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Abstract—We develop a mathematical model of the boundary value problem describing mag-
netic field shielding by a cylindrical thin-walled shell (screen) made of materials whose perme-
ability depends nonlinearly on the magnetic field intensity. Integral boundary conditions on
the shell surface are used. A numerical method is suggested for solving a nonlinear boundary
value problem of magnetostatics with integral boundary conditions. The shielding efficiency
coefficient characterizing the external magnetic field attenuation when passing into the interior
of the cylindrical screen is studied numerically.
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1. INTRODUCTION

One main trend in the modern development of technology is the miniaturization of technical
devices, whereby small volumes contain large numbers of high-precision elements and devices that
serve as sources of electric and magnetic fields and are sensitive to external electromagnetic fields,
which affect the accuracy of their operation. Hence it is increasingly topical to design screens and
shells for shielding external constant and alternating magnetic and electric fields as well as for solv-
ing the problem of electromagnetic consistency of device elements. In particular, it is important to
study the shielding properties of standard screens subjected to constant magnetic and electric fields
from close sources. Experimental data concerning film screens can be found in [1–3]. The mathe-
matical modeling of electromagnetic processes in shielding structures is presented in [4–9].

One important characteristic of film screens is the shielding efficiency coefficient, which char-
acterizes the external magnetic field attenuation by the shielding material. If the permittivity of
the material is constant, then the analytical computation of the efficiency for a screen with stan-
dard geometry can be carried out with the use of fairly simple formulas [6]. In actual screens,
the distribution of permittivity across the thickness of the film material of the screen nonlinearly
depends on the magnetic field intensity [5, 10]. This complicates finding magnetic characteristics of
screens in analytical form. Some analytical-numerical and numerical studies of magnetic properties
of film screens were carried out in [6–9]. Based on the approach developed in [8], the present paper
suggests boundary value problems for the mathematical modeling of shielding of constant magnetic
fields by film screens; these problems are boundary value problems for the nonlinear magnetostatic
equation.

As a rule, a shielding boundary value problem is a three-domain problem with one domain inside
the screen, one domain in the screen wall, and an infinite domain outside the screen. To imple-
ment the numerical solution of the problem, one transforms the infinite domain into a finite domain.
To this end, various approaches are used. A technique excluding the domain inside the screen and
the infinite domain outside the cylindrical screen was developed in [8, 9]. As a result, the original
three-domain problem is transformed into a boundary value problem in the film layer with special
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boundary conditions on its face surfaces. For a constant external magnetic field, boundary condi-
tions of the third kind are used. The extension of this approach to the modeling of arbitrary external
field leads to integral boundary conditions on the screen surfaces. The method of integral boundary
conditions in applied problems of electrodynamics was developed in [11, p. 207; 12–15]. Theoret-
ical studies of initial–boundary value problems of mathematical physics with integral boundary
conditions were carried out in [16–19].

2. STATEMENT OF THE SHIELDING PROBLEM

In the space R3 with cylindrical coordinate system O�ϕz, consider a cylindrical shell (screen) D
(R1 < � < R2, 0 ≤ ϕ < 2π, −∞ < z < ∞) of thickness � = R2 − R1 bounded by the cylindrical
surfaces Γ1 (� = R1) and Γ2 (� = R2) (Fig. 1). The screen is made of the ferromagnetic material
Fe20Ni80, which is characterized by high relative permittivity μ ≈ 103÷104. There is vacuum (μ = 1)
inside the screen in the domain D1 (0 ≤ � < R1) and outside the screen in the domain D2 (� > R2).
There is a primary magnetic field H0 acting on the screen from the domain D2. As a result of the
interaction, the following fields occur: the field H1 in the domain D1, the field H in the screen D,
the reflected field H̃2 in the domain D2, and the total field H2 = H0 + H̃2 in D2.

We express the magnetic field via potential functions u1, u, ũ2, u0, and u2 = u0 + ũ2,

Hj = − graduj (j = 1, 2), H0 = − gradu0, H = − gradu. (1)

We determine the potentials by solving a boundary value problem of magnetostatics.

Boundary value problem 1. Given a potential u0, determine potentials u1, u, and ũ2 satis-
fying the equations [11, p. 15]

Δu1 = 0 in D1, Δũ2 = 0 in D2, (2)

div(μ grad u) = 0 in D, (3)

the transmission conditions

u|�=R1
= u1|�=R1

, μ
∂u

∂�

∣
∣
∣
∣
�=R1

=
∂u1

∂�

∣
∣
∣
∣
�=R1

, 0 ≤ ϕ < 2π, (4)

u|�=R2
= (u0 + ũ2)|�=R2

, μ
∂u

∂�

∣
∣
∣
∣
�=R2

=

(
∂u0

∂�
+

∂ũ2

∂�

)∣
∣
∣
∣
�=R2

, 0 ≤ ϕ < 2π, (5)

on the surfaces Γ1 and Γ2, and the condition lim�→∞ ũ2 = 0 at infinity.
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Fig. 1. Cylindrical screen: (a) a film screen subjected to the magnetic field generated by a twin line
with a current; (b) a cross-section of the screen.
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The relative permittivity in Eq. (3) nonlinearly depends on the absolute value H = |H| =
| grad u| of the magnetic field intensity [1].

For the external magnetic field H0 we take the field generated by a twin line with current I in
the wires parallel to the screen (see Fig. 1) and placed at the points (x = �0, y = ±l/2), where
l is the distance between the wires. A twin line with l/R2 � 1 will be viewed as a point source
(x = �0, y = 0) lying in the plane �0 > R2. In this case, the magnetic potential of the primary field
in the coordinate system O�ϕ is given by the formula

u0 =
lI(� cosϕ− �0)

2π(�2 + �20 − 2��0 cosϕ)
. (6)

Let us take into account relations (1) and compute the magnetic field generated by the source.
In the Cartesian coordinates, we obtain

H0 =
lI

2π

((x− �0)
2 − y2)ex + 2y(x− �0)ey

(y2 + (x− �0)2)2
.

The intensity of the magnetic field of the source at the pointO(x = 0, y = 0) in the absence of the
screen is given by the formula H0 = |H0(0)| = lI/(2π�20); consequently, lI = 2π�20H0. The primary
potential for the constant external magnetic field H0 = −H0ex is

u0 = H0� cosϕ. (7)

We pose the problem of numerical analysis of the shielding efficiency coefficient

Kshield =
|H0(0)|
|H1(0)|

=
H0

H1

,

which shows by what factor the exterior magnetic field of the source is attenuated when passing
into the interior domain of the screen.

3. INTEGRAL BOUNDARY CONDITIONS

Problem (2)–(5) is a three-domain boundary value problem for the domains D1, D, and D2. Let
us transform the original problem into a one-domain boundary value problem in the domain D
by introducing integral boundary conditions posed on the screen surface and corresponding to the
boundary conditions (4) and (5).

Consider problem (2)–(5) under the axial symmetry conditions u0(x,−y) = u0(x, y), uj(x,−y) =
uj(x, y), j = 1, 2. The potentials u0, u1, and ũ2 in the domains D1 and D2 satisfy the Laplace
equation (2), whose solutions are sequences of axisymmetric functions

�n cos(nϕ), n = 0, 1, 2, . . . ; �−n cos(nϕ), n = 1, 2, . . .

We represent the potential u0 regular in the domain 0 ≤ � < �0 and the potential u1 regular in
the domain D1 in the form of the series

u0 =

∞∑

n=0

γn�
n cos(nϕ), 0 ≤ � < �0, (8)

u1 =

∞∑

n=0

αn

(
�

R1

)n

cos(nϕ), 0 ≤ � < R1. (9)

We represent the potential ũ2 satisfying the condition at infinity in the form of the series

ũ2 =

∞∑

n=1

βn

(
R2

�

)n

cos(nϕ), � > R2. (10)
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Let us transform the boundary conditions (4) by substituting the series (9) into them,

u(�, ϕ)|�=R1
=

∞∑

n=0

αn cos(nϕ). (11)

We integrate Eq. (11) from 0 to π and compute

α0 =
1

π

π∫

0

u(�, ϕ)|�=R1
dϕ. (12)

The second boundary condition in (4) implies that

μ
∂u

∂�

∣
∣
∣
∣
�=R1

=
1

R1

∞∑

n=1

nαn cos(nϕ).

We use the orthogonality of the functions cos(nϕ), n ∈ N, and compute

αn =
2R1

πn

π∫

0

μ(�, ϕ)
∂u(�, ϕ)

∂�

∣
∣
∣
∣
�=R1

cos(nϕ) dϕ, n ≥ 1. (13)

Let us substitute the integrals (12) and (13) into Eq. (11). After changing the order of summation
and integration, we obtain the following integral boundary condition on the surface Γ1 of the screen:

u(�, ϕ)|�=R1
=

π∫

0

(
1

π
u(�, ψ) +R1μ(�, ψ)

∂u(�, ψ)

∂�
K(ϕ,ψ)

)∣
∣
∣
∣
�=R1

dψ, (14)

where

K(ϕ,ψ) =
2

π

∞∑

n=1

1

n
cos(nϕ) cos(nψ).

According to [20, p. 576],

K(ϕ,ψ) = − 1

π
ln

[

4 sin

(
|ψ − ϕ|

2

)

sin

(
ψ + ϕ

2

)]

. (15)

Let us transform the boundary conditions (5) by substituting the series (8) and (10) into them.
Then

u|�=R2
=

∞∑

n=0

γnR
n
2 cos(nϕ) +

∞∑

n=1

βn cos(nϕ), (16)

μ
∂u

∂�

∣
∣
∣
∣
�=R2

=
1

R2

∞∑

n=1

n(γnR
n
2 − βn) cos(nϕ). (17)

We integrate Eq. (16) over [0, π] and obtain

γ0 =
1

π

π∫

0

u(�, ϕ)|�=R2
dϕ. (18)
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We multiply Eq. (17) by cos(nϕ), integrate the resulting relation from 0 to π, and find, owing
to the orthogonality of the functions cos(nϕ), n ∈ N, that

βn = γnR
n
2 − 2R2

πn

π∫

0

μ
∂u

∂�

∣
∣
∣
∣
�=R2

cos(nϕ) dϕ. (19)

Let us substitute the expressions (19) into Eq. (16). We take into account Eq. (17), sum the
series (5) and (8), and obtain the following integral boundary condition on the surface Γ2 :

u(�, ϕ)|�=R2
= 2u0(�, ϕ)|�=R2

−
π∫

0

(
1

π
u(�, ψ) +R2μ(�, ψ)

∂u(�, ψ)

∂�
K(ϕ,ψ)

)∣
∣
∣
∣
�=R2

dψ. (20)

4. MODELS OF SHIELDING BOUNDARY VALUE PROBLEMS
WITH INTEGRAL BOUNDARY CONDITIONS

Let us state a one-domain shielding problem equivalent to the original problem (2)–(6) with the
use of the boundary conditions (14) and (20) for the potential (6) of the primary magnetic field.

Boundary value problem 2. Given a potential u0 (6), find a potential u satisfying the
equation

∂

∂�

(

�μ
∂u

∂�

)

+
∂

∂ϕ

(
μ

�

∂u

∂ϕ

)

= 0, R1 < � < R2, 0 < ϕ < π, (21)

the boundary conditions

∂u

∂ϕ

∣
∣
∣
∣
ϕ=0

= 0,
∂u

∂ϕ

∣
∣
∣
∣
ϕ=π

= 0, R1 ≤ � ≤ R2, (22)

and conditions (14) and (20), where 2u0(R2, ϕ) = (2�20H0(R2 cosϕ− �0))/(R
2
2 + �20 − 2R2�0 cosϕ).

The variables in the problems have the following dimensions in SI units: [�,R1, R2,Δ] = m,
[H,H0] = A/m, [u] = A, [μ] = 1.

A model of a shielding boundary value problem in which a cylindrical shield is subjected to
a constant magnetic fieldH0 with potential u0 = H0� cosϕ (H0 = |H0|) directed along the axis Ox is
suggested in [8]. Here boundary conditions of the third kind are used. Let us state the corresponding
boundary value problem.

Boundary value problem 3. Given a potential u0 (7), find a potential u that satisfies Eq. (21),
conditions (22), and the boundary conditions

(

R1μ(�, ϕ)
∂u(�, ϕ)

∂�
− u(�, ϕ)

)∣
∣
∣
∣
�=R1

= 0, 0 ≤ ϕ ≤ π, (23)

(

R2μ(�, ϕ)
∂u(�, ϕ)

∂�
+ u(�, ϕ)

)∣
∣
∣
∣
�=R2

= f0(ϕ), 0 ≤ ϕ ≤ π.

For the primary potential u0 = H0� cosϕ, one has f0(ϕ) = 2H0R2 cosϕ.

For this potential u0, boundary value problem 3 can be stated with the use of integral boundary
conditions [21].

Boundary value problem 4. Given a potential u0 (7), find a potential u that satisfies Eq. (21),
conditions (22), and the boundary conditions

(

R1

π∫

0

μ(�, ψ)
∂u(�, ψ)

∂�
K(ϕ,ψ) dψ − u(�, ϕ)

)∣
∣
∣
∣
∣
�=R1

= 0, 0 ≤ ϕ ≤ π, (24)

(

R2

π∫

0

μ(�, ψ)
∂u(�, ψ)

∂�
K(ϕ,ψ) dψ + u(�, ϕ)

)∣
∣
∣
∣
∣
�=R2

= f0(ϕ), 0 ≤ ϕ ≤ π. (25)
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For the numerical implementation of boundary value problem 4, we make the change of variables

μ = 103μ̄, H0 = 102H̄0, H = 102H̄, Δ = 10−3h, R2 = 10−2R,

where h is the screen thickness in millimeters, R is the outer radius of the cylindrical screen in
centimeters, and μ̄ is the normalized relative permittivity.

We introduce new coordinates (x, y) by setting

ϕ = y, � = (R2 −R1)x+R1 = Δ(x+ ᾱ), (26)

where ᾱ = α− 1, α = R2/Δ = 10R/h.

We write Eq. (21) and the boundary conditions (22) and (25) in the new variables (26) and
state the following boundary value problem.

Boundary value problem 5. Given a potential u0 (7), find a potential u(x, y) in the domain
Ω (0 ≤ x ≤ 1, 0 ≤ y ≤ π) such that

∂

∂x

(

A(x, μ̄)
∂u

∂x

)

+
∂

∂y

(

B(x, μ̄)
∂u

∂y

)

= 0, 0 < x < 1, 0 < y < π, (27)

( π∫

0

A(x, μ̄)
∂u(x, ψ)

∂x
K(y, ψ) dψ − 10−3u(x, y)

)∣
∣
∣
∣
∣
x=0

= 0, 0 ≤ y ≤ π, (28)

( π∫

0

A(x, μ̄)
∂u(x, ψ)

∂x
K(y, ψ) dψ + 10−3u(x, y)

)∣
∣
∣
∣
∣
x=1

= 10−3f0(y), 0 ≤ y ≤ π, (29)

∂u

∂y

∣
∣
∣
∣
y=0

= 0,
∂u

∂y

∣
∣
∣
∣
y=π

= 0, 0 ≤ x ≤ 1, (30)

where u(x, y) = u(Δ(x+ α), y) and

A(x, μ̄) = (x+ ᾱ)μ̄(H̄), B(x, μ̄) =
1

x+ ᾱ
μ̄(H̄), (31)

H̄ = H̄

(

x,
∂u

∂x
,
∂u

∂y

)

=
10

h

√
(
∂u

∂x

)2

+
1

(x+ ᾱ)2

(
∂u

∂y

)2

. (32)

Boundary value problem 5 is a problem with nonlocal integral conditions. Problems with nonlo-
cal conditions are a rapidly developing trend in modern theory of differential equations. Problems
with nonlocal integral conditions are an especially important subclass of such problems. The solv-
ability of some classes of boundary value problems with integral conditions was studied in [16–18].

Ferromagnetics can have large magnetic flux density B even for relatively small magnetic field
intensity H. The relationship between these variables is in general nonlinear owing to saturation
and hysteresis. The dependence of permittivity on the magnetic field intensity is given by the
formula [1, 9]

μ̄(H̄) =
Bm(h)H̄ + C1(h)

H̄2 + C2(h)H̄ + C1(h)
, 0 < h < 0.2, (33)

where

C1(h) =
M(h)H2

m(h)

M(h) − 1
, C2(h) =

Bm(h)

M(h)
− 2Hm(h),

M(h) = 40.386796h2 + 9.94182h + 7.80194,

Bm(h) = 269.21679h2 − 100.3814h + 12.346025,

Hm(h) = 13.461364h2 − 5.0167164h + 0.6173063.
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Fig. 2. Permittivity versus magnetic field intensity: 1, Bm = 8, Hm = 0.4, and M = 8.5
(h = 0.05mm); 2, Bm = 3, Hm = 0.15, and M = 11 (h = 0.18mm).

Figure 2 shows permittivity against magnetic field intensity computed by formula (33) for screens
of various thickness, where μ̄(H̄) = (8H̄ + 0.18133)/(H̄2 + 0.14118H̄ + 0.18133) for h = 0.05mm
and μ̄(H̄) = (3H̄ + 0.02475)× (H̄2 − 0.02727H̄ + 0.02475)−1 for h = 0.18mm.

5. NUMERICAL SOLUTION OF SHIELDING BOUNDARY VALUE PROBLEMS

In the papers [8, 9], a numerical method for solving shielding boundary value problems with
boundary conditions of the third kind in the case of a constant magnetic field H0 with initial
potential of the form u0 = H0� cosϕ was suggested and a series of numerical experiments were
carried out to study the distributions of the potential, the magnetic field intensity, and the material
permittivity in the film layer.

In what follows, we present a numerical method for solving a shielding boundary value problem
with integral boundary conditions.

To solve the nonelliptic problem (27)–(32), we use the control volume method, in which differ-
ential equations are replaced by their finite-difference mesh counterparts [22, p. 156].

In the solution domain Ω, we construct a uniform grid ω̄ = ω̄x × ω̄y, where ω̄x = {xi = iΔx,
Δx = 1/N, i = 0, . . . , N}, ω̄y = {yj = jΔy, Δy = π/M, j = 0, . . . ,M}, Δx and Δy are the
grid increments in the corresponding directions, and (xi, yj) are points of the grid ω̄. The values
of the unknown function u(x, y) at the grid points will be denoted by ui,j ; i.e., ui,j = u(xi, yj),
i = 0, . . . , N, j = 0, . . . ,M. The difference derivatives at the grid points will be denoted according
to [22, p. 11] by ux;i,j = (ui+1,j − ui,y)/Δx, ux̄;i,j = (ui,j − ui−1,j)/Δx, uy;i,j = (ui,j+1 − ui,j)/Δy,
and uȳ;i,j = (ui,j − ui,j−1)/Δy.

By analogy with [9], we use the control volume method to construct an implicit finite-difference
scheme approximating the differential equation (27) at the interior points of Ω.We integrate Eq. (27)
over the control volume [xi−0.5, xi+0.5]× [yj−0.5, yj+0.5] surrounding the grid point (xi, yj) at which
we seek the solution ui,j , use some averaging of integrals, and arrive at the finite-difference scheme

(Ai+0.5,jux;i,j)x̄;i,j + (Bi,j+0.5uy;i,j)ȳ;i,j = 0, i = 1, . . . , N − 1, j = 1, . . . ,M − 1, (34)

where

Ai+0.5,j = (xi + 0.5Δx+ ᾱ)μ̄i+0.5,j , Bi,j+0.5 =
μ̄i,j+0.5

xi + ᾱ
,

μ̄i+0.5,j =
BmH̄i+0.5,j + C1

H̄2
i+0.5,j + C2H̄i+0.5,j + C1

, μ̄i,j+0.5 =
BmH̄i,j+0.5 + C1

H̄2
i,j+0.5 + C2H̄i,j+0.5 + C1

,
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942 EROFEENKO et al.

H̄i+0.5,j =
10

h

√

(ux;i,j)2 +
1

(xi + 0.5Δx+ ᾱ)2
(u

(i+0.5,j)
cp,y )2,

H̄i,j+0.5 =
10

h

√

(u(i,j+0.5)
cp,x )2 +

1

(xi + ᾱ)2
(uy;i,j)2,

u(i+0.5,j)
cp,y =

ũi+0.5,j+0.5 − ũi+0.5,j−0.5

Δy
, ũi+0.5,j+0.5 =

ui,j + ui+1,j + ui,j+1 + ui+1,j+1

4
,

u(i,j+0.5)
cp,x =

ũi+0.5,j+0.5 − ũi−0.5,j+0.5

Δx
.

Assertion 1. The finite-difference scheme (34) approximates Eq. (27) with second-order accu-
racy O((Δx)2 + (Δy)2).

Let us construct an approximation to the integral boundary conditions (28) and (29). Set

W (x̃, ψ) = A(x, μ̄)
∂u(x, ψ)

∂x

∣
∣
∣
∣
x=x̃

, where x̃ = {0, 1}.

Consider the integral J (y) =
∫ π

0
W (x̃, ψ)K(y, ψ) dψ. It follows from the form of the function

K(y, ψ) (15) that it has a singularity at y = ψ.

In view of the singularity of K(y, ψ), for y = 0 we transform the integral

J (0) =

π∫

0

W (x̃, ψ)K(0, ψ) dψ =

y∫

0

W (x̃, ψ)K(0, ψ) dψ +

π∫

y

W (x̃, ψ)K(0, ψ) dψ = J0 + J+
0 , (35)

where y is a small number.

Since K(0, ψ) = −π−1 ln(4 sin2(ψ/2)) and sin2(ψ/2) ≈ ψ2/4, because y is small, we obtain

J0 = − 1

π

y∫

0

W (x̃, ψ) ln

(

4 sin2

(
ψ

2

))

dψ ≈ − 1

π
W (x̃, 0)

y∫

0

ln(ψ2) dψ

= − 2

π
W (x̃, 0)

y∫

0

lnψ dψ = − 2

π
y(ln y − 1)W (x̃, 0).

The integral J+
0 has no singularities.

At the points of the boundary 0 < y < π, we have

J (y) =

π∫

0

W (x̃, ψ)K(y, ψ) dψ =

y−y∫

0

W (x̃, ψ)K(y, ψ) dψ

+

y+y∫

y−y

W (x̃, ψ)K(y, ψ) dψ +

π∫

y+y

W (x̃, ψ)K(y, ψ) dψ = J−
y + Jy + J+

y . (36)

By analogy with J0, since y is small, we obtain

Jy ≈ − 2

π
y(ln 2y − 1)W (x̃, y) +

y+y∫

y−y

W (x̃, ψ)L(y, ψ) dψ = − 2

π
y(ln 2y − 1)W (x̃, y) + J̃y, (37)

where L(y, ψ) = −π−1 ln sin((y + ψ)/2) and the integral J̃y does not have singularities.
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For y = π, one has

J (π) =

π∫

0

W (x̃, ψ)K(π, ψ) dψ =

π−y∫

0

W (x̃, ψ)K(π, ψ) dψ +

π∫

y

W (x̃, ψ)K(π, ψ) dψ = J−
π + Jπ. (38)

It is easily seen that Jπ ≈ −2π−1y(ln y − 1)W (x̃, π).

We replace the integrals in (35)–(38), which do not have singularities, with their approximate
values given by the trapezoidal quadrature formula. For the partition step on the corresponding
integration intervals we take the spatial grid increment Δy; then ψj = yj , j = 0, . . . ,M. Set y = Δy.
As a result, say, the integral (35) becomes

J (0) ≈ − 2

π
y(ln y − 1)W (x̃, y0) +

Δy

2
W (x̃, y1)K0,1 +Δy

M−1∑

k=2

W (x̃, yk)K0,k +
Δy

2
W (x̃, yM)K0,M ,

where

K0,k = K(y0, yk) = − 1

π
ln

[

4 sin

(
|yk − y0|

2

)

sin

(
yk + y0

2

)]

, k = 1, . . . ,M.

We construct approximations to the flux W (x̃, ψ) at the boundary points x̃ = 0 and x̃ = 1 with
regard to the main equation (27) and the corresponding boundary conditions (30). For example,
on the boundary x̃ = 0 we have

W (0, yk) =

⎧

⎨

⎩

A0.5,0ux;0,0 + (Δx/Δy)B0,0.5uy;0,0, k = 0,

A0.5,kux;0,k + 0.5Δx(B0,k+0.5uy;0,k)ȳ;0,k, k = 1, . . . ,M − 1,

A0.5,Mux;0,M − (Δx/Δy)B0,M−0.5uȳ;0,M , k = M .

(39)

We substitute the resulting approximations to the integrals (35)–(38) with regard to Eq. (39)
into the boundary condition (28) and obtain a finite-difference approximation to the boundary
condition (28) in the form

0.5Δy

(

A0.5,0ux;0,0 +

(
Δx

Δy

)

B0,0.5uy;0,0

)

Rj,0 +Δy

M−1∑

k=1

(A0.5,kux;0,k + 0.5Δx(B0,k+0.5uy;0,k)ȳ;0,k)Rj,k

+ 0.5Δy

(

A0.5,Mux;0,M −
(
Δx

Δy

)

B0,M−0.5uȳ;0,M

)

Rj,M − 10−3u0,j = 0, j = 0, . . . ,M. (40)

In a similar way, one can construct a finite-difference approximation to the boundary condi-
tion (29),

0.5Δy(−AN−0.5,0ux̄;N,0 + (Δx/Δy)BN,0.5uy;N,0)Rj,0

+Δy

M−1∑

k=1

(−AN−0.5,kux̄,N,k + 0.5Δx(BN,k+0.5uy;N,k)ȳ;N,k)Rj,k + 0.5Δy(−AN−0.5,Mux̄;N,M

− (Δx/Δy)BN,M−0.5uȳ;N,M)Rj,M − 10−3uN,j = −10−3f0j, j = 0, . . . ,M, (41)

where

R0,0 = − 4

π
(lnΔy − 1), R0,1 =

1

2
K0,1, R0,k = K0,k, k = 2, . . . ,M ;

R1,0 = L1,0, R1,1 = L1,1 −
2

π
(ln 2Δy − 1), R1,2 =

1

2
(L1,2 +K1,2), R1,k = K1,k, k = 3, . . . ,M ;

Rj,k = Kj,k, k = 0, . . . , j − 2, Rj,j−1 =
1

2
(Kj,j−1 + Lj,j−1), Rj,j = Lj,j −

2

π
(ln 2Δy − 1),
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Rj,j+1 =
1

2
(Kj,j+1 + Lj,j+1), Rj,k = Kj,k, k = j + 2, . . . ,M for j = 2, . . . ,M − 2;

RM−1,k = KM−1,k, k = 0, . . . ,M − 3, RM−1,M−2 =
1

2
(KM−1,M−2 + LM−1,M−2),

RM−1,M−1 = LM−1,M−1 −
2

π
(ln 2Δy − 1), RM−1,M = LM−1,M ;

RM,k = KM,k, k = 0, . . . ,M − 2, RM,M−1 =
1

2
KM,M−1, RM,M = − 4

π
(lnΔy − 1);

f0j = f0(yj), j = 0, . . . ,M,

and, in turn,

Kj,k = K(yj , ψk) = K(yj , yk) = − 1

π
ln

[

4 sin

(
|yk − yj |

2

)

sin

(
yk + yj

2

)]

, j, k = 0, . . . ,M, j 	= k;

Lj,k = L(yj , ψk) = L(yj , yk) = − 1

π
ln

[

sin

(
|yj + yk|

2

)]

, j, k = 1, . . . ,M − 1.

We take into account the singularities of the integrand in the integrals (35)–(38) and obtain the
following assertion.

Assertion 2. The finite-difference schemes (40) and (41) approximate the respective boundary
conditions (28) and (29) with accuracy O(((Δx)2 + (Δy)2) ln(Δy)).

For the boundary conditions (30), we construct the following finite-difference approximations:

Bi,0.5uy;i,0 + 0.5Δy(Ai+0.5,0ux;i,0)x̄;i,0 = 0, i = 1, . . . , N − 1, (42)

Bi,M−0.5uȳ;i,M − 0.5Δy(Ai+0.5,Mux;i,M)x̄;i,M = 0, i = 1, . . . , N − 1. (43)

Assertion 3. The finite-difference schemes (42) and (43) approximate the respective boundary
conditions in (30) with second-order accuracy O((Δx)2 + (Δy)2).

The finite-difference problem (34), (40)–(43) is a system of nonlinear equations for the un-
knowns ui,j . To solve it, we use the matrix Thomas method [22, p. 557], which is implemented by
the iterative process

s

C0

s+1

U 0 −
s

B0

s+1

U 1 =
s

F 0, i = 0,

−
s

Ai

s+1

U i−1 +
s

Ci

s+1

U i −
s

Bi

s+1

U i+1 =
s

F i, i = 1, . . . , N − 1, (44)

−
s

AN

s+1

U N−1 +
s

CN

s+1

U N =
s

FN , i = N,

where s = 0, 1, 2, . . . is the iteration number.

Here
s+1

U i = (
s+1
ui,0,

s+1
ui,1, . . . ,

s+1
ui,M )T, i = 0, . . . , N, are the unknown vectors;

s

F i are (M +1)-vectors,
Fi = (0, 0, . . . , 0)T, i = 0, . . . , N−1, FN = (fN

0 , fN
1 , . . . , fN

M )T, and fN
j = 10−3f0j, j = 0, . . . ,M ; Ai =

diag[ai,0, ai,1, . . . , ai,M ], i = 1, . . . , N−1, are the matrices with diagonal entries ai,j = Ai−0.5,j(Δx)−2,
j = 0, . . . ,M, AN = (aN

j,k)
M
j,k=0 is the matrix with entries

aN
j,0 = AN−0.5,0

Δy

2Δx
Rj,0, aN

j,k = AN−0.5,k

Δy

Δx
Rj,k, k = 1, . . . ,M − 1,

aN
j,M = AN−0.5,M

Δy

2Δx
Rj,M , j = 0, . . . ,M ;
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B0 = (b0j,k)
M
j,k=0 is the matrix with entries

b0j,0 = A0.5,0

Δy

2Δx
Rj,0, b0j,k = A0.5,k

Δy

Δx
Rj,k, k = 1, . . . ,M − 1,

b0j,M = A0.5,M

Δy

2Δx
Rj,M , j = 0, . . . ,M ;

Bi = diag[bi,0, bi,1, . . . , bi,M ], i = 1, . . . , N − 1, are the matrices with entries bi,j = Ai+0.5,j(Δx)−2,
j=0, . . . ,M ; Ci are the tridiagonal (M + 1)× (M + 1) matrices

Ci =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

pi,0 si,0 0 0 · · · 0

qi,1 pi,1 si,1 0 · · · 0

0 · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · 0

0 · · · 0 qi,M−1 pi,M−1 si,M−1

0 · · · · · · 0 qi,M pi,M

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, i = 1, . . . , N − 1,

with entries

pi,0 =
2Bi,0.5

(Δy)2
+

Ai+0.5,0 +Ai−0.5,0

(Δx)2
, si,0 = −2Bi,0.5

(Δy)2
;

qi,j = −Bi,j−0.5

(Δy)2
, pi,j =

Ai+0.5,j +Ai−0.5,j

(Δx)2
+

Bi,j+0.5 +Bi,j−0.5

(Δy)2
,

si,j = −Bi,j+0.5

(Δy)2
, j = 1, . . . ,M − 1;

pi,M =
2Bi,M−0.5

(Δy)2
+

Ai+0.5,M +Ai−0.5,M

(Δx)2
, qi,M = −2Bi,M−0.5

(Δy)2
;

C0 = (c0j,k)
M
j,k=0 and CN = (cNj,k)

M
j,k=0 are matrices such that the entries of C0 have the form

c0j,0 =

(

B0,0.5

Δx

2Δy
+A0.5,0

Δy

2Δx

)

Rj,0 −B0,0.5

Δx

2Δy
Rj,1 + 10−3δj,0,

c0j,k = −B0,k−0.5

Δx

2Δy
Rj,k−1 +

(

A0.5,k

Δy

Δx
+ (B0,k+0.5 +B0,k−0.5)

Δx

2Δy

)

Rj,k

−B0,k+0.5

Δx

2Δy
Rj,k+1 + 10−3δj,k, k = 1, . . . ,M − 1,

c0j,M =

(

B0,M−0.5

Δx

2Δy
+A0.5,M

Δy

2Δx

)

Rj,M −B0,M−0.5

Δx

2Δy
Rj,M−1 + 10−3δj,M , j = 0, . . . ,M,

and the entries of CN have the form

cNj,0 =

(

BN,0.5

Δx

2Δy
+AN−0.5,0

Δy

2Δx

)

Rj,0 −BN,0.5

Δx

2Δy
Rj,1 + 10−3δj,0,

cNj,k = −BN,k−0.5

Δx

2Δy
Rj,k−1 +

(

AN−0.5,k

Δy

Δx
+ (BN,k+0.5 +BN,k−0.5)

Δx

2Δy

)

Rj,k

−BN,k+0.5

Δx

2Δy
Rj,k+1 + 10−3δj,k, k = 1, . . . ,M − 1,

cNj,M =

(

BN,M−0.5

Δx

2Δy
+AN−0.5,M

Δy

2Δx

)

Rj,M −BN,M−0.5

Δx

2Δy
Rj,M−1 + 10−3δj,M , j = 0, . . . ,M.

Here δj,k is the Kronecker delta.
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For the zero approximation
0

U i = (
0

ui,0,
0

ui,1, . . . ,
0

ui,M )T, i = 0, . . . , N, in the iterative process (44)
we take the solution of problem (27)–(30) with μ̄ = const (for example, μ̄ = 6). System (34),
(40)–(43) is linear in this case and can be solved exactly by the matrix Thomas method.

We use this zero approximation to find the next iteration

1

U i = (
1

ui,0,
1

ui,1, . . . ,
1

ui,M)T, i = 0, . . . , N.

The process is continued recursively. The current discrepancy is compared with the desired accuracy
to decide whether to stop the iterative process.

As a result, we obtain a solution ui,j = u(xi, yj), i = 0, . . . , N, j = 0, . . . ,M.

6. COMPUTATION OF THE SHIELDING EFFICIENCY COEFFICIENT

For the numerical study of shielding properties of film screens, consider screens of radius
R2 = 1.1×10−2 m, 3.6×10−2 m, and 8.0×10−2 m and of thickness � = 5×10−5 m and 1.8×10−4 m
(h = 0.05mm and 0.18mm).

To compute the shielding efficiency coefficient, we take into account Eqs. (1) and the series (9)
and compute the magnetic field in the domain D1,

H1 = −
∞∑

n=1

nαn

Rn
1

�n−1(cos(nϕ)e� − sin(nϕ)eϕ).

At the screen center, one has H1(0) = −(α1/R1)ex and H1 = |H1(0)| = α1/R1.

We multiply Eq. (11) by cosϕ and integrate; then we obtain
∫ π

0
u(�, ϕ)|�=R1

cosϕdϕ = α1π/2.
As a result, the shielding coefficient is given by

Kshield =
H0

H1

=
1

2
πR1H0

∣
∣
∣
∣
∣

π∫

0

u(�, ϕ)|�=R1
cosϕdϕ

∣
∣
∣
∣
∣

−1

.

The potential u was determined on the basis of a numerical solution of the boundary value
problem (27)–(32).

(a) (b)

Kshield Kshield

H0,A/m H0,A/m

Fig. 3. Shielding efficiency coefficient versus the external magnetic field computed according to
boundary value problem 4 (curves 1 ) and boundary value problem 3 (curves 2 ) for screens of radius
R2 = 1.1 × 10−2m and of various thickness: (a) a screen of thickness h = 0.05mm; (b) a screen of
thickness h = 0.18mm.
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(a) (b)

Kshield Kshield

H0,A/m H0,A/m

Fig. 4. Shielding efficiency coefficients for screens of various radii R2 and thickness h = 0.05 (curves 1)
and h = 0.18 (curves 2): (a) R2 = 3.6× 10−2m; (b) R2 = 8.0× 10−2m.

Figure 3 presents the shielding efficiency coefficient against the external magnetic field intensity
H0 as given by the solution of the boundary value problem with the integral boundary condi-
tions (25) (curves 1 ) and the problem with conditions (24) of the third kind on the screen surface
(curves 2 ) [8]. A comparison of curves 1 and 2 shows that, for practical studies of thin cylindrical
screens, simple boundary conditions (i.e., conditions of the third kind) can be used.

Figure 4 presents the results of modeling of shielding efficiency coefficients for cylindrical screens
of various radii and various thicknesses. It is shown that the larger the screen radius, the smaller
the shielding efficiency is in accordance with the elementary formula given in [8].

7. CONCLUSION

A technique for modeling the penetration of the external magnetic field into an infinitely long
cylindrical shell (screen) made of a material whose permittivity depends nonlinearly on the mag-
netic field intensity is developed. The original three-domain problem (the domain inside the shell,
the infinite exterior domain, and the thin cylindrical film layer) is reduced to a boundary value
problem for the nonlinear magnetostatic equation in the film layer with integral boundary condi-
tions on the interior and exterior film surfaces. A number of models of boundary value problems are
stated describing the action exerted on the screen by a constant magnetic field and a field generated
by a conducting twin line parallel to the cylindrical screen. Integral boundary conditions of various
types and boundary conditions of the third kind are used. For the comparative analysis of the
models, a numerical method for solving boundary value problems with integral boundary condi-
tions is developed. The dependence of the permittivity of the film on the magnetic field intensity
is taken according to experimental data for permalloy Fe20Ni80. A numerical study of the shielding
efficiency coefficient, which is the factor by which the external magnetic field is attenuated when
passing through the film, is carried out. It is shown that, for thin films with a sufficiently small
ratio of the film thickness Δ to the outer screen radius R2 (Δ/R2 < 10−2), modeling with integral
conditions and modeling with boundary conditions of the third kind yield practically the same
results for the case of a constant external magnetic field.
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