
ISSN 0012-2661, Differential Equations, 2017, Vol. 53, No. 8, pp. 996–1004. c© Pleiades Publishing, Ltd., 2017.
Original Russian Text c© I.T. Kiguradze, T.I. Kiguradze, 2017, published in Differentsial’nye Uravneniya, 2017, Vol. 53, No. 8, pp. 1024–1032.

ORDINARY DIFFERENTIAL EQUATIONS

Analog of the First Fredholm Theorem
for Higher-Order Nonlinear Differential Equations

I. T. Kiguradze1∗ and T. I. Kiguradze2∗∗

1Razmadze Mathematical Institute of Javakhishvili State University, Tbilisi, 0177 Georgia
2Florida Institute of Technology, Melbourne, FL 32901, USA

e-mail: ∗kigurad@gmail.com, ∗∗tkigurad@fit.edu

Received April 19, 2017

Abstract—We study the existence of solutions continuously depending on a parameter for
higher-order nonlinear ordinary differential equations with linear boundary conditions. In par-
ticular, we prove a theorem of Fredholm type providing tests for the unique solvability of this
problem.

DOI: 10.1134/S0012266117080043

In the rectangle Ω = [0, a]× [0, b], consider the differential equation

∂nu

∂yn
= p

(
x, y, u,

∂u

∂y
, . . . ,

∂n−1u

∂yn−1

)
+ q(x, y) (1)

with the boundary conditions

hi(u(x, ·))(x) = ci(x) (i = 1, . . . , n), (2)

where p : Ω × R
n → R, q : Ω → R, and ci : [0, a] → R (i = 1, . . . , n) are continuous functions and

hi : C
n−1([0, b]) → C([0, a]) (i = 1, . . . , n) are bounded linear operators. Further, the function p is

continuously differentiable with respect to the phase variables, and

p(x, y, 0, . . . , 0) ≡ 0. (3)

A function u : Ω → R is called a solution of the differential equation (1) if it is continuous,
has continuous partial derivatives ∂ku(x, y)/∂yk (k = 1, . . . , n), and satisfies the equation at each
point of Ω. A solution of Eq. (1) satisfying the boundary conditions (2) is called a solution of
problem (1), (2).

Problem (1), (2) arises when studying the well-posedness of initial and boundary value prob-
lems for ordinary differential equations (e.g., see [1–3] and the bibliography therein). It also has
applications in the theory of initial–boundary value problems for higher-order hyperbolic equations
(see [4–6]). Nevertheless, this problem is so far insufficiently studied.

In the present paper, we find tests for the unique solvability of problem (1), (2) and the stability
of its solution under small perturbations of the functions q and ci (i = 1, . . . , n).

Prior to stating the main results, let us present the notation and definitions adopted in the
paper:

C(I) is the Banach space of continuous functions v : I → R with the norm

‖v‖C(I) = max{|v(t)| : t ∈ I}.
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Cm(I) is the Banach space of m times continuously differentiable functions u : I → R with the
norm

‖v‖Cm(I) =

m∑
i=0

‖v(i)‖C(I).

C0,n(Ω) is the space of continuous functions u : Ω → R with continuous partial derivatives
∂ku(x, y)/∂yk (k = 1, . . . , n).

Definition 1. We say that a continuous vector function (p11, . . . , p1n; p21, . . . , p2n) : Ω → R
2n

belongs to the set Uh1,...,hn
(Ω) if, for any x ∈ [0, a] and arbitrary measurable functions pi : [0, b] → R

(i = 1, . . . , n) satisfying the inequalities

p1i(x, y) ≤ pi(y) ≤ p2i(x, y) (i = 1, . . . , n) (4)

almost everywhere on [0, b], the boundary value problem

v(n) =

n∑
i=1

pi(y)v
(i−1), (5)

hi(v)(x) = 0 (i = 1, . . . , n) (6)

has only the trivial solution.

Definition 2. An operator g : C([0, a];Rn)×C(Ω) → C0,n(Ω) is called the Green’s operator of
the boundary value problem

∂nu

∂yn
= p

(
x, y, u,

∂u

∂y
, . . . ,

∂n−1u

∂yn−1

)
, (10)

hi(u(x, ·))(x) = 0 (i = 1, . . . , n) for 0 ≤ x ≤ a (20)

if the function
u(x, y) = g(c1, . . . , cn, q)(x, y)

is a solution of problem (1), (2) for arbitrary ci ∈ C([0, a]) (i = 1, . . . , n) and q ∈ C(Ω).

The following theorem is a counterpart of the first Fredholm theorem for the nonlinear prob-
lem (1), (2).

Theorem 1. If the inequalities

p1i(x, y) ≤
∂p(x, y, z1, . . . , zn)

∂zi
≤ p2i(x, y) (i = 1, . . . , n), (7)

where
(p11, . . . , p1n; p21, . . . , p2n) ∈ Uh1,...,hn

(Ω), (8)

hold on the set Ω × R
n, then problem (1), (2) is uniquely solvable for arbitrary ci ∈ C([0, a])

(i = 1, . . . , n) and q ∈ C(Ω).

Theorem 2. If conditions (7) and (8) are satisfied , then there exists a positive constant r such
that the inequality

‖g(c11, . . . , c1n, q1)(x, ·) − g(c21, . . . , c2n, q2)(x, ·)‖Cn−1([0,b])

≤ r

( n∑
i=1

|c1i(x)− c2i(x)|+
b∫

0

|q1(x, t)− q2(x, t)| dt
)
, (9)

where g is the Green’s operator of problem (10), (20), is satisfied on the interval [0, a] for any
cji ∈ C([0, a]) (i = 1, . . . , n) and qj ∈ C(Ω) (j = 1, 2).
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According to Theorem 2, if conditions (7) and (8) are satisfied, then problem (1), (2) is well
posed in the sense that small changes in the functions ci (i = 1, . . . , n) and q result in small changes
in the solution of problem (1), (2).

To prove the theorems, we need the following Lemmas 1 and 2.

Lemma 1. Let condition (8) be satisfied. Then there exists a positive constant r such that if
x ∈ [0, a] and pi ∈ C([0, b]) (i = 1, . . . , n) are functions satisfying inequalities (4) on the inter-
val [0, b], then an arbitrary function w ∈ Cn([0, b]) admits the estimate

‖w‖Cn−1([0,b]) ≤ r

(
c0(x) +

b∫
a

|q0(y)| dt
)
,

where

q0(y) = w(n)(y)−
n∑

i=1

pi(y)w
(i−1)(y), c0(x) =

n∑
i=1

|hi(w)(x)|.

Proof. Assume that the lemma is false. Then for each positive integer k there exists a number
xk ∈ [0, a] and functions wk ∈ Cn([0, b]), pik ∈ C([0, b]) (i = 1, . . . , n) such that

p1i(xk, y) ≤ pik(y) ≤ p2i(xk, y) for 0 ≤ y ≤ b (i = 1, . . . , n), (10)

‖wk‖Cn−1([0,b]) > k

(
ck +

b∫
a

|qk(y)| dy
)
,

where

w
(n)
k (y)−

n∑
i=1

pik(y)w
(i−1)
k (y) = qk(y), ck =

n∑
i=1

|hi(wk)(xk)|.

Set

vk(y) =
wk(y)

‖wk(y)‖Cn−1([0,b])

, pik(y) =

y∫
0

pik(t) dt (i = 1, . . . , n),

v
(n)
k (y)−

n∑
i=1

pik(y)v
(i−1)
k (y) = εk(y),

n∑
i=1

|hi(vk)(xk)| = δk. (11)

Then
b∫

0

|εk(t)| dt <
1

k
, δk <

1

k
, (12)

‖vk‖Cn−1([0,b])=1, |v(n−1)
k (y1)− v

(n−1)
k (y2)| ≤ �|y1 − y2|+

1

k
for 0 ≤ yi ≤ b (i=1, 2), (13)

|pik(y1)− pik(y2)| ≤ �|y1 − y2| for 0 ≤ yi ≤ b (i = 1, 2), (14)

where

� = max

{ n∑
i=1

(|p1i(x, y)|+ |p2i(x, y)|) : (x, y) ∈ Ω

}
.

In view of the Arzelà–Ascoli lemma and conditions (13) and (14), we can assume without
loss of generality that the sequence (vk)

+∞
k=1 converges in the norm of the space Cn−1([0, b]) and
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the sequences (pik)
+∞
k=1 (i = 1, . . . , n) converge uniformly on [0, b]. Without loss of generality, the

sequence (xk)
+∞
k=1 is assumed to converge as well.

Let
v(y) = lim

k→+∞
vk(y), pi(y) = lim

k→+∞
pik(y) (i = 1, . . . , n), x = lim

k→+∞
xk.

Then, in view of relations (10) and (13), we have

‖v‖Cn−1([0,b]) = 1, (15)

y2∫
y1

p1i(x, t) dt ≤ pi(y2)− pi(y1) ≤
y2∫

y1

p2i(x, t) dt for 0 ≤ y1 ≤ y2 ≤ b. (16)

It follows from inequalities (16) that the functions pi (i = 1, . . . , n) are absolutely continuous
and admit the representations

pi(y) =

y∫
0

pi(t) dt (i = 1, . . . , n),

where the pi (i = 1, . . . , n) are measurable functions satisfying inequalities (4) almost everywhere
on [0, b].

By Lemma 1.1 in [3],

lim
k→+∞

y∫
0

pik(t)v
(i−1)
k (t) dt =

y∫
0

pi(t)v
(i−1)(t) dt (i = 1, . . . , n) (17)

uniformly on [0, b].

Now if we pass to the limit as k → +∞ not only in Eq. (11) but also in the relation

v
(n−1)
k (y) = v

(n−1)
k (0) +

n∑
i=1

y∫
0

pik(t)v
(i−1)
k (t) dt+

y∫
0

εk(t) dt,

then, in view of conditions (12) and (17), we obtain

v(n−1)(y) = v(n−1)(0) +

n∑
i=1

y∫
0

pi(t)v
(i−1)(t) dt for 0 ≤ y ≤ b,

n∑
i=1

|hi(v)(x)| = 0.

Consequently, the function v is a solution of problem (5), (6) and satisfies (15). But this is im-
possible, because problem (5), (6) has only the trivial solution by virtue of conditions (4) and (8).
The contradiction thus obtained proves the lemma.

Along with Eq. (1), consider the auxiliary equation

∂nu

∂yn
= (1− λ)

n∑
i=1

li(x, y)
∂i−1u

∂yi−1
+ λ

[
p

(
x, y, u,

∂u

∂y
, . . . ,

∂n−1u

∂yn−1

)
+ q(x, y)

]
(18)

depending on the parameter λ ∈ [0, 1], where

li(x, ·) ∈ C([0, b]) for 0 ≤ x ≤ a (i = 1, . . . , n).

A function u : Ω → R will be called a quasi-solution of Eq. (18), if, for arbitrary x ∈ [0, a],
it has continuous partial derivatives ∂iu(x, y)/∂yi (i = 1, . . . , n) on the interval [0, b] and satisfies
Eq. (18) on this interval.
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Obviously, a quasi-solution of Eq. (18) is a solution of this equation if and only if the functions
(x, y) �−→ ∂i−1u(x, y)/∂yi−1 (i = 1, . . . , n) are uniformly continuous in the first argument on the
interval [0, a].

Corollary 2 in [7] implies the following assertion.

Lemma 2. Assume that the boundary value problem

v(n) =

n∑
i=1

li(x, y)v
(i−1), (19)

hi(v)(x) = 0 (i = 1, . . . , n) (20)

has only the trivial solution for each x ∈ [0, a] and there exists a positive number r0 such that for
each λ ∈ [0, 1] every quasi-solution of problem (18), (2) admits the estimate

‖u(x, ·)‖Cn−1([0,b]) ≤ r0 for 0 ≤ x ≤ a. (21)

Then problem (1), (2) has at least one quasi-solution satisfying the estimate (21).

Proof of Theorem 1. Throughout the following, r is the positive constant occurring in
Lemma 1 and

r0 = rmax

{ n∑
i=1

|ci(x)|+
b∫

0

|q(x, t)| dt : 0 ≤ x ≤ a

}
.

Let li(x, y) = p1i(x, y) for (x, y) ∈ Ω (i = 1, . . . , n). Then problem (19), (20) has only the trivial
solution for any x ∈ [0, a]. Let us show that each quasi-solution u of problem (18), (2) admits the
estimate (21) for each λ ∈ [0, 1].

By conditions (3) and (7), there exist functions p0i : Ω → R (i = 1, . . . , n) such that p0i(x, ·) ∈
C([0, b]) for x ∈ [0, a], p1i(x, y) ≤ p0i(x, y) ≤ p2i(x, y) for (x, y) ∈ Ω (i = 1, . . . , n), and

p

(
x, y, u(x, y),

∂u(x, y)

∂y
, . . . ,

∂n−1u(x, y)

∂yn−1

)
=

n∑
i=1

p0i(x, y)
∂i−1u(x, y)

∂yi−1
for (x, y) ∈ Ω.

Hence
∂nu(x, y)

∂yn
=

n∑
i=1

pi(x, y)
∂i−1u(x, y)

∂yi−1
+ λq(x, y),

where pi(x, y) = (1− λ)p1i(x, y) + λp0i(x, y) (i = 1, . . . , n) and

p1i(x, y) ≤ pi(x, y) ≤ p2i(x, y) for (x, y) ∈ Ω (i = 1, . . . , n). (22)

Hence we obtain the estimate (21) by Lemma 1.

Now we apply Lemma 2 and see that there obviously exists a quasi-solution u of problem (1), (2)
admitting the estimate (21).

Let us prove that u is a solution of problem (1), (2). To this end, we must establish that the
functions (x, y) �→ ∂i−1u(x, y)/∂xi−1 (i = 1, . . . , n) are uniformly continuous in the first argument.

First, note that the estimate (21) implies the estimate

‖u(x, ·)‖Cn([0,b]) ≤ r1 for 0 ≤ x ≤ a, (23)

where

r1 = r0 +max

{
|p(x, y, z1, . . . , zn) + q(x, y)| : (x, y) ∈ Ω,

n∑
i=1

|zi| ≤ r0

}
.
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For arbitrary given x, x0 ∈ [0, a], set

w(x, y) = u(x, y) − u(x0, y).

By condition (7), there exist functions pi : Ω → R (i = 1, . . . , n) such that pi(x, ·) ∈ C([0, b])
(i = 1, . . . , n),

p

(
x, y, u(x, y),

∂u(x, y)

∂y
, . . . ,

∂n−1u(x, y)

∂yn−1

)

− p

(
x, y, u(x0, y),

∂u(x0, y)

∂y
, . . . ,

∂n−1u(x0, y)

∂yn−1

)
=

n∑
i=1

pi(x, y)
∂i−1w(x, y)

∂yi−1
,

and inequalities (22) hold. Hence

∂nw(x, y)

∂yn
=

n∑
i=1

pi(x, y)
∂i−1w(x, y)

∂yi−1
+ q1(x, x0, y), (24)

where

q1(x, x0, y) = p

(
x, y, u(x0, y),

∂u(x0, y)

∂y
, . . . ,

∂n−1u(x0, y)

∂yn−1

)

− p

(
x0, y, u(x0, y),

∂u(x0, y)

∂y
, . . . ,

∂n−1u(x0, y)

∂yn−1

)
+ q(x, y)− q(x0, y).

We define functions ω0 and ω1 on the half-line [0,+∞) by setting

ω0(t) = max

{
|p(x1, y, z1, . . . , zn)− p(x2, y, z1, . . . , zn)| : |x1 − x2| ≤ t, 0 ≤ y ≤ b,

n∑
i=1

|zi| ≤ r0

}

+max{|q(x1, y)− q(x2, y)| : |x1 − x2| ≤ t, 0 ≤ y ≤ b}, t ≥ 0,

ω1(t) = max

{ n∑
i=1

|ci(x1)− ci(x2)| : |x1 − x2| ≤ t

}

+max

{ n∑
i=1

|hi(v)(x1)− hi(v)(x2)| : ‖v‖Cn([0,b]) ≤ r1, |x1 − x2| ≤ t

}
, t ≥ 0.

Since the functions p, q, and ci (i = 1, . . . , n) and the operators hi : Cn−1([0, b]) → C([0, a])
(i = 1, . . . , n) are continuous, it is obvious that the functions ωi : [0,+∞) → [0,+∞) (i = 0, 1)
are continuous and nondecreasing and ω0(0) = ω1(0) = 0. On the other hand, in view of the
estimates (21) and (23), it follows from Eqs. (2) and (24) that

∣∣∣∣∂
nw(x, y)

∂yn
−

n∑
i=1

pi(x, y)
∂i−1w(x, y)

∂yi−1

∣∣∣∣ ≤ ω0(|x− x0|) for 0 ≤ y ≤ b,

|hi(w(x, ·))(x)| ≤ ω1(|x− x0|) (i = 1, . . . , n).

Hence, by Lemma 1 and condition (8), we obtain the estimate

‖w(x, ·)‖Cn−1([0,b]) ≤ ω(|x− x0|),

where
ω(t) = r(bω0(t) + ω1(t)).

Consequently,

‖u(x, ·) − u(x0, ·)‖Cn−1([0,b]) ≤ ω(|x− x0|) for 0 ≤ x, x0 ≤ a.
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It is obvious from this estimate that the functions (x, y) �−→ ∂i−1u(x, y)/∂yi−1 (i = 1, . . . , n) are
uniformly continuous in the first argument.

To complete the proof of the theorem, it remains to show that problem (1), (2) has at most one
solution. Let u1 and u2 be arbitrary solutions of this problem, and let u0(x, y) = u1(x, y)−u2(x, y).
By condition (7), there exist functions pi ∈ C(Ω) (i = 1, . . . , n) such that

∂nu0(x, y)

∂yn
= p

(
x, y, u1(x, y),

∂u1(x, y)

∂y
, . . . ,

∂n−1u1(x, y)

∂yn−1

)

− p

(
x, y, u2(x, y),

∂u2(x, y)

∂y
, . . . ,

∂n−1u2(x, y)

∂yn−1

)

=

n∑
i=1

pi(x, y)
∂i−1u0(x, y)

∂yi−1
for (x, y) ∈ Ω (25)

and inequalities (22) hold. Further,

hi(u0(x, ·))(x) = 0 for x ∈ [0, a] (i = 1, . . . , n). (26)

By Lemma 1 and conditions (8) and (22), it follows from identities (25) and (26) that u0(x, y) ≡ 0;
i.e., u1(x, y) ≡ u2(x, y). The proof of the theorem is complete.

Proof of Theorem 2. Let

uj(x, y) = g(cj1, . . . , cjn, qj)(x, y) (j = 1, 2), u(x, y) = u1(x, y)− u2(x, y).

Then, by condition (7), there exist functions pi ∈ C(Ω) (i = 1, . . . , n) such that

∂nu(x, y)

∂yn
= p

(
x, y, u1(x, y),

∂u1(x, y)

∂y
, . . . ,

∂n−1u1(x, y)

∂yn−1

)

− p

(
x, y, u2(x, y),

∂u2(x, y)

∂y
, . . . ,

∂n−1u2(x, y)

∂yn−1

)
+ q1(x, y)− q2(x, y)

=

n∑
i=1

pi(x, y)
∂i−1u(x, y)

∂yi−1
+ q1(x, y)− q2(x, y) for (x, y) ∈ Ω (27)

and inequalities (22) hold. Further,

hi(u(x, ·))(x) = c1i(x)− c2i(x) for x ∈ [0, a] (i = 1, . . . , n). (28)

By Lemma 1 and conditions (8) and (22), it follows from identities (27) and (28) that the esti-
mate (9) holds, where r is a positive constant independent of the functions qj and cji (j = 1, 2;
i = 1, . . . , n). The proof of the theorem is complete.

The boundary conditions

u(0,i−1)(x, 0) = ci(x) (i = 1, . . . , n − 1), h(u(x, ·))(x) = cn(x) for 0 ≤ x ≤ a, (29)

where

u(0,i−1)(x, y) =
∂i−1u(x, y)

∂yi−1
(i = 1, . . . , n),

ci ∈ C([0, a]) (i = 1, . . . , n), and h : Cn−1([0, b]) → C([0, a]) is a bounded linear operator, are
a special case of conditions (2).

We say that an operator h : Cn−1([0, b]) → C([0, a]) is positive if for each function v ∈ Cn−1([0, b])
satisfying the inequalities

v(i−1)(y) > 0 for 0 < y ≤ b (i = 1, . . . , n) (30)

DIFFERENTIAL EQUATIONS Vol. 53 No. 8 2017
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one has the inequality
h(v)(x) > 0 for 0 ≤ x ≤ a. (31)

For example, if h(v)(x) = v(m)(b) − v(m)(y0(x)) or h(v)(x) =
∑n

k=1 αk(x)v
(k−1)(yk(x)), where

m ∈ {0, . . . , n − 2}, y0 : [0, a] → [0, b), yk : [0, a] → (0, b] (k = 1, . . . , n), and αk : [0, a] → [0,+∞)
are continuous functions, and

n∑
k=1

αk(x) > 0 for 0 ≤ x ≤ a,

then h is a positive operator.

Corollary 1. Let n ≥ 2, and let the inequalities

−li(x, y) ≤
∂p(x, y, z1, . . . , zn)

∂zi
≤ l0 (i = 1, . . . , n) (32)

hold on the set Ω × R
n, where l0 is a positive constant and li : Ω → [0,+∞) (i = 1, . . . , n) are

continuous functions such that

n−1∑
i=1

1

(n− i)!

b∫
0

yn−ili(x, y) exp

( y∫
0

ln(x, t) dt

)
dy ≤ 1 for 0 ≤ x ≤ a. (33)

If, moreover, h is a positive operator, then there exists a unique solution of problem (1), (29).

Proof. Let x ∈ [0, a] be an arbitrary given number, and let pi : [0, b] → R (i = 1, . . . , n) be
arbitrary measurable functions satisfying the inequalities

−li(x, y) ≤ pi(y) ≤ l0 (i = 1, . . . , n) (34)

almost everywhere on [0, b].

By Theorem 1 and inequalities (32), to prove Corollary 1, it suffices to show that the differential
equation (5) with the boundary conditions

v(i−1)(0) = 0 (i = 1, . . . , n− 1), h(v)(x) = 0 (35)

has only the trivial solution for any x ∈ [0, a].

Assume the contrary: problem (5), (35) has a nontrivial solution v. Without loss of generality,
we assume that v(n−1)(0) > 0. Then either inequalities (30) hold or there exists a b1 ∈ (0, b] such
that

v(i−1)(y) > 0 for 0 < y < b1 (i = 1, . . . , n) (36)

and
v(n−1)(b1) = 0. (37)

The operator h is positive, and hence inequalities (30) imply inequality (31), which contradicts
conditions (35).

Consequently, it remains to consider the case in which conditions (36) and (37) are satisfied.
Then there exists a number b0 ∈ [0, b1) such that

� = max{v(n−1)(t) : a ≤ t ≤ b1} = v(n−1)(b0) (38)

and

0 < v(i−1)(t) ≤ �

(n− i)!
tn−i for b0 ≤ t < b1, v(i−1)(b1) <

�

(r − i)!
bn−i
1 (i = 1, . . . , n− 1).

(39)
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By inequalities (34) and (36), the inequality

v(n)(y) ≥ −
n∑

i=1

li(x, y)v
(n−i)(y)

holds almost everywhere on [b0, b1]. In view of (37) and (38), we obtain

� ≤
n−1∑
i=1

b1∫
b0

li(x, y) exp

( y∫
b0

ln(x, t) dt

)
v(i−1)(y) dy.

On the other hand, it follows from inequalities (33) and (39) that

n−1∑
i=1

b1∫
b0

li(x, y) exp

( y∫
b0

ln(x, t) dt

)
v(i−1)(y) dy < �.

The contradiction thus obtained proves the corollary.

By way of example, consider the linear differential equation

∂nu

∂yn
=

n∑
i=1

pi(x, y)
∂i−1u

∂yi−1
+ q(x, y), (40)

where pi ∈ C(Ω) (i = 1, . . . , n) and q ∈ C(Ω).

For an arbitrary real number t, set [t]− = (|t|− t)/2. Corollary 1 readily implies the following
assertion.

Corollary 2. If the operator h is positive and

n−1∑
i=1

1

(n− i)!

b∫
0

yn−i[pi(x, y)]− exp

( y∫
0

[pn(x, t)]− dt

)
≤ 1 for 0 ≤ x ≤ a,

then there exists a unique solution of problem (40), (29).
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