoted by x(1) and x(2), respectively.
We assume that the function ψ(1) is fixed, while the function ψ(2) may vary. Let us show that for
each ε > 0 there exists a δ > 0 such that the inequality ‖ψ(2) − ψ(1)‖ < δ implies the inequality
‖x(2) − x(1)‖ < ε. In view of the remark in Section 3, note that the vector v(0) given by (14) can be
chosen to ensure that inequalities (15) simultaneously hold for both functions ψ(1) and ψ(2). Then
the inequalities 0 ≤ x(1)(t) and x(2)(t) ≤ v(0) hold for all t ∈ [−ω, τ ].

Let γ > 0 be some constant. Fix 1 ≤ i ≤ m. For all t ∈ [−ω, 0], one has the estimate

e−γt|x(2)
i (t)− x

(1)
i (t)| = e−γt|ψ(2)

i (t)− ψ
(1)
i (t)| < eγωδ.

For t ∈ [0, τ ], we have the following estimates obtained by analogy with the estimates in Lemma 1 :

e−γt|x(2)
i (t)− x

(1)
i (t)| = e−γt|F (2)

i (x(2))(t)− F
(1)
i (x(1))(t)|

≤ e−γt|ψ(2)
i (t)− ψ

(1)
i (t)|+

L(i)
g ψ

(1)
i (0)

γ
‖x(2) − x(1)‖γ

+
L

(i)
f

γ
‖x(2) − x(1)‖γ +

qiL
(i)
g P̂i

γ
‖x(2) − x(1)‖γ .

Let A > 0 be some constant. Set

γ =

m∑

i=1

(L(i)
g ψ

(1)
i (0) + L

(i)
f + qiL

(i)
g P̂i) +A, 0 < q =

γ −A

γ
< 1.

By combining the estimates on the intervals [−ω, 0] and [0, τ ], we arrive at the inequality

‖x(2) − x(1)‖γ < eγωmδ + δ + q‖x(2) − x(1)‖γ ,

whence it follows that

‖x(2) − x(1)‖ <
eγ(ω+τ)m+ eγτ

1− q
δ.

We take
δ = ε(1− q)/(eγ(ω+τ)m+ eγτ)

and arrive at the desired inequality ‖x(2) − x(1)‖ < ε. The proof of the theorem is complete.

Using Lemmas 2–5, the remark in Section 3, and the scheme of proof of Theorem 1, one can
readily verify that the following theorems hold.
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Theorem 2. Let assumptions (H0) and (H2) be satisfied. Then (i) system (10), (11) has
a unique solution x ∈ Cψ,τ on each interval [0, τ ], and x ∈ Cψ,τ,0,υ, where the function υ(t) is defined
by Eq. (17) with parameters η and c ensuring that inequalities (18) and (22) hold ; (ii) the solution
of system (10), (11) on each interval [0, τ ] continuously depends on the variations in the function ψ
on the interval [−ω, τ ].

Theorem 3. Let assumptions (H0) and (H3) be satisfied. Assume that there exists a vector
w(0) ∈ R

m, w(0) > 0, satisfying inequalities (23). Then (i) system (10), (11) has a unique solution
x ∈ Cψ,τ on each interval [0, τ ], and x ∈ Cψ,τ,0,w(0); (ii) the solution of system (10), (11) on each
interval [0, τ ] continuously depends on the variations in the function ψ on the interval [−ω, τ ] under
the condition that the vector w(0) and the function ψ satisfy inequalities (23).

Theorem 4. Let assumptions (H0) and (H4) be satisfied. Then (i) system (10), (11) has
a unique solution x ∈ Cψ,τ on each interval [0, τ ], and x ∈ Cψ,τ,0,u(0) , where the vector u(0) is
given by (24); (ii) the solution of system (10), (11) on each interval [0, τ ] continuously depends on
the variations in the function ψ on the interval [−ω, τ ].

5. SOME SPECIAL CASES

Let us give three examples of system (10), (11) reducible to an equivalent Cauchy problem
for systems of delay functional-differential equations. Let x(t) be a continuous function satisfying
Eq. (10) and the initial condition (11) on any interval [0, τ ], τ > 0, and let dx(t)/dt be the right-hand
derivative of x(t) (taken componentwise).

Example 1. Let μ = diag[μ1, . . . , μm], μi > 0, i = 1, . . . ,m, be some constant, and let

ψi(t) = e−μitψi(0), t ≥ 0, Pi(a) = e−μia, a ≥ 0, 1 ≤ i ≤ m.

We differentiate Eq. (10), take into account condition (11), and arrive at the Cauchy problem

dx(t)

dt
= f(t, xt)− (μ+G(t, xt))x(t), t ≥ 0, x(t) = ψ(t), t ∈ Iω. (27)

Equations of the form (27) are widely used in mathematical models of living systems. Examples of
such models can be found in the papers [7–14], the survey [27], and the monographs [28, 29].

Note that assumptions (H0) and (H1) or (H0) and (H2) hold for a broad class of epidemic models
and models of Lotka–Volterra type given in the form (27). Hence we obtain the global solvability
of these models and the nonnegativity of solutions for nonnegative initial data (e.g., see [7, 8]).
The paper [14] gives an example of a model in which it is important to use a vector ξ < 0 occurring
in the conditions of assumption (H0).

Example 2. Fix 1 ≤ i ≤ m. Assume that

Pi(a) = 1, a ∈ [0, σi), Pi(a) = 0, a ∈ [σi,∞),

where σi > 0 is some constant. Set

ψi(t) =

σi∫

0

ϕi(t− a) da, t ∈ Iω,

ψi(t) =

σi∫

t

ϕi(t− a) da, t ∈ [0, σi), ψi(t) = 0, t ∈ [σi,∞),
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where the function ϕi is continuous and nonnegative on the interval (−ω − σi, 0]. We successively
differentiate each equation in system (10) on the intervals [0, σi) and [σi,∞), take into account
condition (11), and obtain the Cauchy problem for the function x(t) in the componentwise form

dxi(t)

dt
= fi(t, xt)− gi(t, xt)xi(t)− exp

{

−
t∫

0

gi(s, xs) ds

}

ϕi(t− σi), 0 ≤ t < σi, (28)

dxi(t)

dt
= fi(t, xt)− gi(t, xt)xi(t)− exp

{

−
t∫

t−σi

gi(s, xs) ds

}

fi(t− σi, xt−σi
), t ≥ σi, (29)

xi(t) =

t∫

t−σi

ϕi(s) ds, t ∈ Iω, 1 ≤ i ≤ m. (30)

Example 3. Assume that, for each 1 ≤ i ≤ m, the function ψi(t) is continuously differentiable
on the interval [0,∞) and the function Pi(a) has the form

Pi(a) =

∞∫

a

�i(s) ds, a ∈ [0,∞),

where the function �i(s) is nonnegative and continuous on the interval [0,∞) and
∫∞
0

�i(s) ds = 1.
Set �(s) = diag[�1(s), . . . , �m(s)]. We differentiate Eq. (10) componentwise, take into account con-
dition (11), and arrive at the Cauchy problem

dx(t)

dt
= f(t, xt)−G(t, xt)x(t)− β(t, xt), t ≥ 0, (31)

β(t, xt) = exp

{

−
t∫

0

G(s, xs) ds

}(

− dψ(t)

dt

)

+

t∫

0

�(t− α) exp

{

−
t∫

α

G(s, xs) ds

}

f(α, xα) dα, (32)

x(t) = ψ(t), t ∈ Iω. (33)

Examples of equations of the form (28)–(33) arising in various models can be found in [17–21]
and [30–35]. The structure of Eqs. (10), (11), and (28)–(33) for a special choice of the mappings f
and g and the function ψ is closest to the model described in [17].

Equations (28)–(30) and (31)–(33) are a generalization of Eqs. (1), (2), and (4) from the view-
point of well-posedness of initial conditions. It follows from our results that the analysis of Eqs. (29)
together with Eqs. (28) and the initial conditions (30) eliminates the problem of possible functional
dependence between the initial function ψ(t) and the mapping f(t, xt) as well as the problem of
possible negativity of the solution x(t) for nonnegative initial data. This conclusion remains valid
for Eqs. (31)–(33).

6. CONCLUSION

We establish a set of conditions guaranteeing the well-posedness of the family of integral equa-
tions constructed here. Assumption (H0), together with each of assumptions (H1)–(H4) enables one
to use Eqs. (10) and (11) as an adequate mathematical model for studying living systems. Note
that the equations of the integral model also admit other assumptions supplementing (H1)–(H4)
and taking into account the specific properties of the mappings f(t, xt), g(t, xt) in concrete cases.
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