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Abstract—Linear differential operators (equations) of the second order in Banach spaces of
vector functions defined on the entire real axis are studied. Conditions of their invertibility
are given. The main results are based on putting a differential operator in correspondence
with a second-order operator matrix and further use of the theory of first-order differential
operators that are defined by the operator matrix. A general scheme is presented for studying the
solvability conditions for different classes of second-order equations using second-order operator
matrices. The scheme includes the studied problem as a special case.
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1. INTRODUCTION. MAIN RESULTS

Let X be a complex Banach space with a norm ‖ · ‖, and let EndX be the Banach algebra
of linear bounded operators acting in X.

In the present paper, we consider the following function spaces: Cb = Cb(R,X) is the Ba-
nach space of continuous functions bounded on the real axis R and taking values in the space X,
which is equipped with a norm that is defined by the relation ‖x‖∞ = supt∈R

‖x(t)‖; C0 = C0(R,X)
is a closed subspace of functions from Cb(R,X) that tend to zero at infinity; Cb,u = Cb,u(R,X) is
a closed subspace of uniformly continuous functions from Cb(R,X); Lp = Lp(R,X), p ∈ [1,∞],
is the Banach space of Bochner measurable (classes of) functions that are defined on R with val-
ues in X and have finite value of the quantity (which is used as the norm in the relevant space)
‖x‖p = (

∫
R
‖x(τ)‖p dτ)1/p for p �= ∞, ‖x‖∞ = ess supτ∈R

‖x(τ)‖ for p = ∞; Sp(R,X), p ∈ [1,∞),
is the Stepanov space of functions that are locally p-integrable and measurable on R, take values
in X, and have finite value of the quantity ‖x‖Sp = supt∈R

(
∫ 1

0
‖x(t + s)‖p ds)1/p.

By L1(R,B) [respectively, L1(R) if B = C] we denote the Banach space of functions inte-
grable on R with values in the complex Banach algebra B (respectively, with convolution of the
functions standing for multiplication), while by f̂ : R → B we denote the Fourier transform of
a function f ∈ L1(R,B), i.e.,

f̂(λ) =
∫

R

f(t) exp(−iλt) dt, λ ∈ R.

By F = F(R,X) we denote one of the above-listed spaces.
In the Banach space F = F(R,X), we consider a second-order differential operator of the form

x′′(t) + B1(t)x′(t) + B2(t)x(t) = g(t), t ∈ R, (1)

where g ∈ F and B1, B2 : R → EndX are operator-valued functions from the space L∞(R,EndX).
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LINEAR DIFFERENTIAL OPERATORS AND OPERATOR MATRICES 9

We put any function x ∈ F in correspondence with a function y : R → X2 = X ×X (the norm
‖(x1, x2)‖ = max{‖x1‖, ‖x2‖}, (x1, x2) ∈ X2 is considered in the Cartesian product X2) of the form

y(t) = (x1(t), x2(t)), t ∈ R, x1 = x, x2 = x′.

It follows from the very definition of the function y that the function x ∈ F(R,X) is a solution of
Eq. (1) if and only if the function y ∈ F(R,X2) satisfies the equation [considered in F(R,X2)]

y′(t) + B(t)y(t) = f(t), t ∈ R. (2)

Here f ∈ F(R,X2), f(t) = (0, g(t)), t ∈ R, and the operator-valued function B : R → EndX2

has the following form: each operator B(t) ∈ EndX2, t ∈ R, is defined in X × X by the matrix(
0 −I

B2(t) B1(t)

)

. By I we denote the identity operator in any of the Banach spaces.

We sometimes identify the matrix of an operator acting in the Cartesian product of Banach
spaces with an operator that is defined by this matrix. In addition, we use the canonical isomor-
phism of the Banach spaces F(R,X2) and F(R,X) ×F(R,X).

Let us introduce some operators. By D we denote an differentiation operator that acts by the
rule Dx = x′ and has the domain

F (1) = {x ∈ F : x is an absolutely continuous function, x′ ∈ F},
while by D2 we denote an operator that is defined by the relation

D2 = D2 + B1D + B2. (3)

The domain of this operator is given by the linear subspace

F (2) = F (2)(R,X) = {x ∈ F (1) : x is an absolutely continuous function, x′ ∈ F (1)}.

We consider the differentiation operator

D : F (1)(R,X2) ⊂ F(R,X2) → F(R,X2)

defined by the matrix

(
D 0

0 D

)

and the operator

D1 : F (1)(R,X2) ⊂ F(R,X2) → F(R,X2)

that acts by the rule D1 = D + B. The operator D1 is thus defined by the matrix
(

D −I

B2 D + B1

)

. (4)

We write Eqs. (1) and (2) in the operator form as

D2x = g, g ∈ F(R,X); D1y = f, f ∈ F(R,X2).

Reducing higher-order differential equations to the corresponding first-order differential equa-
tions is widely used in the theory of differential equations.

Note that the simultaneous solvability of Eqs. (1) and (2) is obvious for the right-hand sides
f ∈ F(R,X2) of a special form, namely, f = (0, g). In this case, a solution x ∈ F(R,X) of Eq. (1)
and a solution y = (y1, y2) ∈ F(R,X2) of Eq. (2) are related by the formula x = y1, x′ = y2.

A natural question arises of whether the operators

D2 : F (2)(R,X) ⊂ F(R,X) → F(R,X), D1 : F (1)(R,X2) ⊂ F(R,X2) → F(R,X2)

are simultaneously invertible. With the positive answer to this question, analysis of the invertibility
of the second-order operator D2 reduces to analyzing the invertibility conditions for the first-order
differential operator D1. Hence we can use the results of [1–8].

The main results of the present paper are formulated in the theorems below.
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Theorem 1. The operator D2 : F (2)(R,X) ⊂ F(R,X) → F(R,X) is invertible if and only
if the operator D1 : F (1)(R,X2) ⊂ F(R,X2) → F(R,X2) is invertible. If the operator D2 is
invertible, then an operator D

−1
1 ∈ EndF(R,X2) that is inverse to D1 is defined by (has the form of )

the matrix
(

(D − λ0I)−1 − D−1
2 ((B2 + λ0B1 + λ2

0I)(D − λ0I)−1 + λ0I) D−1
2

λ0(D − λ0I)−1 − DD−1
2 ((B2 + λ0B1 + λ2

0I)(D − λ0I)−1 + λ0I) DD−1
2

)

, (5)

where λ0 is an arbitrary number from C\(iR).

Theorem 2. The spectrum of the operator D2 : F (2) ⊂ F → F is independent of the choice of
the function space F = F(R,X). In particular , the operator D2 is simultaneously invertible in any
of the considered function spaces F(R,X).

The assertion of Theorem 2 follows immediately from Theorem 1 and from results in [1, 7, 9]
that contain the counterpart assertion for the first-order differential operators (in particular, D1).
Estimates for the norms of the inverse operators were obtained in [9].

Results obtained in the present paper (for example, Theorem 1) are based on the following
approach to studying abstract operators acting in Banach spaces. A similar scheme was used in [10]
for studying the invertibility conditions of bounded operators. However, this scheme required some
modification to be used for studying differential operators.

Let X be a complex Banach space, A : D(A) ⊂ X → X be a linear operator with a nonempty
resolvent set �(A), and B1 and B2 be operators from the algebra EndX . We consider the linear
operator

A = A2 + B1A + B2 : D(A2) ⊂ X → X (6)

with the domain D(A) = D(A2) = {x ∈ D(A) : Ax ∈ D(A)}.
Along with the operator A, we define an operator A : D(A) ⊂ X × X → X × X using the

matrix

(
A −I

B2 A + B1

)

, i.e.,

Ax = (Ax1 − x2, B2x1 + (A + B1)x2), (7)

where x = (x1, x2) ∈ D(A) = D(A) × D(A) ⊂ X ×X .

Theorem 3. Let A be an invertible operator. The operator A is invertible if and only if A is
an invertible operator. If A is an invertible operator , then the operator A

−1 ∈ EndX 2 inverse to A

is defined by the matrix (
A−1 −A−1B2A

−1 A−1

−AA−1B2A
−1 AA−1

)

, (8)

i.e.,
A

−1x = ((A−1 −A−1B2A
−1)x1 + A−1x2,−AA−1B2A

−1x1 + AA−1x2)

for any vector x = (x1, x2) ∈ X 2.

If we set X = F(R,X), A = D is the operator of differentiation in F(R,X), then A = D2

and A = D1, where the operators D2 and D1 have been introduced with formulas (3) and (4),
respectively. However, such an operator A = D is not invertible. Consequently, Theorem 3 cannot
be used directly applied to proving the simultaneous invertibility of the operators D2 and D1.
Note that the spectrum of the differentiation operator D : F (1) ⊂ F → F is pure imaginary
(see [1, Chap. 2, Sec. 4] for F = Cb and [3] for other spaces mentioned above). Therefore, any
number λ0 /∈ iR is a point in the resolvent set of the differentiation operator A = D, and A−λ0I with
λ0 /∈ iR is an invertible operator. This makes it possible to establish the simultaneous invertibility
of the operators D2 and D1 in the following manner.
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Let us return to considering operators defined by formulas (7) and (8). Let a number λ0 ∈ C be
a point in the resolvent set of the operator A. Then the operator A admits the representation

A = Ã2 + B̃1Ã + B̃2,

where
Ã = A − λ0I, B̃1 = B1 + 2λ0I, B̃2 = B2 + λ0B1 + λ2

0I (9)

and Ã is an invertible operator. The corresponding operator Ã is defined by the matrix
(

Ã −I

B̃2 Ã + B̃1

)

,

i.e.,
Ãx = (Ãx1 − x2, B̃2x1 + (Ã + B̃1)x2), (10)

where x = (x1, x2) ∈ D(Ã) = D(Ã) × D(Ã) ⊂ X ×X .

Lemma 1. Let λ0 be a point in the resolvent set of the operator A. Then the operator Ã is
similar to the operator A with the transformation operator U ∈ EndX 2 defined by the matrix

U =

(
I 0

−λ0I I

)

, i.e., we have

Ã = UAU−1. (11)

Therefore, the operators A and Ã are simultaneously invertible, and Theorem 3 can be applied
to the operator Ã.

Theorem 4. The operator A : D(A) ⊂ X → X is invertible if and only if A : D(A)×D(A) ⊂
X × X → X × X is an invertible operator. If A is an invertible operator , then the operator
A

−1 ∈ End(X × X ) inverse to A is defined by the matrix
(

(A − λ0I)−1 −A−1((B2 + λ0B1 + λ2
0I)(A − λ0I)−1 + λ0I) A−1

λ0(A − λ0I)−1 − AA−1((B2 + λ0B1 + λ2
0I)(A − λ0I)−1 + λ0I) AA−1

)

,

where λ0 is any number from �(A).

Remark 1. Let the Banach space X coincide with one of the Banach spaces lp = lp(Z,X),
p ∈ [1,∞], of two-sided sequences x : Z → X of vectors from the Banach space X with the norm

‖x‖ = ‖x‖p =
(∑

n∈Z

‖x(n)‖p

)1/p

, x ∈ lp, p ∈ [1,∞); ‖x‖ = ‖x‖∞ = sup
n∈Z

‖x(n)‖, x ∈ l∞.

By A ∈ End lp we denote the displacement operator in the space lp acting by the rule (Ax)(k) =
x(k + 1), k ∈ Z, x ∈ lp.

Let us consider a second-order finite-difference operator A of the form (6), where A is a displace-
ment operator in lp, and let B1, B2 ∈ End lp be operators of multiplication by operator functions
in lp that act by the rule (Bkx)(n) = Bk(n)x(n), n ∈ Z, x ∈ lp, k = 1, 2.

The spectrum σ(A) of the operator A coincides with the circle T = {λ ∈ C : |λ| = 1} (see [9])
and, consequently, �(A) �= ∅. Therefore, Theorem 3 holds true for the finite-difference operator A.
Since the displacement operator A is invertible, it follows that the inverse operator A

−1 belongs
to End lp and is defined by the matrix (8). Thus, we can now use the results of [7, 10, 11].
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Remark 2. Operators of the form (6) include the second-order integro-differential operator

A : C
(2)
b (R,X) ⊂ Cb(R,X) → Cb(R,X), A = D2 + B1D + B2, (12)

where D is the differentiation operator and B1 and B2 are the convolution operators

(Bkx)(t) = (μk ∗ x)(t) =
∫

R

dμk(τ)x(t − τ), t ∈ R, x ∈ Cb(R,X),

with operator-valued Borel measures μk, k = 1, 2 of bounded variation. In particular, such this
class of operators includes finite-difference operators Bk, k = 1, 2 of the form

(Bkx)(t) =
∞∑

j=1

Cj,k(t)x(t + hj,k), t ∈ R, x ∈ Cb(R,X);

Cj,k ∈ Cb(R,End X), j ∈ N, k = 1, 2,

that satisfy the condition
∞∑

j=1

‖Cj,k‖∞ < ∞, k = 1, 2.

If hj,k ≤ 0 for all j ∈ N, k = 1, 2, then the operator A is a differential operator with retarded
argument. The first-order differential-difference operator

A : C(1)
b (R,X2) ⊂ Cb(R,X2) → Cb(R,X2)

corresponding to the operator A and acting by the rule Ax = x′ + Bx, x ∈ C
(1)
b (R,X2), will be

similar. Here the finite-difference operator B is defined by the matrix

(
0 −I

B2 B1

)

, i.e.,

(Bx)(t) =
(

−x2(t),
∞∑

j=1

Cj,2(t)x1(t + hj,2) +
∞∑

j=1

Cj,1(t)x2(t + hj,1)
)

, t ∈ R,

for any function pair x = (x1, x2) ∈ Cb × Cb.
It follows from Theorem 3 that the operators A and A are simultaneously invertible. Therefore,

we can study the operator (12) with finite-difference operators B1 and B2 using a number of well-
known results [12] on the conditions of the invertibility of first-order differential-difference operators,
including differential operators of retarded type.

Remark 3. For constant operator coefficients B1 and B2, the criteria of the almost periodicity of
solutions of first-order differential equations obtained in [13–16] can be carried over to second-order
differential equations.

Let us return to the differential operator D2 : F (2)(R,X) ⊂ F(R,X) → F(R,X) and assume
that the coefficients B1(t) = B1 and B2(t) = B2, t ∈ R, are constant operators, i.e., D2 =
D2 + B1D + B2. We consider the corresponding pencil of operators (the characteristic polynomial)
H : C → EndX, H(λ) = λ2I + B1λ + B2, λ ∈ C.

The spectrum σ(H) of the operator pencil H : C → EndX is defined as the set of all complex
numbers λ such that the operator H(λ) has no inverse in EndX. The set �(H) = C\σ(H) is
referred to as the resolvent set of the pencil .

Theorem 5. The following conditions are equivalent :
1. D2 : F (2)(R,X) ⊂ F(R,X) → F(R,X) is an invertible operator ;
2. the spectrum σ(H) of the pencil H : C → EndX does not intersect the imaginary axis, i.e.,

σ(H) ∩ (iR) = ∅;

DIFFERENTIAL EQUATIONS Vol. 53 No. 1 2017
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3. D1 = D + B : F (1)(R,X2) ⊂ F(R,X2) → F(R,X2) is an invertible operator ;
4. the spectrum σ(B) of the operator B ∈ EndX2 does not intersect the imaginary axis, i.e.,

σ(B) ∩ (iR) = ∅;

5. the operator D : lp(Z,X) → lp(Z,X), p ∈ [1,∞], defined by the relation

(Dx)(n) = x(n + 1) − eBx(n), n ∈ Z, x ∈ lp(Z,X),

is invertible in lp for at least one value p ∈ [1,∞] (and , consequently , is invertible for all p ∈ [1,∞]).

It follows from the condition 2 of Theorem 5 that all operators H(iλ), λ ∈ R, are invertible in the
algebra EndX. Obviously, the function λ �→ (H(iλ))−1 : R → EndX is infinitely differentiable;
moreover, the estimate ‖(H(iλ))−1‖ ≤ c/(1 + |λ|2), λ ∈ R, is valid with some constant c > 0.
We have similar inequalities for the first and second derivatives of the function H(iλ)−1. The above-
mentioned estimate of the function (H(iλ))−1 makes it possible to define a continuous summable
function G2 : R → EndX by the relation

G2(t) =
1
2π

∫

R

(H(iλ))−1 exp(iλt) dλ, t ∈ R.

Therefore, the Fourier transform Ĝ2 : R → EndX of the function G2(t) has the form

Ĝ2(λ) = (H(iλ))−1, λ ∈ R.

Theorem 6. If the condition 2 of Theorem 5 is valid , then

D2 : F (2)(R,X) ⊂ F(R,X) → F(R,X)

is an invertible operator , and the inverse operator D−1
2 ∈ EndF is the operator of convolution

(D−1
2 g)(t) = (G2 ∗ g)(t) =

∫

R

G2(t − s)g(s) ds, t ∈ R, g ∈ F(R,X),

with a summable operator function G2 ∈ L1(R,EndX).

2. PROOF OF THEOREM 3

Let A : D(A2) ⊂ X → X be an invertible operator. Then it is injective, and it follows from the
relation Ax = 0 that x = 0. Let us show that the operator A is also injective. It follows from
the relation Ax = 0 that Ax1 = x2 and B2x1 + (A + B1)x2 = 0 if x = (x1, x2). Since A is
an invertible operator, we have x1 = A−1x2. Then (B2A

−1 + A + B1)x2 = 0 or AA−1x2 = 0.
Since A is an injective operator, it follows that A−1x2 = 0. Consequently, x2 = 0 and, therefore,
x1 = A−1x2 = 0, which implies that A is an injective operator.

Let us show that A is a surjective operator. We consider the equation Ax = y, where x = (x1, x2),
while y = (y1, y2) is an arbitrary element from X 2. This equation is equivalent to the system of
equations Ax1 −x2 = y1 and B2x1 + (A+ B1)x2 = y2. One can readily see that its solution has the
form

x1 = (A−1 −A−1B2A
−1)y1 + A−1y2 ∈ D(A), x2 = AA−1(y2 − B2A

−1y1) ∈ D(A).

Indeed, by substituting those values in relation (7), we obtain the relations

Ax = (A((A−1 −A−1B2A
−1)y1 + A−1y2) − AA−1(y2 − B2A

−1y1),
B2((A−1 −A−1B2A

−1)y1 + A−1y2) + (A + B1)AA−1(y2 − B2A
−1y1))

= (y1, (I − (A2 + B1A + B2)A−1)B2A
−1y1 + (A2 + B1A + B2)A−1y2) = (y1, y2).
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This proves the surjectivity, and, in view of the injectivity of the operator A, its invertibility, too.
Moreover, it follows from the representation of a solution x = (x1, x2) that the inverse operator
A

−1 is defined by the matrix (8).
Now let A be an invertible operator. Let us check that A is an injective operator. Let x ∈

D(A) = D(A2) be a solution of the equation Ax = 0. We will show that x = 0. Note that
(x,Ax) ∈ D(A) = D(A) × D(A) and (x,Ax) ∈ Ker A since

A(x,Ax) = (Ax − Ax, (B2 + (A + B1)A)x) = (0,Ax) = (0, 0).

As A is a surjective operator, we have x = 0.
Let us show that A is a surjective operator. We consider the equation Ax = g, where g ∈ X

is an arbitrary element. We show that there exists a solution x ∈ D(A2) of the equation. Since
A is an invertible operator, it follows that the equation Ay = f with any f ∈ X 2 has the solution

y = (x1, x2) ∈ D(A) × D(A).

We set f = (0, g). Then the system of equations

Ax1 − x2 = 0, B2x1 + (A + B1)x2 = g

is solvable. Hence we obtain x1 = A−1x2, and from the second equation of the system we find that
the equation (B2A

−1+A+B1)x2 = g is solvable; and, consequently, so is the equation AA−1x2 = g.
We have thereby found a solution x1 = A−1x2 ∈ D(A2) of the considered equation. This implies
that A is a surjective operator. Consequently (by virtue of the injectivity), A is an invertible
operator. The proof of the theorem is complete.

3. PROOF OF LEMMA 1

Let us establish the relation ÃU = UA. Taking relations (9) and (10) into account, for any
vector x = (x1, x2) ∈ D(A) × D(A) = D(A) we obtain

ÃUx = Ã(x1,−λ0x1x2) = (Ãx1 + λ0x1 − x2, B̃2x1 + (Ã + B̃1)(x2 − λ0x1))
= (Ax1 − x2, (B2 + λ2

0I + λ0B1)x1 − (A − λ0I)λ0x1

− (B1 + 2λ0I)λ0x1 + (A − λ0I + B1 + 2λ0I)x2)
= (Ax1 − x2, (B2 − λ0A)x1 + (A + B1 + λ0I)x2),

UAx = U(Ax1 − x2, B2x1 + (A + B1)x2) = (Ax1 − x2,−λ0(Ax1 − x2) + B2x1 + (A + B1)x2)
= (Ax1 − x2, (B2 − λ0A)x1 + (A + B1 + λ0I)x2).

Relation (11) follows from the established relations, which completes the proof of the lemma.

4. PROOF OF THEOREMS 1 AND 4

Let us now prove Theorem 4. We apply Theorem 3 to the operator Ã defined by formula (10),
where the operator coefficients Ã, B̃1, and B̃2 are defined by relation (9) and λ belongs to �(A).
In this case, the inverse operator Ã

−1 ∈ EndX 2 admits the representation

Ã
−1x = ((Ã−1 −A−1B̃2Ã

−1)x1 + A−1x2,−ÃA−1B̃2Ã
−1x1 + ÃA−1x2)

for any vector x = (x1, x2) ∈ X 2.
By Lemma 1, the operators A and Ã are simultaneously invertible, and from relation (11) we

obtain

A
−1 = U−1

Ã
−1U =

(
I 0

λ0I I

)(
Ã−1 −A−1B̃2Ã

−1 A−1

−ÃA−1B̃2Ã
−1 ÃA−1

)(
I 0

−λ0I I

)

=

(
Ã−1 −A−1(B̃2Ã

−1 + λ0I) A−1

λ0Ã
−1 − A cA−1(B̃2Ã

−1 + λ0I) AA−1

)

.
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It follows from Theorem 3 that A is an invertible operator if and only if Ã is an invertible operator,
and, consequently, so is the operator A. The proof of Theorem 4 is complete.

Theorem 1 is a straightforward corollary to Theorem 4 if A = D is the operator of differentiation
in F(R,X); A = D2, and A = D1.

5. PROOF OF THEOREM 5

The equivalence of the conditions 1 and 3 was established in Theorem 1. The equivalence of
the conditions 2 and 4 follows from Theorem 4 when applied to the operators A = (iλ)I and
A = −λ2I + iB1λ + B2, λ ∈ R, from the algebra EndX and to the operator B + iλI ∈ EndX2

defined by the matrix

(
iλI −I

B2 B1 + iλI

)

.

The equivalence of the conditions 3 and 4 was proved in [1, p. 119; 3; 7], and the equivalence
of the conditions 3 and 5 was proved in [3, 7, 8] (see also [17], where the equivalence of the
conditions 4 and 5 was proved). Thus, the conditions 1–5 of the theorem are equivalent. The proof
of the theorem is complete.

6. PROOF OF THEOREM 6

Let us show that the operator

D2 : F (2)(R,X) ⊂ F(R,X) → F(R,X)

is invertible, and the inverse has the form

(D−1
2 g)(t) = (G2 ∗ g)(t) =

∫

R

G2(t − s)g(s) ds. (13)

To prove the representation (13), we consider the auxiliary operator

(D2 − α2I) = (D − αI)(D + αI), α > 0.

This operator is invertible, and the image Im (D2 −α2I)−1 of the operator (D2 −α2I)−1 coincides
with F (2). Therefore, for any function v ∈ F (2) there exists a function u ∈ F such that v =
(D2 − α2I)−1u = fα ∗ u. Note that the function fα has the Fourier image f̂α(λ) = −(λ2 + α2)−1,
λ ∈ R. Since the Fourier image of the derivative is obtained by multiplication of the Fourier image
of a function by the multiplier iλ, we have

−(α2I + B2)(λ2 + α2)−1 − iλ(λ2 + α2)−1B1 = f̂α(α2I + B2) + f̂ ′
αB1 = Φ̂.

Here the function Φ̂ : R → EndX is the Fourier image of the summable function

Φ = fα(α2I + B2) + f ′
αB1 ∈ L1(R,EndX).

Let us return to the function (H(iλ))−1 = Ĝ2(λ), λ ∈ R, and represent it in the form

(H(iλ))−1 =
−1

λ2 + α2

(

I − α2I + B2

λ2 + α2
− iλ

λ2 + α2
B1

)−1

= f̂α(λ)(I + Φ̂(λ))−1. (14)

According to the Bochner–Fillips theorem [18], there exists such a summable function Φ1 ∈
L1(R,EndX) that (I + Φ̂(λ))−1 = I + Φ̂1(λ), λ ∈ R. The Bochner–Fillips theorem can also
be obtained from the results of [19–21]. A constructive proof of the Bochner–Fillips theorem was
given in Theorem 10.3 in [21].
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We write out the representation (14) in the form of the relation

(H(iλ))−1 = Ĝ2(λ) = f̂α(λ)(I + Φ̂1(λ)), λ ∈ R,

therefore, G2 = fα ∗I +fα ∗Φ1, λ ∈ R. Hence we find that the operator A2 : F → F of convolution
of the function G2 with functions from F that acts by the rule A2u = G2 ∗ u, u ∈ F = F(R,X),
can be represented in the form

A2u = G2 ∗ u = fα ∗ (u + Φ1 ∗ u), u ∈ F .

Consequently, the image Im A2 of the operator A2 belongs to F (2) = D(D2).
Let us check that the relation

D2A2u = u (15)

is valid for any function u ∈ F . Let v = D2A2u and let f be any function from the algebra L1(R)
for which the support supp f̂ of its Fourier image f̂ is compact. We take the Fourier transform of
both sides in the relation f ∗v = f ∗D2(G2 ∗u). By allowing for the fact that the Fourier transform
of a convolution is equal to the product of the Fourier transforms of its multipliers, the form of the
operator D2 = D2 + B1D + B2, and the rule of evaluation of the Fourier transform of derivatives,
we obtain

(̂f ∗ v)(λ) = f̂(λ) ̂(D2(G2 ∗ u))(λ) = f̂(λ)(−λ2I + iλB1 + B2) ̂(G2 ∗ u)(λ) = f̂(λ)H(iλ)Ĝ2(λ)û(λ).

However, since Ĝ2(λ) = (H(iλ))−1, λ ∈ R, it follows that

(̂f ∗ v)(λ) = f̂(λ)û(λ) = (̂f ∗ u)(λ), λ ∈ R.

Consequently, f ∗ v = f ∗ u. Since functions with compact Fourier transform are dense in the
algebra L1(R), we have g ∗ v = g ∗ u for any function g ∈ L1(R). To prove this fact, we use
the estimate ‖f ∗ x‖F ≤ ‖f‖L1‖x‖F , which is valid for arbitrary functions f ∈ L1(R), x ∈ F
(see [7]). Consequently, v = u. We have thereby proved relation (15), which implies that the
operator A2 is the right inverse of the operator D2. By Theorem 5, the operator D2 : F (2)(R,X) ⊂
F(R,X) → F(R,X) is invertible; and, consequently, D−1

2 = A2. The proof of the theorem is
complete.

Remark 4. The results obtained can be used for studying the solvability of nonlinear equations
of the second order [22–24].

Remark 5. The general theorem 4 can be applied to the differential operator D2 considered
in the Banach space F(R+,X) of vector functions on a semiaxis with a domain that is given by
some closed subspace E of X. In this case, one should use the results of [4, 5, 7], where the theory
of first-order differential operators was constructed in the space of vector functions defined on the
semiaxis R+ = [0,∞).
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