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Abstract—Theorems on the unique reconstruction of a Sturm–Liouville problem with spec-
tral polynomials in nonsplitting boundary conditions are proved. Two spectra and finitely
many eigenvalues (one spectrum and finitely many eigenvalues for a symmetric potential) of the
problem itself are used as the spectral data. The results generalize the Levinson uniqueness
theorem to the case of nonsplitting boundary conditions containing polynomials in the spectral
parameter. Algorithms and examples of solving relevant inverse problems are also presented.
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1. INTRODUCTION

By L we denote the Sturm–Liouville problem

−y′′ + q(x)y = λy, (1)
U1(y) = y′(0) − hy(0) + a(λ)y(π) = 0, (2)
U2(y) = y′(π) + H(λ)y(π) + b(λ)y(0) = 0, (3)

where q(x) ∈ L2(0, π), H(λ), a(λ), and b(λ) are complex-coefficient polynomials in the spectral
parameter.

Such problems arise in technical physics, mechanics [1, pp. 18–53], flow-duct acoustics [2], elec-
trodynamics [3], and other fields. These problems were studied in detail in [4–6].

The inverse problem for L that contains arbitrary degree polynomials a(λ) and b(λ) has not
been considered before. Special cases of the problem L were predominantly studied for splitting
and nonsplitting boundary conditions of the form

V1(y) = a11y(0) + y′(0) + a13y(π) = 0, (4)
V2(y) = a21y(0) + a23y(π) + y′(π) = 0. (5)

The Sturm–Liouville inverse problem for L for a(λ) ≡ b(λ) ≡ 0 and H(λ) = H = const was
considered for the first time in works by Ambartsumyan and Borg and Levinson [7]. It has been
comprehensively investigated by now (see [8–10]).

Very few works were devoted to the inverse problem for L with splitting boundary conditions
[a(λ) ≡ b(λ) ≡ 0] and with a polynomial H(λ) (see [11]). Freiling and Yurko [11] studied a non-
self-adjoint problem with splitting boundary conditions in which the polynomials in the spectral
parameter are the coefficients multiplying y(0), y′(0), y(π), and y′(π). It was shown that this
problem can be uniquely reconstructed based on one of the following three sets.

1. The Weil function and the zeros of the polynomials in one of the boundary conditions.
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48 SADOVNICHII et al.

2. The spectrum and residues of the Weil function at spectrum points and the zeros of the
polynomials in one of the boundary conditions.

3. Two spectra and the zeros of the polynomials in one of the boundary conditions.
The inverse problem in which nonsplitting boundary conditions do not contain polynomials

in the spectral parameter was studied by Stankevich, Sadovnichii, Yurko, Marchenko, Plaksina,
Gasymov, Guseinov, Nabiev, and others. A self-adjoint problem with periodic [y(0) = y′(π) = 0,
y′(0) = y′(π) = 0] or antiperiodic [y(0) = −y′(π) = 0, y′(0) = −y′(π) = 0] boundary conditions was
originally considered. Sadovnichii [12] started studying an inverse nonself-adjoint Sturm–Liouville
problem (1), (4), (5) with nonsplitting boundary conditions. He showed that using three spectra
as well as two sequences of weight numbers and two sequences of residues of specific functions suffices
for the unique reconstruction of the nonself-adjoint Sturm–Liouville problem with nonsplitting
boundary conditions, with these spectral data being used essentially. In [13], an example is provided
that shows that if auxiliary problems are selected as in [12], the spectrum of the original problem,
the spectra of two auxiliary problems, and two sequences of weight numbers may not be sufficient
for the reconstruction of the boundary value problem. Therefore, the requirement on using the
residues of specific functions is essential, and the theorem proved in [12] is, in a sense, unimprovable.

Attempts were made later to choose reconstructed or auxiliary problems so as to decrease the
amount of spectral data needed for the reconstruction (see [14]). In particular, it was shown
that the auxiliary problems can be selected so that to find the unique solution of the inverse
problem (1), (4), (5) it suffices to use only the spectra of two auxiliary problems and two eigenvalues
of the original Sturm–Liouville problem. This set is minimum among the previously used sets of
spectral data. In addition, the obtained theorems have generalized the Borg uniqueness theorem
and the Gasymov and Levitan solvability theorem [14] to the case of nonself-adjoint problems with
nonsplitting boundary conditions.

In the present paper, we will obtain theorems on the unique reconstruction of the problem L
equipped with symmetric and nonsymmetric potentials and polynomials a(λ) and b(λ) that enter
the boundary conditions, with the problem L not necessarily being self-adjoint. We use only
two spectra and finitely many eigenvalues of the problem L in the case of an arbitrary potential
and one spectrum and finitely many eigenvalues of the problem L in the case of a symmetric
potential [for H(λ) ≡ h] as the spectral data for the reconstruction of the problem L. The results
generalize relevant theorems on the unique reconstruction of the Sturm–Liouville inverse problem
with splitting boundary conditions.

2. SPECTRUM OF THE PROBLEM

Theorem 1. If h + H(λ) �= 0, then the spectrum of problem (1)–(3) is a countable set.

Proof. Let A denote the matrix of the boundary conditions (2), (3)

A =

∥
∥
∥
∥
∥

−h 1 a(λ) 0

b(λ) 0 H(λ) 1

∥
∥
∥
∥
∥
,

and Mij stand for its minors consisting of the ith and jth columns.
Let y1(x, λ) and y2(x, λ) be linearly independent solutions of Eq. (1) satisfying the conditions

y1(0, λ) = 1, y′
1(0, λ) = 0, y2(0, λ) = 0, y′

2(0, λ) = 1. (6)

The eigenvalues of problem (1)–(3) are the roots of the entire function (see [8, pp. 33–36])

Δ(λ) = M12 + M34 + M32y1(π, λ) + M42y
′
1(π, λ) + M13y2(π, λ) + M14y

′
2(π, λ)

= a(λ) − b(λ) − H(λ)y1(π, λ) − y′
1(π, λ) − (hH(λ) + a(λ)b(λ))y2(π, λ) − hy′

2(π, λ). (7)

For the determinant Δ(λ), we have the following two possible cases [9, p. 27] :
1. Δ(λ) ≡ 0, then each number λ is an eigenvalue;
2. Δ(λ) �≡ 0, then there are at most countable many eigenvalues without limit points.
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We have the asymptotic formulas [9, pp. 62–65]

y1(x, λ) = cos(sx) + s−1u(x) sin(sx) + O(s−2),
y2(x, λ) = s−1 sin(sx) − s−2u(x) cos(sx) + O(s−3),
y′

1(x, λ) = −s sin(sx) + u(x) cos(sx) + O(s−1),
y′

2(x, λ) = cos(sx) + s−1u(x) sin(sx) + O(s−2),

(8)

where

u(x) =
1
2

x∫

0

q(t) dt

for a sufficiently large λ = s2 ∈ R.
It follows from (8) that the spectrum of problem (1)–(3) is the empty set only if M12 + M34 ≡

C = const �= 0 and

M32y1(π, λ) + M42y
′
1(π, λ) + M13y2(π, λ) + M14y

′
2(π, λ) ≡ 0. (9)

It follows from relations (7) and (9) that h+H(λ) ≡ 0. However, by the assumption of the theorem,
h + H(λ) �= 0. Consequently, the spectrum is nonempty.

The characteristic determinant Δ(λ) of problem (1)–(3) cannot be the identical zero as otherwise
relations (7) and (9) would imply that h + H(λ) ≡ 0, which contradicts the assumptions of the
theorem.

It follows from (8) that the spectrum of problem (1)–(3) can be finite if and only if M12 + M34

is a polynomial in the spectral parameter and condition (9) is satisfied. From relations (7) and (9),
we obtain the identity h + H(λ) ≡ 0, which contradicts the assumption of the theorem.

These contradictions demonstrate that the spectrum is countable. The proof of the theorem is
complete.

The following assertion can be proved similarly.

Theorem 2. If H(λ) ≡ h and the degree of the polynomial a(λ)b(λ) is greater than unity,
the spectrum of problem (1)–(3) is a countable set.

3. STATEMENT OF INVERSE PROBLEMS

Let functions ϕ(x, λ) and ψ(x, λ) be solutions of Eq. (1) that satisfy the initial conditions

ϕ(0, λ) = 1, ϕ′(0, λ) = h, (10)
ψ(π, λ) = 1, ψ′(π, λ) = −H(λ). (11)

Let us introduce a function

χ(λ) = ϕ′(x, λ)ψ(x, λ) − ϕ(x, λ)ψ′(x, λ)

that is independent of x ∈ [0, π].
The function χ(λ) is an entire function and its zeros coincide with the eigenvalues μn of the

problem L1 for Eq. (1).
Problem L1.

−y′′ + q(x)y = λy, y′(0) − hy(0) = 0, y′(π) + H(λ)y(π) = 0.

By χ1(λ) and M(λ) we denote functions

χ1(λ) = ψ(0, λ), M(λ) = −χ1(λ)
χ(λ)

.

The function M(λ) is the Weil function of the problem L1 [11].
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50 SADOVNICHII et al.

The function χ1(λ) is a characteristic function of the problem for Eq. (1) with the boundary
conditions

y(0) = 0, y′(π) + H(λ)y(π) = 0 (12)

and with the eigenvalues νn. The problem (1), (12) will be denoted by L2 in what follows.
The residues of the Weil function M(λ) at the points λ = μn [11] will be denoted by Mn, viz.,

Mn = Res
λ=μn

M(λ) = −χ1(λ)
χ(λ)

.

The inverse problems for L are formulated as follows.
Inverse problem 1. Given the eigenvalues of the problems L, L1, and L2, find q(x), H(λ),

a(λ), and b(λ) (reconstruct the problem L).
Inverse problem 2. Given the eigenvalues of the problem L and the Weil function M(λ) of

the problem L1, find q(x), H(λ), a(λ), and b(λ) (reconstruct the problem L).
Inverse problem 3. Given the eigenvalues of the problems L, L1, and Mn, find q(x), H(λ),

a(λ), and b(λ) (reconstruct the problem L).
We will also consider an inverse problem for a special case of the problem L. We consider the

following problem.
Problem L0.

−y′′ + q(x)y = λy, y′(0) − hy(0) = 0, y′(π) + hy(π) = 0, h ∈ R.

Inverse problem 4. Let the eigenvalues of the problems L and L0 be known, let H(λ) ≡ h, let
the condition q(x) = q(x−π) be satisfied almost everywhere, and let q(x) be a real-valued function.
Find q(x), h, a(λ), and b(λ), i.e., reconstruct the problem L.

4. UNIQUENESS THEOREMS FOR THE SOLUTION
OF INVERSE PROBLEMS FOR L WITH THE USE

OF THE ENTIRE SPECTRUM OF THE PROBLEM L

Below we prove uniqueness theorems for the above-posed problems 1, 2, and 3.

Theorem 3. Let the degree of the polynomial H(λ) be not less than unity and let the polyno-
mials a(λ) and b(λ) be of different evenness. Then the problems L, L1, and L2 can be uniquely
reconstructed based on the eigenvalues of the problems L and L1 and the residues Mn.

Theorem 4. Let the assumptions of Theorem 3 be valid. Then the problems L, L1, and L2 can
be uniquely reconstructed based on the eigenvalues of the problem L and the Weil function M(λ) of
the problem L1.

Theorem 5. Let the assumptions of Theorem 3 be satisfied. Then the problems L, L1, and
L2 can be uniquely reconstructed based on three spectra (namely , based on the eigenvalues of the
problems L, L1, and L2).

Proof of Theorems 3–5. Since h+H(λ) �= 0, it follows that the spectrum of the problem L is
countable. The uniqueness of reconstruction of the function q(x), the coefficient h, and the polyno-
mial H(λ) follows from [11], where it was shown that the problem L1 can be uniquely reconstructed
based on the following three data sets: (i) the spectra of the problems L1 and L2; (ii) the Weil
function M(λ) of the problem L1; (iii) the eigenvalues of the problem L1 and the residues Mn.
It remains to prove the uniqueness of the reconstruction of the polynomials a(λ) and b(λ) based on
all the eigenvalues of the problem L. Suppose that there exist two pairs of polynomials (a(λ), b(λ))
and (ã(λ), b̃(λ)) for which the corresponding problems (1)–(3) have identical spectra. It follows
from the asymptotic representations (8) that the characteristic function is an entire function of
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order 1/2. Then it follows from the Hadamard factorization theorem that the characteristic deter-
minants Δ(λ) and Δ̃(λ) for problems (1)–(3) with different pairs of polynomials (a(λ), b(λ)) and
(ã(λ), b̃(λ)) are related by the identity

Δ(λ) − CΔ̃(λ) ≡ 0.

This, together with relations (7) and (8) and the inequality H(λ) �= 0, implies that C = 1 and
a(λ) ≡ ã(λ), b(λ) ≡ b̃(λ). Consequently, the problems L, L1, and L2 can be uniquely reconstructed.
The proof of the theorems is complete.

5. UNIQUENESS THEOREMS FOR THE SOLUTION
OF INVERSE PROBLEMS FOR L WITH THE USE

OF FINITELY MANY EIGENVALUES OF THE PROBLEM L

Now we show that knowing the entire countable set of eigenvalues is a redundant requirement
for the unique reconstruction of the problem L. For the unique reconstruction of the problem L,
it suffices to know the spectra of two problems L1 and L2 and finitely many eigenvalues of the
problem L.

Let the problem L1 be uniquely reconstructed. We denote the unknown coefficients of the
polynomial a(λ) by xi, i = 1, . . . ,m1, the unknown coefficients of the polynomial b(λ) by xi,
i = 1+m1, . . . ,m2 +m1, and different products of the coefficients of the polynomial a(λ)b(λ) by xi,
i = 1 + m1 + m2, . . . ,m3 + m2 + m1.

By substituting m1+m2+m3 eigenvalues of problem (1)–(3) in the characteristic determinant (7),
we obtain the system of m1 + m2 + m3 equations for m1 + m2 + m3 unknowns xi. We denote
the determinant of this system by D. It follows from the Kramer theorem that if D �= 0, then
all the values xi and, therefore, the polynomials a(λ) and b(λ) are uniquely defined. Consequently,
the following assertions hold true.

Theorem 6. If the polynomials a(λ) and b(λ) occurring in the boundary conditions of prob-
lem (1)–(3) are polynomials of different evenness, then the problem L can be uniquely reconstructed
based on m1 + m2 + m3 eigenvalues of the problem L, the spectrum of the problem L1, and the
residues Mn.

Theorem 7. If the polynomials a(λ) and b(λ) occurring in the boundary conditions of prob-
lem (1)–(3) are polynomials of different evenness, then the problem L can be uniquely reconstructed
bases on m1 +m2 +m3 eigenvalues of the problem L and the Weil function M(λ) of the problem L1.

Theorem 8. If the polynomials a(λ) and b(λ) occurring in the boundary conditions of prob-
lem (1)–(3) are polynomials of different evenness, then the problem L can be uniquely reconstructed
based on the spectra of the problems L1 and L2 and m1 + m2 + m3 eigenvalues of the problem L
such that D �= 0.

6. UNIQUENESS THEOREMS FOR THE SOLUTION
OF INVERSE PROBLEMS FOR L IN THE CASE q(x) = q(x − π); H(λ) ≡ h

Levinson [7] considered the Sturm–Liouville problem L0 with a symmetric potential.
The following assertion was proved for this problem.

Levinson theorem. If q(x) = q(x − π), then the function q(x) and the number h are uniquely
determined based on the spectrum of the problem L0.

Below we generalize this theorem to the case of nonsplitting boundary conditions with spectral
polynomials in the boundary conditions.
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Theorem 9. Let the conditions q(x) = q(x − π) and H(λ) ≡ h be satisfied almost everywhere,
let a(λ) and b(λ) be polynomials of different evenness, with the degree of the polynomial a(λ)b(λ)
being known and above unity. Then the problems L and L0 are uniquely reconstructed based on two
spectra (namely , the eigenvalues of the problems L and L0).

Proof. It follows from Theorem 2 that the spectrum of the problem L is countable. The unique-
ness of the reconstruction of the function q(x) and the number h follows from the Levinson theo-
rem [7]. The uniqueness of the reconstruction of the polynomials a(λ) and b(λ) on the basis of all
the eigenvalues of the problem L can be proved similar to the proof of Theorems 3–5.

Now we show that if q(x) = q(x − π) and H(λ) ≡ 0, then knowing the entire countable set of
eigenvalues is a redundant requirement for the unique reconstruction of the problem L. For the
unique reconstruction of the problem L, it suffices to know the spectrum of the problem L0 and
finitely many eigenvalues of the problem L.

Let the problem L0 be uniquely reconstructed based on its spectrum. Following the lines of
derivation of Theorems 6–8, we find that the polynomials are uniquely defined. Consequently,
the following assertion is valid.

Theorem 10. Let the conditions q(x) = q(x−π) and H(λ) ≡ h be satisfied almost everywhere,
and let the polynomials a(λ) and b(λ) occurring in the boundary conditions of problem (1)–(3) be
polynomials of different evenness. Then the problem L can be uniquely reconstructed based on the
spectrum of the problem L0 and m1 + m2 + m3 eigenvalues of the problem L such that D �= 0.

Remark. Theorems 3–10 are valid not only for polynomials of different evenness but also when
the exponents of the degrees of the polynomials a(λ) and b(λ) do not coincide and are known.
If this condition fails, then the reconstruction problem (1)–(3) has two solutions.

7. ALGORITHMS FOR SOLVING INVERSE PROBLEMS FOR L

Theorems 6–8 and 10 make it possible to construct algorithms for solving the inverse prob-
lems 1–4.

Algorithm for Solving Inverse Problem 1

1. The problem L1, i.e., the function q(x), the coefficient h, and the polynomial H(λ), is re-
constructed using the eigenvalues of the problem L1 and the residues Mn of the Weil function and
following the lines of algorithm 1 in [11, p. 16].

2. The determined function q(x) is used to write Eq. (1) and find linearly independent solutions
y1(x, λ) and y2(x, λ) of Eq. (1) that satisfy conditions (6).

3. The found solutions y1(x, λ) and y2(x, λ) are substituted in the characteristic determinant (7).
4. m1 +m2+m3 eigenvalues of the problem L are substituted into the characteristic determinant

to obtain a system of m1 + m2 + m3 equations for m1 + m2 + m3 unknowns.
5. If the determinant D of the resultant system is nonzero, then, by using the Kramer formulas,

the coefficients xi, i = 1, . . . ,m1, of the polynomial a(λ) and the coefficients xi, i = m1 + 1, . . . ,
m1 + m2, of the polynomial b(λ) are determined, i.e., the reconstruction of the problem L is now
complete.

Algorithm for Solving Inverse Problem 2

1. The Weil function M(λ) of the problem L1 and algorithm 2 in [11, p. 16] are used to reconstruct
the problem L1, that is, the function q(x), the coefficient h, and the polynomial H(λ).

2. Now, the problem L can be completely reconstructed by following steps 2–5 of the algorithm
for solving inverse problem 1.

Algorithm for Solving Inverse Problem 3

1. The spectra of the problems L1 and L2 are used to reconstruct the problem L1, i.e., the function
q(x), the coefficient h, and the polynomial H(λ), following the lines of algorithm 3 in [11, p. 16].
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2. Now, the problem L can be completely reconstructed by following steps 2–5 of the algorithm
for solving inverse problem 1.

Algorithm for Solving Inverse Problem 4

1. The eigenvalues of the problem L0 are used to reconstruct the problem L0, i.e., the function
q(x) and the coefficient h, following the lines of methods from [7].

2. Now, the problem L can be completely reconstructed by following steps 2–5 of the algorithm
for solving inverse problem 1.

Let us exemplify the above algorithms for solving the inverse problem.
Example 1. Let the polynomials H(λ), a(λ), and b(λ) have the form

H(λ) = H, a(λ) = x1λ
2, b(λ) = x2λ + x3λ

3;

let five eigenvalues of the problem L have the form

λ1 = 1.1730, λ2 = 3.9281, λ3 = 9.0332, λ4 = 25.012, λ5 = 35.991;

let the eigenvalues μk of the problem L1 be the zeros of the equation

cos
√

μ π −√
μ sin

√
μ π = 0; (13)

and let the eigenvalues νk of the problem L1 be the zeros of the equation

cos
√

ν π +
sin

√
ν π√

ν π
= 0. (14)

Let us find a solution by the algorithm for inverse problem 3.
1. By using algorithm 3 from [11, p. 16], we obtain q(x) ≡ 0, h = 0, and H(λ) ≡ 1.
2. Since q(x) ≡ 0, it follows that Eq. (1) has the form −y′′ = λy, and its linearly independent

solutions y1(x, λ) and y2(x, λ) satisfying condition (6) have the form

y1(x, λ) = cos(sx), y2(x, λ) =
sin(sx)

s
. (15)

3. After substituting y1(x, λ) and y2(x, λ) in the characteristic determinant (7), we obtain

Δ(λ) = x1λ
2 − x2λ − x3λ

3 − cos(sπ) + s sin(sπ) − (x4λ
3 + x5λ

5)
sin(sπ)

s
.

4. By substituting 1 + 2 + 2 = 5 eigenvalues of the problem L in the characteristic determinant,
we obtain the following system of five equations for five unknowns:

1.3758x1 − 1.6138x3 − 1.1730x2 + 0.38429x4 + 0.52872x5 = −0.68685,
15.430x1 − 60.610x3 − 3.9281x2 + 1.7342x4 + 26.759x5 = 1.1108,
81.600x1 − 737.11x3 − 9.0333x2 + 4.2675x4 + 348.23x5 = −0.94755,
625.62x1 − 15648x3 − 25.012x2 + 12.256x4 + 7667.9x5 = −0.98040,
1295.4x1 − 46622x3 − 35.991x2 + 17.746x4 + 22987x5 = 1.0137.

5. The determinant D = 9.4840 × 106 of that system is nonzero. Therefore, using the Kramer
formula, we find the coefficient x1 of the polynomial a(λ) = x1λ

2 and the coefficients x2 and x3 of
the polynomial b(λ) = x2λ + x3λ

3, i.e., x1 = 2.00, x2 = 3.00, and x3 = 4.00.
Consequently, the desired problem L has the form

−y′′ = λy, y′(0) + 2λ2y(π) = 0, y′(π) + y(π) + (3λ + 4λ3)y(0) = 0.
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Example 2 (with polynomials of the same evenness). Let H(λ) = H and let a(λ) and b(λ) be
polynomials of the same evenness

a(λ) = x1 + x2λ
2, b(λ) = x3 + x4λ

2.

Seven eigenvalues of the problem L are

λ1 = 1.0919, λ2 = 3.9591, λ3 = 9.0175, λ4 = 15.990,
λ5 = 25.006, λ6 = 35.996, λ7 = 49.003.

Let the eigenvalues μk of the problem L1 be given by the zeros of Eq. (13) and let the eigenvalues νk

of the problem L1 be given by the zeros of Eq. (14).
Let us find a solution by the algorithm for inverse problem 3.
1–3. Using algorithm 3 from [11, p. 16], we obtain q(x) ≡ 0, h = 0, H(λ) ≡ 1 and the same

characteristic determinant as in Example 1.
4 and 5. If we substitute 2 + 2 + 3 = 7 eigenvalues of the problem L in the characteristic

determinant, we obtain a system of linear equations with proportional columns. The columns that
correspond to the variables x1 and x3 coincide with the columns that correspond to the variables
x2 and x4. The determinant D of the system is zero. Therefore, if a(λ) and b(λ) are polynomials of
the same evenness, the polynomials a(λ) and b(λ) are sought differently as a solution of a nonlinear
system of equations. As a result, we obtain two solutions:

1. x1 = 1.00, x2 = 2.00, x3 = 3.00, x4 = 4.00;
2. x1 = −3.00, x2 = −4.00, x3 = −1.00, x4 = −2.00.
Therefore, the inverse identification problem L also has two solutions:

−y′′ = λy, y′(0) + (1 + 2λ)y(π) = 0, y′(π) + y(π) + (3 + 4λ)y(0) = 0

and
−y′′ = λy, y′(0) − (3 + 4λ)y(π) = 0, y′(π) + y(π) − (1 + 2λ)y(0) = 0.

Example 3. Let H(λ) = h, let q(x) be a real-valued function with the condition q(x) = q(x−π)
satisfied almost everywhere, let the functions a(λ) and b(λ) be polynomials of the form

a(λ) = x1λ
2, b(λ) = x2λ + x3λ

3;

let five eigenvalues of the problem L be given by the values

λ1 = 1.1405, λ2 = 3.9278, λ3 = 9.0333, λ4 = 25.012, λ5 = 35.991;

and let eigenvalues μk of the problem L0 be given by the zeros of the equation
(
√

μ − 1
√

μ

)

sin
√

μ π − 2 cos
√

μ π = 0.

Let us find a solution by the algorithm for inverse problem 4.
1. The eigenvalues of the problem L0 are used to obtain q(x) = 0 and h = 1 following the lines

of methods from [7].
2. Since q(x) = 0, it follows that Eq. (1) has the form −y′′ = λy, and its linearly independent

solutions y1(x, λ) and y2(x, λ) satisfying condition (6) have the form (15).
3. Substituting y1(x, λ) and y2(x, λ) in the characteristic determinant (7), we obtain

Δ(λ) = x1λ
2 − x2λ − x3λ

3 − 2 cos(sπ) + s sin(sπ) − (1 + x4λ
3 + x5λ

5)
sin(sπ)

s
.
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4. Substituting 1 + 2 + 2 = 5 eigenvalues of the problem L in the characteristic determinant,
we obtain the system of five equations for five unknowns:

1.3007x1 − 1.1405x2 − 1.4834x3 + 0.29423x4 + 0.38271x5 = −1.9268,
15.427x1 − 3.9278x2 − 60.595x3 + 1.7416x4 + 26.868x5 = 2.0809,
81.600x1 − 9.0333x2 − 737.11x3 + 4.2659x4 + 348.10x5 = −1.9532,
625.62x1 − 25.012x2 − 15648x3 + 12.256x4 + 7667.7x5 = −1.9811,
1295.4x1 − 35.991x2 − 46622x3 + 17.746x4 + 22988x5 = 2.0133.

5. The determinant D = 3.9545× 106 of this system is nonzero. Therefore, by using the Kramer
formula, we find the coefficient x1 of the polynomial a(λ) = x1λ

2 and the coefficients x2 and x3 of
the polynomial b(λ) = x2λ + x3λ

3, i.e., x1 = 2.00, x2 = 3.00, and x3 = 4.00.
Consequently, the desired problem L has the form

−y′′ = λy, y′(0) + 2λ2y(π) = 0, y′(π) + y(π) + (3λ + 4λ3)y(0) = 0.
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