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Abstract—The definition and existence criterion are given for the generalized-periodic motions
of a certain wide class of systems. The class contains all the systems that can be characterized
by the classical periodic operator of displacement, the systems generated by the Volterra integral
equations, and some others. A relationship is established between generalized-periodic motions
and integral invariant sets.
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1. INTRODUCTION

We consider the system of differential equations with the vector notation in the form

ẋ = L(t, x), (1)

where x = (x1, . . . , xn) is a vector function of a real variable t and L = (L1, . . . , Ln) is a vector
function that is defined and continuous, together with its partial derivatives ∂Li/∂xj , i, j = 1, . . . , n,
on the direct product R×R

n of the real axis R and the Euclidean vector space R
n. We additionally

assume that L is a T -periodic function of t.
The problem on the existence of periodic solutions of system (1) is known to be of great interest

both from the viewpoint of the theory of differential equations and practically. The following
Massera theorem (see [1]) is one of the most important results: let n = 2 and let every solution of
system (1) be defined for all t ≥ t0; if there exists a solution x = x(t, t0, x0) of this system that is
bounded for these values of t, then system (1) has a T -periodic motion x = x(t, t0, xp). According
to Massera [1], this assertion remains valid for linear systems (1) of an arbitrary order. However,
in the nonlinear case the Massera theorem turns out to fail even for n = 3 (see [2, p. 70]).

By virtue of the Birkhhoff theorems, for autonomous systems of arbitrary order the existence
of a bounded solution leads to the existence of a compact minimal set that consists of recurrent
solutions, and vice versa (see, e.g., [3, Chap. 5]). Of essential importance here is the known fact
that many of the properties of the solutions of autonomous systems cannot be carried over to the
solutions of nonautonomous systems. For example, the trajectories of system (1) may intersect each
other in the nonautonomous case (see, e.g., [4, p. 115]). Therefore, the definition of the recurrence
property and the Birkhoff theorem cannot be straightforwardly carried over to the nonautonomous
case. However, asymptotics solutions of the recurrent type have been studied in some detail for
nonautonomous systems (see, e.g., [5–8; 9, Chap. 2]).

Note that in the second half of the last century, methods of the theory of discrete dynamical
systems began to be used extensively for studying nonautonomous systems (see, e.g., [10, Chap. 4]).
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2 AFANAS’EV, DZYUBA

Based on these methods, it was established that the existence of a bounded solution for a nonau-
tonomous periodic system entails the existence of an integral invariant set [10, p. 105]. Moreover,
taking advantage of the results in the monograph [10, Chap. 4] made it possible to introduce the no-
tion of a generalized-periodic solution of a nonautonomous system as a counterpart of the recurrent
solution [11, 12].

The aim of this paper is to extend the main results of [11, 12] further to include a wide class of
systems that are defined below.

2. CLASS OF SYSTEMS UNDER CONSIDERATION

Let Σ be a metric space with the metric d, let R be the real axis (−∞,+∞), and let R
+ be the

real semiaxis [0,+∞).

Definition 1. Let us consider some mapping f : R × R
+ × Σ → Σ. We set

f(τ, t, x) = G(τ, t)x

and assume that the following conditions are satisfied:
(a) the mapping f is jointly continuous on the set R × R

+ × Σ;
(b) the relation G(τ, 0)x = x is valid for all (τ, x) ∈ R × Σ;
(c) there exists such a positive number T that the relation

G(τ + T, t)G(τ, T ) = G(τ, t + T ) (2)

is valid for (τ, t) ∈ R × R
+. Then, similar to [2, p. 348], the function t → f(τ, t, x) is said to be

a motion if the pair (τ, x) ∈ R×Σ is fixed, with the set Σ being referred to as the space of motions.

It can be easily seen that the definition of a motion is close but not equivalent to the definition
of a process in [11]. First of all, this is explained by the fact that condition (2) is replaced in the
definition of a process by the following, more rigid condition: the relation

G(τ + s, t)G(τ, s) = G(τ, t + s) (3)

is valid for all (τ, t, s) ∈ R × R
+ × R

+.
If the operator G(τ, t) satisfies condition (3), then it is equivalent to the classical displacement

operator (see, e.g., [13, p. 12]). Obviously, such an operator satisfies condition (2), but the converse
is not necessarily true. Therefore, let us call an operator that satisfies condition (2) an extended
displacement operator.

In what follows, we consider only extended T -periodic operator, that is, an operator G(τ, t) that
satisfies the condition

G(τ + T, t) = G(τ, t) (4)

for all (τ, t) ∈ R × R
+. The system that is characterized by an extended T -periodic displacement

operator is referred to as an extended T -periodic system.
If every solution x = x(t, t0, x0) of system (1) is defined for all t ≥ t0, then the simplest example

of an extended T -periodic system is the system generated by Eq. (1). This holds true for systems of
functional-differential equations of retarded type with the right-hand sides that are T -periodic with
respect to t (see [10, p. 99]). Let us consider some other examples.

Example 1. We consider some mapping f : R × Σ → Σ and set

f(t, x) = gtx.

We assume the following:
(d) the mapping f is jointly continuous on the set R × Σ;
(e) the relation g0x = x is valid for all x ∈ Σ;
(f) the group property gt+s = gtgs holds for all t, s ∈ R.
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GENERALIZED-PERIODIC MOTIONS OF NONAUTONOMOUS SYSTEMS 3

Then the transformation group gt is a dynamical system (see [3, p. 347]).
One can readily see that for each T > 0 the system gt is an extended T -periodic system.

Moreover, for any fixed x ∈ Σ the function t → f(t, x) is a motion.
Example 2. We consider an integral equation of the Volterra type

y(t) = y0 + h(t) +

t∫

t0

L(t, s, y(s)) ds, (5)

where y0 ∈ R
n is the vector of parameters, h : R → R

n and L : R × R × R
n → R

n are continuous
functions. Suppose that the solution y = y(t, t0, y0) of Eq. (5) is defined and jointly continuous with
respect to the variables t, t0, and y0 in their domains for all (t0, y0) ∈ R×R

n. If the functions h and
L are T -periodic (the latter with respect to t and s), then Eq. (5) defines a T -extended periodic
system in which

G(t0, t − t0)y0 = y(t, t0, y0).

Moreover, it can be easily noticed that, unlike in the above examples, the displacement operator
generated by Eq. (5) does not necessarily satisfy condition (3) (see [14]).

3. GENERALIZED-PERIODIC MOTIONS

Let us introduce the following notion.

Definition 2. We consider a motion f(τ, t, x). We assume that for each positive number ε
there exists such a positive integer Nε that

d(f(τ, t, x), f(τ, t + NεT, x)) < ε

for all t ∈ R
+. Then we say that f(τ, t, x) is a generalized-periodic solution.

A T -periodic motion is an example of generalized-periodic motion. Of course, the set of
generalized-periodic motions is not exhausted by T -periodic motions.

Indeed, the definition of a generalized-periodic motion is formally close to the definition of
an almost periodic motion, and, in the case of dynamical systems, every almost periodic motion is
a recurrent motion, but the converse is not true (see, e.g., [3, pp. 411–418]). Thus, let us establish
the relationship between generalized-periodic and recurrent motions.

Example 3. We consider a dynamical system gt (see Example 1). Let f(t, x) be a motion,
and let

γ(x) = {f(t, x) : t ∈ R}
be its trajectory. Recall that the motion f(t, x) of the system gt is said to be recurrent if for each
ε > 0 there exists such Tε > 0 that the arc

γs,Tε
(x) = {f(t, x) : t ∈ [s, s + Tε]}

of the trajectory γ(x) approximates the entire trajectory γ(x) to within ε for all s ∈ R (see
[3, p. 402]). Let us also recall that a set M is said to be minimal if it is nonempty, closed, and
invariant and contains no proper subset that possesses these three properties [3, p. 400].

For simplicity, suppose that the space of motions Σ is compact. Then a necessary and sufficient
condition for a motion f(t, x) to be recurrent consists in the closure γ̄(x) of the trajectory γ(x)
being a compact minimal set [3, pp. 402–404]. Therefore, as shown below (see Remark 3), for all
T > 0 the recurrent motion f(t, x) is generalized-periodic, and vice versa (see also [15]).

Remark 1. In the general case, for extended periodic systems the trajectory

γ+(τ, x) = {f(τ, t, x) : t ∈ R
+}

of a motion f(τ, t, x) depends not only on x but also on τ . It is the latter case that defines
nonautonomous extended system, a system that is the main subject of research in this article.
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The fact that the trajectories may intersect is the most important specific feature of nonau-
tonomous systems. Consequently, straightforward transfer of the definition of a recurrent motion
to nonautonomous extended periodic systems is impossible. Thus, generalized-periodic motion
is an independent mathematical object that is tantamount to the classical recurrent motion for
dynamical systems.

The following analog of the Massera theorem established the existence of generalized-periodic
motions.

Theorem 1. Let a motion f(τ, t, x) belong to some compact set Σ0 ⊂ Σ. Then, from any
sequence of positive integers (Nk)k∈N ↑ +∞ one can select such a subsequence (Nkl

)l∈N ↑ +∞ that
there exists a generalized-periodic motion f(τ, t, y) that belongs to Σ0 and satisfies the conditions

(i) the relation
lim

l→+∞
f(τ, t + (Nkl

− 1)T, x) = f(τ, t, y)

is valid uniformly on each closed interval [a, b] ⊂ R
+;

(ii) the relation
lim

l→+∞
f(τ, t + (Nkl+1 − Nkl

)T, y) = f(τ, t, y)

is valid uniformly on the entire semiaxis R
+.

The proof of Theorem 1 almost literally repeats the proof of Theorem 1 in [12] is therefore
omitted (see also [16]).

Remark 2. It should be noted that for a dynamical system gt under the assumptions of
Theorem 1, the choice of the number T is independent of the choice of the sequence (Nk)k∈N and
vice versa (see [15, 16]).

Let us now establish the relationship between generalized-periodic motions and integral invariant
sets. To this end, we first note that the minimal set is the most important invariant set. So, let us
start with the relationship between generalized-periodic motions and minimal sets.

Theorem 2. Let a motion f(τ, t, x) be situated in some compact set Σ0 ⊂ Σ. Then the set

Ω(τ, x) =
⋂
k≥0

⋃
l≥k

f(τ, lT, x)

is compact and invariant and is the union of compact minimal sets,1 with every point
(τ, y) ∈ R × Ω(τ, x) being the starting point of a generalized-periodic motion f(τ, t, y) that be-
longs to Σ0.

Proof. Since Σ0 is a compact set, the set Ω(τ, x) is compact and invariant [10, p. 105]. Next,
by Theorem 1, each point y ∈ Ω(τ, x) is the starting point of a generalized-periodic motion f(τ, t, y)
in Σ0. Therefore, to prove the theorem it remains to show that Ω(τ, x) is the union of compact
minimal sets. Let us prove it.

For all N = 0, 1, . . . , by EN we denote the set of points

f(τ,NT, y), f(τ, (N + 1)T, y), . . . , f(τ, (N + l)T, y), . . .

In addition, let ĒN be the closure of the set EN . Then, by virtue of Definition 2, one can readily see
that each set ĒN is compact and invariant. Moreover, by the construction, we have the inclusions

Ω(τ, x) ⊃ Ē0 ⊃ Ē1 ⊃ · · · ⊃ ĒN ⊃ · · ·
1 In the assumptions of the theorem, the invariance and minimality of sets are understood in the sense of how the

operator G(τ, T ) acts upon them.
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Consequently, there exists a compact minimal set

M ⊂
⋂

N≥0

ĒN

contained in the set Ω(τ, x) [3, p. 401]. However, according to Definition 2, we have Ē0 = Ē1 =
· · · = ĒN = · · · Therefore, Ē0 = M .

Note now that the specific choice of the point y ∈ Ω(τ, x) played no role in the above. The proof
of the theorem is complete.

For extended periodic systems, we will use the following definitions from the monograph
[10, p. 102].

Definition 3. Let h : R → Σ be a continuous mapping satisfying the condition

h(τ + t) = G(τ, t)h(τ)

for all (τ, t) ∈ R × R
+. Then we say that h is an integral on R. If, in addition, h(τ) = x, then we

say that h is an integral passing through the point (τ, x) ∈ R × Σ. However, if M is a set in the
space R × Σ and for all (τ, x) ∈ M there exists such an integral h passing through the point (τ, x)
that (s, h(s)) ∈ M for s ∈ R, then we say that M is an integral set on R.

Definition 4. Let M be an integral set on R. For each τ ∈ R we set

Mτ = {x ∈ Σ : (τ, x) ∈ M}.

An integral set M is said to be invariant if the relation

G(τ, T )Mτ = Mτ

is valid for all τ ∈ R, i.e., Mτ+T = Mτ .

Let us now find out the meaning of Definition 4. To this end, we consider a dynamical system gt

described in Example 1.
Since the operator gt is independent of τ , Definition 4 transforms into the following: a set Q ⊂ Σ

is said to be invariant if R ×Q is an integral set for the system gt. Obviously, this implies that for
each point x ∈ Q there exists such an integral h passing through the point (0, x) that h(t) ∈ Q
for any t ∈ R [10, p. 103]. In this case, one can readily see that the relation

gtQ = Q

is valid for all t ∈ R, which is in agreement with the classical definition of an invariant set (see,
e.g., [3, p. 349]).

Therefore, the role and place of integral invariant sets is difficult to be overemphasized since
it is an obvious extension of the notion of an invariant set, which was in wide use as early as at
the beginning of the last century, to extended periodic systems. The importance of this extension
is explained by the fact that, as mentioned above, in the nonautonomous case the trajectories of
motions may intersect each other and, consequently, the classical definition of invariance cannot be
straightforwardly carried over to extended periodic systems.

The simplest example of an integral invariant set is given by the set

M = R × Σ.

The following assertion much more fully characterizes integral invariant set as a very important
mathematical object.
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Theorem 3. Let Γ ⊂ Σ be a set such that for x ∈ Γ and for all τ ∈ R the motion f(τ, t, x) lies
in some compact set Σ0(x) ⊂ Σ. In addition, let

Ω(τ, x) =
⋂
k≥0

⋃
l≥k

f(τ, lT, x), (6)

where (τ, x) ∈ R × Γ and
ΩΓ = {y ∈ Ω(τ, x) : (τ, x) ∈ R × Γ}. (7)

In this case, if Γ is a nonempty set and condition (3) is satisfied , then

M = R × ΩΓ (8)

is an integral invariant set such that each point (τ, y) ∈ M is the starting point of a generalized-
periodic motion f(τ, t, y) in the set ΩΓ.

Proof. According to Theorem 2, for all (τ, x) ∈ R × Γ the set Ω(τ, x) is invariant under the
action of the operator G(τ, T ). In addition, by Theorem 2, each point (τ, y) of the set R × Ω(τ, x)
is the starting point of a generalized-periodic motion f(τ, t, y). Therefore, each point (τ, y) of the
set M defined by relation (8) is also the starting point of a generalized-periodic motion f(τ, t, y).
Moreover, by virtue of relations (6) and (7), every such generalized-periodic motion f(τ, t, y) belongs
to the set ΩΓ. Hence it follows that for any fixed y ∈ ΩΓ, such a continuous function h : R → ΩΓ

is defined that satisfies the condition

h(τ + t) = G(τ, t)y (9)

for all (τ, t) ∈ R × R
+, i.e., h is an integral passing through the point (τ, y).

One can readily see that, by virtue of relation (9), for all s ∈ R the point (s, h(s)) lies in the
set M. Therefore, M is an integral set.

Since the set Ω(τ, x) is invariant under the action of the operator G(τ, T ) for (τ, x) ∈ R × Γ,
we have

G(τ, T )ΩΓ = ΩΓ

for all τ ∈ R. Consequently, M is an integral invariant set.
This completes the proof of the theorem.

4. APPLICATION TO DYNAMICAL SYSTEMS

Let us apply the results in Section 3 to the study of the dynamical system gt (see Example 1)
and note that the following analog of Theorem 3 holds true for such a system.

Theorem 4. Let Γ ⊂ Σ be such a set that the motion f(t, x) lies in some compact set Σ0(x) ⊂ Σ
for all x ∈ Γ. In addition, let us set

ΩT (x) =
⋂
k≥0

⋃
l≥k

f(lT, x) (10)

for some positive integer T and some point x ∈ Γ. If Γ is a nonempty set , then for all T > 0 the set

MT = {y ∈ ΩT (x) : x ∈ Γ}
is the union of all minimal sets of the system gt, with any minimal set M ⊂ MT being compact.

Proof. Let us fix some positive number T and a point x ∈ Γ. Then it follows from relation (10)
that the set

M =
⋃
t≥0

f(t, y)

is a compact minimal set of the system gt for each point y ∈ ΩT (x) [16]. However, the choice of
the number T played no role, which, by virtue of the definition of the set MT , proves the theorem.
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Remark 3. As mentioned above, the closure of the trajectory of a recurrent motion is a compact
minimal set in a compact metric space of motions. Therefore, by Theorems 3 and 4, the recurrent
motion f(t, x) of the dynamical system gt is generalized-periodic in the compact metric space
of motions for all T > 0 and vice versa.

5. CONCLUSIONS

Theorem 1 is a simple criterion for the existence of generalized-periodic motions in extended
periodic systems. The class of such systems is rather wide and includes the systems generated by
Eq. (1), functional-differential equations of the retarded type, integral equations (5), differential
equations in a Banach space, and some other systems.

Theorems 2–4 establish a relationship between generalized-periodic motions and integral invari-
ant and minimal sets. In this connection, the role and place of integral invariant set as a very
important mathematical object needs to be specially object since it is an extension of the classical
invariant set to the nonautonomous case.

By virtue of Theorems 3 and 4, one can readily see that, in the case of dynamical systems,
generalized-periodic motion is equivalent to recurrent one (see Remark 3). This implies that general-
ized-periodic motion is a generalization of recurrent motion to the case of extended periodic systems.
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