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Abstract—For a linearized finite-difference scheme approximating the Dirichlet problem for
a multidimensional quasilinear parabolic equation with unbounded nonlinearity, we establish
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lem. These estimates are used to prove the convergence of finite-difference schemes in the grid
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1. INTRODUCTION

The maximum principle allows one not only to establish the uniqueness of the solution and its
continuous dependence on the input data for parabolic and elliptic equations but also, in contrast
to the energy inequality method, to obtain a priori upper bounds for the solution in the uniform
norm for such problems of arbitrary dimension with a nonself-adjoint elliptic operator [1, p. 500].
The maximum principle is also used in the theory of finite-difference schemes to study the stability
of the finite-difference solution with respect to the input data and its convergence to the exact
solution of the problem in the uniform norm. Finite-difference methods satisfying the grid maximum
principle are usually said to be monotone [2, p. 228; 3, p. 296]. Various classes of monotone
finite-difference schemes have been developed and studied for multidimensional linear convection–
diffusion equations (e.g., see the monograph [4, p. 35]). Monotone schemes play an important role
in computational practice in that they allow one to obtain oscillation-free numerical solutions even
in the case of nonsmooth solutions [5].

Lower (or, in the general case, two-sided) estimates of solutions of differential-difference problems
are of no less importance. Such estimates are especially important when studying the properties
of numerical methods for problems with unbounded nonlinearity, because in this case one needs
to establish that the grid solution lies in a neighborhood of the values of the exact solution [6, 7].
For linear problems, these estimates enable one to find the range of values of the desired solution
in terms of the problem input data (the coefficients and right-hand side of the equation as well as
the initial and boundary conditions). In the nonlinear case, such estimates permit one to prove the
nonnegativity of the exact solution, which is important in physical problems, as well as to find
conditions on the input data under which the problem is parabolic or elliptic.

Finding nontrivial estimates for the solutions of initial–boundary value problems is based on
a special trick, originally applied by Ladyzhenskaya [8] (see also the monograph [9, p. 22]), whereby
one makes a parameter-dependent change of variables and then minimizes or maximizes some func-
tions with respect to this parameter; the resulting extremal values give the corresponding estimates
for the solution. Naturally, one also needs such estimates in numerical algorithms for the approxi-
mate solution of initial–boundary value problems. The theory of finite-difference schemes [2, p. 229]
includes the technique, well developed for linear problems, of the grid maximum principle, which
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provides two-sided estimates for the approximate solution. These estimates for the solutions of
finite-difference problems are less accurate [10] than the corresponding estimates for the solutions
of differential problems [9, p. 22]. Note that similar estimates for the finite element method in the
case of linear problems and problems with bounded nonlinearity were obtained by Farago et al.
(e.g., see [11]).

The present paper develops the technique in [8] as applied to finite-difference schemes for a quasi-
linear parabolic equation with unbounded nonlinearity and to the derivation of two-sided estimates,
completely consistent with the estimates of solutions of the corresponding differential problem, for
the solutions of these schemes. Note that the two-sided estimates proved here are independent of
the values of the coefficients multiplying the second derivatives in the equation. A straightforward
application of these estimates proves the convergence of the linearized finite-difference scheme in
the grid L2 norm.

2. TWO-SIDED ESTIMATES FOR SOLUTIONS
OF INITIAL–BOUNDARY VALUE PROBLEMS

FOR PARABOLIC EQUATIONS WITH UNBOUNDED NONLINEARITY

Consider the following problem for a quasilinear parabolic equation in the parallelepiped Q̄T =
Ω̄× [0, T ], where Ω = {x : 0 < xα < lα, x = (x1, x2), α = 1, 2} :

∂u

∂t
=

∂W1

∂x1

+
∂W2

∂x2

+ f(x, t), (x, t) ∈ Ω× (0, T ), (1)

with the initial condition
u(x, 0) = u0(x), x ∈ Ω, (2)

and the Dirichlet boundary conditions

u(x, t) = μ(x, t), (x, t) ∈ ∂Ω× [0, T ], (3)

where Wα = kα(u)
∂u

∂xα

, α = 1, 2, the functions kα = kα(u), α = 1, 2, are sufficiently smooth, the

functions f, u0, and μ are continuous, and the corresponding matching conditions are satisfied.

Let u(x, t) be a solution of problem (1)–(3), and let Du = [m1,m2] be a closed interval containing
the range of the solution; i.e., m1 ≤ u(x, t) ≤ m2. Since the functions kα = kα(u), α = 1, 2, are
smooth, it follows that there exist constants kα,1, kα,2, and Lα such that

|k′
α(u)| ≤ Lα, kα,1 ≤ kα(u) ≤ kα,2, u ∈ Du, (x, t) ∈ Q̄T , α = 1, 2. (4)

Note that the second condition in (4) follows from the first, the constants kα,1 and kα,2 being
solely introduced to make the exposition more convenient. Assume that the function u(x, t) is
continuous in the domain Q̄T , its derivatives occurring in Eq. (1) are continuous in QT , and the
function itself satisfies Eq. (1) in QT , the initial condition (2), and the boundary conditions (3).
Set Qt1 = {(x, t) ∈ QT : t ≤ t1}.

The following theorem, crucial for the goals of the present paper, was established in [8].

Theorem 1. The classical solution u(x, t) of problem (1)–(3) satisfies the two-sided estimate

u(x, t1) ≥ m1 = sup
λ>0

(
eλt1 min

{
0, min

(x,t)∈Qt1

e−λt{μ(x, t), u0(x)}, λ−1 min
(x,t)∈Qt1

f(x, t)e−λt
})

, (5)

u(x, t1) ≤ m2 = inf
λ>0

(
eλt1 max

{
0, max

(x,t)∈Qt1

e−λt{μ(x, t), u0(x)}, λ−1 max
(x,t)∈Qt1

f(x, t)e−λt
})

(6)

for every t1 ∈ [0, T ].
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Let us outline the proof of the upper bound (6) in a form convenient to us, because a similar
argument will be used below in the finite-difference case.

Take the auxiliary function v(x, t) = u(x, t)e−λt, where λ is a positive parameter. Let (x0, t0)
be a point of maximum of v in the parallelepiped Q̄t1 , and let v0 = v(x0, t0). There exist only three
possibilities.

1. The maximum v0 is nonpositive [and then v(x, t) ≤ 0 for (x, t) ∈ Q̄t1 ].

2. The point (x0, t0) lies on the boundary of Q̄T [and then v(x, t) ≤ max
(x,t)∈Qt1

e−λt{μ(x, t), u0(x)}

for (x, t) ∈ Q̄t1 ].

3. The maximum v0 is positive, and the point (x0, t0) is an interior point of QT .

In case 3, the relations

∂v(x0, t0)

∂t
≥ 0,

∂v(x0, t0)

∂xα

= 0,
∂2v(x0, t0)

∂x2
α

≤ 0, α = 1, 2,

hold at the point (x0, t0). Hence it follows from the equation

∂v

∂t
eλt + λveλt = eλt

2∑
i=1

∂2v

∂x2
i

ki(ve
λt) + e2λt

2∑
i=1

∂ki
∂u

(veλt)

(
∂v

∂xi

)2

+ f

that the inequality λv0eλt ≤ f is satisfied, which gives the following estimate for the auxiliary
function v :

v(x, t) ≤ λ−1 max
(x,t)∈Qt1

f(x, t)e−λt, (x, t) ∈ Qt1 .

We combine cases 1–3, return to the original function u, and obtain the upper bound (6). A similar
argument for a point of minimum gives the lower bound (5).

3. APPLICATION OF THE MAXIMUM PRINCIPLE
FOR FINITE-DIFFERENCE SCHEMES WITH INPUT DATA OF VARIABLE SIGN

To obtain the finite-difference counterpart of the differential estimates, we use the maximum
principle for finite-difference schemes with input data of variable sign. Given finitely many points
(i.e., a mesh Ωh) in n-dimensional Euclidean space, we assign exactly one stencil M(x) to each
point x ∈ Ωh; the stencil can be an arbitrary subset of Ωh containing x. The set M′(x) = M(x)\x
will be called the neighborhood of x. Let A(x), B(x, ξ), and F (x) be real-valued functions defined
for any x, ξ ∈ Ωh. For each point x ∈ Ωh, consider the equation [2, p. 226]

A(x)y(x) =
∑

ξ∈M′(x)

B(x, ξ)y(ξ) + F (x), x ∈ Ωh, (7)

which is called the canonical form of a finite-difference scheme at the point x. Along with the
mesh Ωh, consider a subset ωh ⊂ Ωh and define

Ωh =
⋃

x∈ωh

M(x).

We assume the usual positivity conditions

B(x, ξ) ≥ 0, ξ ∈ M′(x), x ∈ Ωh, (8)

D(x) = A(x)−
∑

ξ∈M′(x)

B(x, ξ) > 0, x ∈ Ωh, (9)

to be satisfied for the coefficients of the finite-difference scheme (7), which guarantee its unique
solvability, monotonicity, and (in the linear case) stability in the uniform norm under small pertur-
bations in the input data. Note that if conditions (8) and (9) are satisfied, then A(x) > 0, x ∈ Ωh.
The following theorem was proved in [7].
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Theorem 2. Let the coefficient positivity conditions (8) and (9) be satisfied. Then the maximum
and minimum values of the solution of the finite-difference scheme (7) lie in the following range
determined by the input data :

min
x∈Ωh

F (x)

D(x)
≤ y(x) ≤ max

x∈Ωh

F (x)

D(x)
. (10)

By way of example, consider an application of Theorem 2 to the following initial–boundary value
problem for a quasilinear parabolic equation in the rectangle Π̄={0≤x≤ l, 0 ≤ t ≤ T} :

∂u

∂t
=

∂

∂x

(
k(u)

∂u

∂x

)
+ r(x)

∂u

∂x
, 0 < x < l, 0 < t ≤ T, (11)

u(x, 0) = u0(x), u(0, t) = μ1(t), u(l, t) = μ2(t).

By definition [12, p. 23], problem (11), (12) is parabolic if there exist two constants k1 and k2 such
that

0 < k1 ≤ k(u) ≤ k2, u ∈ D̄u, k1, k2 = const. (13)

Now consider a special case of Eq. (11), namely, the Gamma equation [13, 14]

∂u

∂t
=

∂2β

∂x2
+ r(x)

∂u

∂x
(14)

obtained by a transformation of the nonlinear Black–Scholes equation to a quasilinear parabolic
equation.

If β = u/(1− �u)2 and � > 0, then we obtain the coefficient

k(u) =
1 + �u

(1− �u)
3 . (15)

By virtue of inequalities (13), Eq. (14) is parabolic if the coefficient (15) satisfies

k(u) = (1 + �u)/(1 − �u)3 > 0

for all u ∈ D̄u, i.e., if
−�−1 < u < �−1. (16)

To construct a monotone finite-difference scheme, consider the equation [2, p. 170]

∂u

∂t
= L̃u+ f, L̃u = κ(x, u)

∂

∂x

(
k(u)

∂u

∂x

)
+ r(x)

∂u

∂x
(17)

with a perturbed operator, where

κ(x, u) =
1

1 +R(x, u)
, R(x, u) =

h|r(x)|
2k(u)

.

Let us represent r(x) as the sum r = r+ + r−, where r+ = (r+ |r|)/2 ≥ 0 and r− = (r− |r|)/2 ≤ 0,

and approximate r
∂u

∂x
by the expression

(
r
∂u

∂x

)

i

=

(
r

k

(
k
∂u

∂x

))

i

∼ b+i ai+1(u)ux,i + b−i ai(u)ux̄,i,

where

b+i =
r+i

k(ui)
≥ 0, b−i =

r−i
k(ui)

≤ 0, ai(u) =
1

2
(k(ui−1) + k(ui)),

ux,i = (ui+1 − ui)/h, ux̄,i = (ui − ui−1)/h.
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Let us approximate the differential operator L̃ for given t = tj by the finite-difference operator

Λ̃ŷ = κ(a(y)ŷx̄)x + b+a(y)(+1)ŷx + b−a(y)ŷx̄, where a(y)(+1) = ai+1(y).

Then to Eq. (17) on the uniform space-time grid

ω̄ = ω̄h × ω̄τ , ω̄h = {xi = ih, i = 0, . . . , N, hN = l}, ω̄h = ωh ∪ {x0 = 0, xN = l},
ω̄τ = {tn = nτ, n = 0, . . . , N0, τN0 = T}, ω̄τ = ωτ ∪ {tN0

= T},

we assign the finite-difference scheme

yn+1
i − yn

i

τ
=

κ
n
i

h

(
an
i+1(y)

yn+1
i+1 − yn+1

i

h
− an

i (y)
yn+1
i − yn+1

i−1

h

)

+ b+i a
n
i+1(y)

yn+1
i+1 − yn+1

i

h
+ b−i a

n
i (y)

yn+1
i − yn+1

i−1

h
+ fn+1

i , (18)

yn+1
0 = μ1(tn+1), yn+1

N = μ2(tn+1),

where κ
n
i = κ(xi, y

n
i ). By Theorem 2, conditions (16) are satisfied [5] for the finite-difference

scheme (18) of the form (7) approximating the initial–boundary value problem for Eq. (14) and
satisfying the coefficient positivity conditions (8) and (9), provided that

−�−1 < min
(x,t)∈Q̄T

{μ1(t), μ2(t), u0(x)} ≤ yn
i ≤ max

(x,t)∈Q̄T

{μ1(t), μ2(t), u0(x)} < �−1.

4. TWO-SIDED ESTIMATES OF SOLUTIONS OF FINITE-DIFFERENCE SCHEMES

To approximate problem (1)–(3) on a uniform space-time grid in the rectangle Q̄T ,

ω̄hα
= {xα,iα = iαhα, iα = 0, . . . , Nα; hαNα = lα}, α = 1, 2,

ω̄τ = {tn = nτ, n = 0, . . . , N0; τN0 = T}, ω̄τ = ωτ ∪ {tN0
= T},

ω̄ = ω̄h1
× ω̄h2

× ω̄τ , ωtn = {(x, t) ∈ ω̄ : t ≤ tn},

we use the linearized finite-difference scheme

yt = (a1(y)ŷx̄1
)x1

+ (a2(y)ŷx̄2
)x2

+ f̂ , (19)

y(x, 0) = u0(x), x ∈ ω̄h, (20)

y|ω̄∩∂QT
= μ. (21)

As usual, the stencil functionals

aα(y) = 0.5(kα(yiα−1) + kα(yiα)), α = 1, 2, (22)

are chosen from the second-order consistency condition [2, p. 140]

(aα(u)ûx̄α
)xα

− ∂

∂xα

(
kα(u)

∂u

∂xα

)
= O(h2

α + τ)

for the elliptic operator with respect to the spatial variables.

Here and in what follows, we use the standard notation [2, p. 65]

y = yn
i1i2

= y(x1,i1 , x2,i2 , tn), yt =
ŷ − y

τ
, ŷ = yn+1

i1i2
, vx̄α

=
viα − viα−1

hα

, vxα
=

viα+1 − viα
hα

of the theory of finite-difference schemes.
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Theorem 3. The solution y(x, t) of problem (19)–(21) satisfies the two-sided estimate

y(x, tn) ≥ m1,τ = sup
λ>0

(
eλtn min

{
0, min

(x,t)∈ωtn

e−λt{μ(x, t), u0(x)},
τ

eλτ−1
min

(x,t)∈ωtn

f(x, t)e−λt
})

, (23)

y(x, tn) ≤ m2,τ = inf
λ>0

(
eλtn max

{
0, max

(x,t)∈ωtn

e−λt{μ(x, t), u0(x)},
τ

eλτ−1
max

(x,t)∈ωtn

f(x, t)e−λt
})

(24)

at any point (x, tn) ∈ ω.

Proof. Let us prove the upper bound (24). Take the auxiliary function z = z(x, tn) =
y(x, tn)e

−λtn , where λ is a positive parameter. Let (x0, t0) be a point of maximum of z in the grid
domain ωtn, and let z0 = z(x0, t0). There exist only three possibilities:

1. The maximum z0 is nonpositive [and then z(x, t) ≤ 0, (x, t) ∈ ωtn].

2. The point (x0, t0) lies on the boundary of ωtn [and then z(x, t) ≤ max
(x,t)∈ωtn

e−λtn{μ(x, t), u0(x)}
for (x, t) ∈ ωtn].

3. The maximum z0 is positive, and the point (x0, t0) is an interior point of ωtn.

In case 3, we have

ẑeλτ − z

τ
= (a1(y)ẑx̄1

)x1
eλτ + (a2(y)ẑx̄2

)x2
eλτ + e−λtn f̂ .

We rewrite this equation in the canonical form

Cn
i1i2

zn+1
i1i2

= An
1,i1i2

zn+1
i1−1i2

+Bn
1,i1i2

zn+1
i1+1i2

+An
2,i1i2

zn+1
i1i2−1 +Bn

2,i1i2
zn+1
i1i2+1 +Kn

i1i2
zni1i2 + F n

i1i2
,

Cn
i1i2

=
eλτ

τ
+

eλτ

h2
1

(a1,i1+1i2 + a1,i1i2) +
eλτ

h2
2

(a2,i1i2+1 + a2,i1i2),

An
1,i1i2

=
eλτ

h2
1

a1,i1i2 , Bn
1,i1i2

=
eλτ

h2
1

a1,i1+1i2 , An
2,i1i2

=
eλτ

h2
2

a2,i1i2 , Bn
2,i1i2

=
eλτ

h2
2

a2,i1i2+1,

Kn
i1i2

=
1

τ
, F n

i1i2
= fn+1

i1i2
e−λtn ,

and introduce the coefficients Dn
i1i2

, iα = 1, . . . , Nα, α = 1, 2, as follows:

Dn
i1i2

= Cn
i1i2

−An
1,i1i2

−An
2,i1i2

−Bn
1,i1i2

−Bn
2,i1i2

−Kn
i1i2

, iα = 1, . . . , Nα − 1, α = 1, 2.

Note that y ∈ Du for tn = 0. We carry out the proof by induction over time layers. Since

Dn
i1i2

=
τ

eλτ − 1
> 0

for λτ > 0, we see that the assumptions of Theorem 2 are satisfied for n = 1 and the estimate

zni1i2 ≤
τ

eλτ − 1
max

(x,t)∈ωtn

fe−λt

holds by inequality (10). We combine cases 1–3 and obtain the inequality

z ≤ max
{
0, max

(x,t)∈ωtn

e−λt{μ(x, t), u0(x)},
τ

eλτ − 1
max

(x,t)∈ωtn

f(x, t)e−λt
}
.

Now we return to the original function y and obtain the upper bound (24). Similar computations
for the minimum give the lower bound (23). We have proved the induction assumption. Note that,
by the results obtained above, y1 ∈ Du and the stencil functionals a1(y

1) and a2(y
1) satisfy the

conditions of parabolicity on the solution (positivity). The argument for the inductive step differs
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Solution of the finite-difference scheme (27) at time t = 1.

from that for the induction assumption only in the notation of indices. The proof of the theorem
is complete.

Remark 1. The resulting estimates (5), (6) and (23), (24) have the form

m1 ≤ u ≤ m2, m1,τ ≤ y ≤ m2,τ .

Since τ/(eλτ − 1) ≤ λ−1, it follows that m1 ≤ m1,τ and m2,τ ≤ m2. In this sense, the difference
estimates inherit the properties of the differential problem.

Thus, we have shown that the solution of the linearized finite-difference scheme (19)–(21) lies
in the range of the exact solution of the differential problem (1)–(3) without any conditions on the
grid increments. One can ask how important this is.

Consider the following initial–boundary value problem for a one-dimensional linear parabolic
equation with known exact solution:

∂u

∂t
=

∂2u

∂x2
, x ∈ (0, 1), t ∈ (0, 1], u(x, 0) = 1, 0 < x < 1, (25)

u(0, t) = 1, u(1, t) = 0, t ∈ [0, 1]. (26)

The two-sided estimate (5), (6) for the solution of problem (25), (26) has the form 0 ≤ u ≤ 1. Let
us approximate this equation by the Crank–Nicolson scheme [10] with the parameters indicated
below:

yt = y
(0.5)
x̄x , y(0.5) = 0.5(ŷ + y), h = 1/30, τ = 1/11. (27)

We see from the figure that the solution of the finite-difference scheme (27) does not preserve
positivity, and there arise nonphysical oscillations. They are known to be caused by the violation of
the sufficient conditions for the monotonicity of the Crank–Nicolson scheme, which have the form
τ ≤ h2/2 [2, p. 269].

5. CONVERGENCE OF THE FINITE-DIFFERENCE SCHEME
IN THE GRID L2 NORM

If one manages to obtain two-sided estimates for the solutions of finite-difference schemes, then
the convergence analysis for linearized numerical algorithms results in a linear problem for the
error z = y − u of the method. In this section, we additionally assume that the exact solution of
problem (1)–(3) is sufficiently smooth; namely, u(x, t) ∈ C4,2(QT ).

Remark 2. The convergence of the solution of a linearized finite-difference scheme in the
grid L2 norm was proved for an initial–boundary value problem for a one-dimensional quasilinear
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parabolic equation in the class of essentially generalized solutions in [6]. Namely, it was assumed
that the solution of the differential problem is continuous and its first derivative ∂u/∂x has a jump
discontinuity in a neighborhood of finitely many lines of discontinuity. The existence of the time
derivative in any sense was not assumed.

We rewrite the finite-difference equation (19) in the form

yn
t = W n+1

1h,x1
+W n+1

2h,x2
+ fn+1, (28)

where
W n+1

1h = W n+1
1h,i1−1/2i2

= W1h(x1i1−1/2, x2i2 , tn+1) = an
1,i1i2

yn+1
x̄1,i1i2

,

W n+1
2h = W n+1

2h,i1i2−1/2 = W2(x1i1 , x2i2−1/2, tn+1) = an
2,i1i2

yn+1
x̄2,i1i2

iα = 1, . . . , Nα, α = 1, 2,. Hence the discrepancy on the exact solution satisfies the equation

un
t = W n+1

1,x1
+W n+1

2,x2
+ fn+1 + ψn+1. (29)

We subtract Eqs. (28) from the respective equations (29) and obtain the following problem for the
error z of the method:

znt = (W n+1
1h −W n+1

1 )x1
+ (W n+1

2h −W n+1
2 )x2

− ψn+1, (30)

z0i1i2 = 0, iα = 1, . . . , Nα, α = 1, 2,

zn+1
0i2

= 0, zn+1
N1i2

= 0, i2 = 1, . . . , N2, n = 0, . . . , N0 − 1,

zn+1
i10

= 0, zn+1
i1N2

= 0, i1 = 1, . . . , N1, n = 0, . . . , N0 − 1.

We define the following inner products and the corresponding norms:

(u, v) =

N1−1∑
i1=1

N2−1∑
i2=1

h1h2ui1i2vi1i2 , ‖u‖ =
√

(u, u),

(u, v)α =

Nα∑
iα=1

N3−α−1∑
i3−α=1

h1h2ui1i2vi1i2 , ‖u‖α =
√

(u, u)α, α = 1, 2.

Theorem 4. The error of the solution of the finite-difference scheme (19)–(21) satisfies the
estimate

‖zn+1‖ ≤ c(h2
1 + h2

2 + τ), c = const > 0.

Proof. We take the inner product of Eq. (30) by 2τzn+1 and obtain

2τ(znt , z
n+1) = 2τ(zn+1, δW n+1

1x1
) + 2τ(zn+1, δW n+1

2x2
)− 2τ(zn+1, ψn+1). (31)

Let us use the identity zn+1 =
1

2
(zn+1 + zn)+

τ

2
znt to represent the left-hand side of Eq. (31) in the

form
2τ(znt , z

n+1) = ‖zn+1‖2 − ‖zn‖2 + τ 2‖znt ‖2.
We apply the summation by parts formula [2, p. 98] to the first two terms on the right-hand side
in Eq. (31) and obtain

2τ(zn+1, δW n+1
αxα

) = −2τ(zn+1
x̄α

, δW n+1
α )α, α = 1, 2.

The substitution of these relations into Eq. (31) gives

‖zn+1‖2 − ‖zn‖2 + τ 2‖znt ‖2 = −2τ(zn+1
x̄1

, δW n+1
1 )1 − 2τ(zn+1

x̄2
, δW n+1

2 )2 − 2τ(zn+1, ψn+1). (32)
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We replace the resulting values δW n+1
1,i1−1/2i2

and δW n+1
2,i1i2−1/2 in Eq. (32) and find the relation

‖zn+1‖2 − ‖zn‖2 + τ 2‖znt ‖2 = −2τ

2∑
i=1

(zn+1
x̄i

, ai(y
n)yn+1

x̄i
− ai(u

n)un+1
x̄i

)i + 2τ(zn+1, ψn+1). (33)

Since

aα(y
n
i1i2

)yn+1
x̄α,i1i2

− aα(u
n
i1i2

)un+1
x̄α,i1i2

= aα(y
n
i1i2

)zn+1
x̄α,i1i2

+ (aα(y
n
i1i2

)− aα(u
n
i1i2

))un+1
x̄α,i1i2

, α = 1, 2,

we obtain the representation

(zn+1
x̄α

, aα(y
n)yn+1

x̄α
− aα(u

n)un+1
x̄α

)α = (zn+1
x̄α

, aα(y
n)zn+1

x̄α
)α + (zn+1

x̄α
, (aα(y

n)− aα(u
n))un+1

x̄α
)α.

Since aα(y) ≥ kα,1 > 0 for any y ∈ [mh,1,mh,2] by (22), we see in view of conditions (4) that

(zn+1
x̄α

, aα(y
n)zn+1

x̄α
)α ≥ kα,1‖zn+1

x̄α
‖2α.

For the functions kα, α = 1, 2, there exist constants Lα, α = 1, 2, such that

|aα(y
n
i1i2

)− aα(u
n
i1i2

)| ≤ Lα|zni1i2 |α,(0.5),

where

|zi1i2 |1,(0.5) =
|zi1i2 |+ |zi1−1,i2 |

2
, |zi1i2 |2,(0.5) =

|zi1i2 |+ |zi1,i2−1|
2

.

Hence we obtain the inequality

(zn+1
x̄α

, (aα(y
n)− aα(u

n))un+1
x̄α

)α ≤ Lα(|zn|α,(0.5)|zn+1
x̄α

|, |un+1
x̄α

|)α.

The solution u(x, t) of problem (1)–(3) is sufficiently smooth, and hence we have the estimate

|un+1
x̄α

| = 1

hα

xαiα∫

xαiα−1

∣∣∣∣
∂un+1

∂xα

∣∣∣∣ dxα ≤ c, α = 1, 2.

Now we apply the ε-inequality and obtain

Lα(|zn|α,(0.5)|zn+1
x̄α

|, |un+1
x̄α

|)α ≤ Lαcεα‖zn+1
x̄α

‖2α +
Lαc

4εα
‖zn‖2α.

Here and in the following, εi = const > 0, i = 1, 2, . . . Thus, for the first two terms on the
right-hand side in (33) we have the estimate

−2τ(zn+1
x̄α

, aα(y
n)yn+1

x̄α
− aα(u

n)un+1
x̄α

)α ≤ −2τ(kα,1 − Lαcεα)‖zn+1
x̄α

‖2α +
τLαc

2εα
‖zn‖2α.

The last term on the right-hand side in (33) satisfies the estimate

−2τ(zn+1, ψn+1) = −2τ(τznt + zn, ψn+1) ≤ 2τ 2ε3‖znt ‖2 +
τ 2

2ε3
‖ψn+1‖2 + 2τε4‖zn‖2 +

τ

2ε4
‖ψn+1‖2.

We take into account all these inequalities and, in view of the right-hand side of (33), arrive at the
estimate

‖zn+1‖2 + τ 2(1− 2ε3)‖znt ‖2 + 2τ(k1,1 − L1cε1)‖zn+1
x̄1

‖21 + 2τ(k2,1 − L2cε2)‖zn+1
x̄2

‖21

≤
(
1 + τ

(
L1c

2ε1
+

L2c

2ε2
+ 2ε4

))
‖zn‖2 + τ

(
1

2ε3
+

1

2ε4

)
‖ψn+1‖2.
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Consequently,

‖zn+1‖2 + τ 2(1− 2ε3)‖znt ‖2 + 2τ(k1,1 − L1cε1)‖zn+1
x̄1

‖21
+ 2τ(k2,1 − L2cε2)‖zn+1

x̄2
‖22 ≤ (1 + τc)‖zn‖2 + τc(h2

1 + h2
2 + τ)2.

We take ε1, ε2, and ε3 small enough that the inequalities

1− 2ε3 > 0, 2(k1,1 − L1cε1) ≥ k1,1, 2(k2,1 − L2cε2) ≥ k2,2

be satisfied. Thus, we arrive at the definitive estimate

‖zn+1‖2 ≤ (1 + τc)‖zn‖2 + τc(h2
1 + h2

2 + τ)2 ≤ eτc‖zn‖2 + τc(h2
1 + h2

2 + τ)2.

We apply the finite-difference counterpart of the Gronwall lemma [2, p. 273] to the last inequality
and obtain the desired estimate. The proof of the theorem is complete.

Remark 3. It is a purely editorial task to generalize the results of this paper to convection–
diffusion problems of arbitrary dimension.

Remark 4. In the theory of the finite element method, estimates of solutions via functions
depending on the minimization or maximization of some functionals of the input data over auxiliary
functions were applied by Repin (e.g., see [15]).
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