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1. INTRODUCTION

The solution of arbitrary conflict problems is based on the notion of conflict equilibria without
which it is impossible to define any notion of solution, because the possibility of resolving any
conflict implies the existence of some stable state, i.e., the presence of some equilibrium (either static
or dynamic) stable under arbitrary possible deviations of arbitrary conflict participants from it.
Unfortunately, all relatively “strong” equilibria known so far do not necessarily exist in any problem
for which they have been developed.

The almost centenary history of the development of game theory represented by numerous
publications (for references, see [1–15]) showed that the construction of notions of equilibria whose
definition does not contain any artificially imposed behavior rules for players is a very complicated
problem. In addition, it was shown that all already-found notions of equilibrium are not sufficient
for solving problems of an arbitrary class (two-person zero-sum games as well as coalition-free,
coalitional, cooperative, static, and dynamic problems). Note that the “strongest” equilibrium
existing in a problem is most interesting in general. However, strong equilibria do not necessarily
exist in an arbitrary problem; moreover, a strong equilibrium can prove to be undesirable for all
players, as it often turns out for the classical Nash equilibrium (e.g., see [12, p. 9]).

It turns out that, in any class of problems, one can find numerous examples in which the
strongest equilibrium is not unique. Obviously, the nonuniqueness of some equilibrium can be
a consequence of the existence of some (explicit or hidden) form of symmetry in a game. However,
in the general case, regardless of the existence of a symmetry in a particular game, the existence of
two or more situations satisfying some definition of a game equilibrium implies that such a notion
admits some strengthening, which would permit one to single out some strongest equilibrium from
these equivalent equilibria.

Regardless of causes of the nonuniqueness of a strongest equilibrium, the knowledge of as many
notions of equilibrium as possible is very useful, because it permits one to select, from the entire set
of almost equivalent equilibria, an equilibrium that turns out to be an equilibrium simultaneously
from the viewpoint of the maximum notions of equilibrium existing in the problem. Thus, finding
new notions of equilibrium is most important for the construction of a theory of conflicts capable
of solving arbitrary practical problems.

Note that in the classical game theory [1–8], which deals only with games on a common game set
for all players, an equilibrium existing in all games for which it is stated was not found. Only the the-
ory [9–15] suggesting to construct hierarchically related chains of embedded equilibria has permitted
one to claim that any game has a solution, because the weakest always existing A-equilibrium has
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been found. However, the problem on the nonuniqueness of the strongest equilibrium also persists
in the latter theory.

It turns out for problems with side interests of the players [9–15], which are not considered in
the classical theory of conflicts even though they are very important for practical applications, that
first, even the A-equilibrium can be empty, and second, the problem of nonuniqueness of a strongest
equilibrium is even more topical. The notion of side interests necessitates introducing a number of
new notions of equilibrium and an additional notion of strong threats [9, 10, 13, 14]. In the present
paper, we suggest new notions of equilibria very important in applications.

2. STATEMENTS OF CONFLICT EQUILIBRIA

Let us present statements of new notions of equilibria, suggest a method for solving problems
with side interests first for static problems with an arbitrary number of players, and then show how
to modify that method for dynamic conflict problems.

Assumption 1. Let Qi, i = 1, . . . , N , be metric spaces, let Q = Q1 × · · · × QN , let Gi,
i = 1, . . . , N , be the compact game set in Q of the ith player trying to maximize his continuous
payoff function (functional) Ji(q), i = 1, . . . , N , defined on the set Gi, let qi be the strategy of the
ith player, and let q = q1 . . . qN be the vector of strategies of all players. Next, let Pk be an arbitrary
coalition of k players trying to maximize its coalitional payoff function JPk

=
∑

i∈Pk
Ji defined on

the game set GPk
=

⋃
i∈Pk

Gi (on which each of the functions Ji, i = 1, . . . , N , is defined only

on its own game set Gi), let GPN
=

⋃N

i=1 Gi be the union of all game sets, and let G
Δ=

⋂N

i=1 Gi

be their intersection (which can be empty, but we assume that each of the sets Gi has a nonempty
intersection with at least one of other game sets).

The coalition Pk can choose its strategy (state) qPk
from the projection PrQPk

GPN
of the set

GPN
onto the space QPk

[or the cross-section GPN
(qPN−k

) of the set GPN
].

This means that we consider a conflict problem in which the ith player tries to achieve the
maximum of his payoff function Ji on its individual game set Gi ⊆ Q, which has a nonempty
intersection with some game sets of N − 1 remaining players; moreover, players can form arbitrary
coalitions Pk and a cooperation PN ; in this case, the interests of all players simultaneously clash
explicitly only on the set G.

One can assume that the coalition Pk gets side profit on the set

GPk
\(GPk

∩ GPN−k
);

moreover, the side profit can be specified for the common game set G and for various parts GPN
of

the set.
Note that the number of all possible coalitions consisting of only k players is given by the binomial

coefficient
(

N
k

)
= N !/((N − k)!k!), and the number of all possible coalitions with the number

of players from 1 to N − 1 is
∑N−1

k=1

(
N
k

)
= 2N − 2. Below, in the study of coalitions consisting of

one player, we use the following notation:

qi = q1 . . . qi−1qi+1 . . . qN , J i =
∑

k �=i

Jk, i = 1, . . . , N, k = 1, . . . , N.

Definition 1. A situation q∗ = (q∗
Pk

, q∗
PN−k

) ∈ GPk
, where the index Pk is treated as any

particular coalition of k players, is said to be APk
-extremal if GPk

(q∗
PN−k

) = q∗
Pk

, or to each state
qPk

∈ GPk
(q∗

PN−k
)\q∗

Pk
of that particular coalition Pk, one can assign at least one state q̂PN−k

∈
GPk

(qPk
) of the remaining N − k players such that

JPk
(qPk

, q̂PN−k
) ≤ JPk

(q∗), q̂PN−k
∈ GPk

(qPk
) (1)

(this case is referred to as a problem of the first type), or such that

JPk
(qPk

, q̂PN−k
) ≤ JPk

(q∗), q̂PN−k
∈ GPN

(qPk
) (2)
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[this case is referred to as a problem of the second type, which differs from a problem of the first type
by the fact that, in addition to threats q̂PN−k

used in inequality (1), there may be (“strong”) threats
on the set GPN

(qPk
)\GPk

(qPk
) on which the remaining threatening players get some collective profit,

and the coalition Pk gets nothing], or if to any strategy qPk
∈ G(q∗

PN−k
)\q∗

Pk
of the coalition Pk,

one can assign at least one admissible strategy q̂PN−k
of the remaining players such that

JPk
(qPk

, q̂PN−k
) ≤ JPk

(q∗), q̂PN−k
∈ G(qPk

) (3)

(this case is referred to as a problem of the third type, which is characterized by the fact that
an auxiliary game is considered only on the intersection G =

⋂N

i=1 Gi).

A situation q∗ ∈
⋂N

i=1 Ai is called an A′
Pk

-equilibrium in the problem of the first , second , or third
type if conditions (1), (2), or (3), respectively, are satisfied at the point q∗ for all possible coalitions
[their number is

(
N
k

)
= N !/((N −k)!k!)] that can be formed of k players. [Thus, in a sense, each of

inequalities (1), (2), and (3) is a “vector”
(

N
k

)
-dimensional inequality.] In addition, the situation

q∗ is called an A′-equilibrium (in each of the above-listed three types of problems) if it is coalition
extremal for any coalition Pk, 1 ≤ k < N , from all 2N − 2 possible coalitions; i.e., A′ =

⋂
Pk

A′
Pk

,
1 ≤ k ≤ N − 1.

It follows from Definition 1 that, in problems of the first and third type, threats are natural
(weak), and in a problem of the second type, they are “strong,” where “strength” implies that, in
game problems on partially intersecting game sets, for example, a threatening coalition PN−1 can
implement its threats not only in the cross-sections Gi(qi) of the game set Gi of the ith player but
also in the wider cross-sections GPN

(qi) ⊇ Gi(qi) in which it gets profit and the penalized ith player
gets nothing.

In problems with side interests of the players, both the set of A′-equilibria and the basic
A-equilibrium (which is not empty in arbitrary problems on a common game set for all play-
ers), which is obtained from Definition 1 if coalitions P1 and PN−1 consisting of one and N − 1
players, respectively, [9–15] are considered in it, can be empty.

However, in problems with side interests, one can replace the set of A-equilibria by the following
notion of P -equilibrium and a new suggested strengthening, that is, a DP -equilibrium.

Definition 2. A situation q∗ ∈ GPk
, where Pk is some particular coalition from the set

(
N
k

)

of all possible coalitions consisting of k players, is said to be PPk
-extremal if, for any attempt

qPk
∈ GPk

(q∗
PN−k

) of the players from that coalition to increase their profit in the situation q∗ by
the passage into a more preferable situation qPk

, it turns out that the situation q∗ is a Pareto
point [on the set J1(G1) × · · · × JN(GN )] with respect to all points (qPN−k

, qPk
) from the cross-

section GPN
(qPk

). In particular, a situation q∗ is considered to be PPk
-extremal if, in the cross-

section GPk
(q∗

PN−k
), the coalition Pk cannot increase its profit (since this is a point maximizing the

functional JPk
in this cross-section). A situation q∗ is said to be PPk

-equilibrium (-optimal) if it
is simultaneously PPk

-equilibrium for each particular coalition of k players the number of which is
equal to

(
N
k

)
. The intersection of all possible PPk

-equilibrium situations is referred to as the set of
P -equilibria.

The following suggested new notion of DP -equilibrium is based on a complicated specific strength-
ening of the notion of P -equilibrium and is some weakening of the most interesting and useful
below-represented equilibrium (6), which unfortunately does not necessarily exist in arbitrary
problems. The DP -equilibrium is useful both in problems with side interests of players in which
the A-equilibrium is empty and, in general, in arbitrary conflict problems in which the notion of
P -equilibrium can always be used in addition to a nonempty A-equilibrium.

Definition 3. A situation q∗ ∈ PPk
is referred to as a DP

Pk
-equilibrium if it satisfies the “vector”

(
N
k

)
-dimensional relation

DP
Pk

= Arg max
qPk

∈PPk
(q∗

PN−k
)
JPk

(Arg max
qPN−k

∈PPk
(qPk

)
JPN−k

(q)), (4)

and the intersection of all DP
Pk

-equilibrium situations is referred to as the DP -equilibrium.
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To clarify the solution of game problems considered below, we represent two more equilibria
[9–15], which, if nonempty, permit one to find the strongest equilibria in game problems.

Definition 4. A situation q∗ ∈ APk
, where the index Pk stands for an arbitrary particular

coalition of k players, is said to be BPk
-extremal if this particular coalition satisfies the relation

max
qPN−K

∈APk
(q∗

Pk
)
JPN−k

(q∗
Pk

, qPN−k
) = JPN−k

(q∗); (5)

and this situation is referred to as a BPk
-equilibrium if it satisfies all possible

(
N
k

)
relations (5)

corresponding to all possible coalitions of k players. Consequently, the set of all BPk
-equilibria is

the intersection of all sets of situations that satisfy
(

N
k

)
relations (5), and the latter can be treated

as some
(

N
k

)
-vector relation. The intersection of all BPk

-equilibrium situations is referred to as the
BP -equilibrium.

Definition 5. A situation q∗ ∈ BPk
is said to be D̄Pk

-extremal, where the index Pk stands for
an arbitrary particular coalition of k players, if this particular coalition satisfies the relation

max
q∈BPk

JPk
(q) = JPk

(q∗), (6)

and this situation is referred to as D̄Pk
-equilibrium if it satisfies all

(
N
k

)
relations (6). The inter-

section of all D̄Pk
-equilibrium situations is referred to as the D̄-equilibrium.

3. SOLUTION METHOD FOR GAME PROBLEMS

The following assertion is quite useful for the solution of most conflict problems with side interests
of players.

Proposition 1. In the general case, in a game problem with noncoinciding intersecting game
sets Gi, the following assertions hold.

1. If the strong threats (2) are not admitted (by agreement of all players), and the set A in the
natural class of weak threats (1) (i.e., in a problem of the first type) is empty , then the strongest
equilibria (and a solution of the problem in some sense) can be found by the simultaneous solution of
a problem of the first type, where the A-equilibrium is replaced by the P -equilibrium, and a problem
of the third type.

2. If strong threats (2) are not admitted and the set A in a problem of the first type is nonempty ,
then, as a basic solution, one should use a solution of a problem of the first type (with all of its pos-
sible iterations [9–15]) and use a solution of a problem of the third type (3) and the DP -equilibrium
to estimate the influence of side interests on the solution of the original game; moreover , if the
solutions of problems of the first and third type do not coincide, then one should take the solution of
a problem of the first type as a basic solution and consider a solution of a problem of the third type
and a DP -equilibrium only as a possible correction of that solution; if the solutions of the problems
of the first and third type coincide, then side profits have no influence on the solution of the game
(which is very favorable for players).

3. If the strong threats (2) are admitted and the set A in problem (1) is empty , then one should
take a solution of the problem of the second type (2) as a basic solution of the original problem and
consider the DP -equilibrium and a solution of the problem of the third type (3), if it differs from
a solution of problem (2), only as a possible correction of a solution of the problem of the second
type; in addition, if the strongest equilibria in problems of the second and third type coincide, then
side profits do not affect the solution of the game.

4. If the strong threats (2) are admitted , and the set A in a problem of the first type is nonempty ,
then one should find solutions of problems of the first , second , and third types; and if the strongest
equilibria in them coincide, then this implies that neither types of threats nor side interest of players
affect the solution of the original problem, and this is most favorable for them; but in the case of
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different equilibria in problems of the first , second , and third type one should take the solution
of a problem of the second type as a basic solution and use solutions of problems of the first and
third types only as corrections; moreover , in this case, it is unreasonable to construct P - and
DP -equilibria with complicated definitions.

Example 1. Consider a game with two players, where each player maximizes his (matrix)
payoff function

J1 =

⎡

⎢
⎣

1 · 4

· 5 ·
6 · 3

⎤

⎥
⎦, J2 =

⎡

⎢
⎣

3 · 2

4 · ·
· 9 1

⎤

⎥
⎦.

Both players have three strategies: the first player chooses one of the three rows, and the second
one chooses one of the three columns. In this problem, we have

G1 = (a11, a13, a22, a31, a33), G2 = (a11, a13, a21, a32, a33), G = (a11, a13, a33),

and the game set W ′ = W1 ∪ W2 consists of seven situations aij in the above-represented matrices
such that the corresponding entries in at least one of them contain the values of the payoff functions.

First, we find the matrices A1, A2, and A in the class of weak threats, i.e., in case (1),

A1 =

⎡

⎢
⎣

· · +

· + ·
+ · +

⎤

⎥
⎦, A2 =

⎡

⎢
⎣

+ · ·
+ · ·
· + ·

⎤

⎥
⎦.

Obviously, in the considered game on partially intersecting sets G1 and G2 in the class of weak
threats (1), the set A has the form A = A1 ∩ A2 = ∅. Since the weakest notion of equilibrium
is empty, we consider even weaker notions of equilibria mentioned in Definitions 2 and 3. Since
it is almost impossible to find these equilibria on the basis of their definitions without a geometric
representation of the matrices J1 and J2 on the plane, we represent the values of the payoff functions
J1 and J2 in Fig. 1. In the first quadrant [in the coordinate system (J1, J2)], we represent the
mapping (J1(G), J2(G)) only of the set G on which both functions J1 and J2 are defined, and
the mapping J1(G1\G) is conditionally represented to the left from the axis J1, because the function
J2 is undefined on the set (G1\G). Similarly, the mapping J2(G2\G) is conditionally shown below
the axis J2.

We construct the sets P1 and P2 described by Definition 2 and their intersection P ,

P1 =

⎡

⎢
⎣

+ · +

· + ·
+ · ·

⎤

⎥
⎦, P2 =

⎡

⎢
⎣

+ · +

+ · ·
· + +

⎤

⎥
⎦, P =

⎡

⎢
⎣

+ · +

· · ·
· · ·

⎤

⎥
⎦.

Fig. 1.
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By evaluating the DP -equilibrium by formulas (4), we obtain

DP
1 (a11) = Arg max

q1∈P1(q∗
2 )

J1(Arg max
q2∈P1(q1)

J2(q1, q2)) = Arg max
q1∈P1(q∗

2 )
J1(a11, ∅) = a11,

DP
2 (a21) = Arg max

q2∈P2(q∗
1 )

J2(Arg max
q1∈P2(q2)

J1(q1, q2)) = Arg max
q2∈P2(q∗

1 )
J2(a11, a13) = a11;

i.e., only the situation a11 is a DP -equilibrium.
Therefore, only by using Definitions 2 and 3, we find the strongest equilibrium in the problem

of the first type with the notion of Ai-extremality replaced by the notion of the Pi-extremality.
Obviously, this is only a preliminary result.

To evaluate the influence of side profits on the solution of the considered problem and find the
solution itself, one should consider other types of auxiliary problems as well. First, we find the set
of equilibria for the auxiliary problem of the second type, i.e., in the case of the use of strong
threats (2) by players. In this case, we obtain

A
(s)
1 =

⎡

⎢
⎣

+ · +

· + ·
+ · +

⎤

⎥
⎦, A

(s)
2 =

⎡

⎢
⎣

+ · +

+ · ·
· + +

⎤

⎥
⎦, A(s) =

⎡

⎢
⎣

+ · +

· · ·
· · +

⎤

⎥
⎦,

B
(s)
1 = (a11, a33), B

(s)
2 = (a11, a13), B(s) = a11.

It turns out that the situation a11 is the strongest equilibrium in the original game in the class
of strong threats as well.

By noting that, obviously, the cooperative profit in this auxiliary game is achieved in the situation
a33 and is equal to 9, we find the optimal (fair) sharing of that cooperative profit depending fully
on the situation of the strongest equilibrium and defined by the formulas [13, p. 174]

y1 =
1
4
9, y2 =

3
4
9.

A solution in the class of strong threats should be considered to be dominating, because if it
is favorable for at least one player, then he can use these threats although they are considered to
be prohibited. However, in spite of the coincidence of solutions of problems of the first and second
types, players surely prefer to take into account the solution obtained in a problem of the third
type, i.e., a game on the intersection G1 ∩G2 = G that is a common game set for players on which
they explicitly conflict with each other [obviously, strong threats do not act on the common set,
and only weak threats (1) should be considered] :

JG
1 =

⎡

⎢
⎣

1 · 4

· · ·
· · 3

⎤

⎥
⎦, JG

2 =

⎡

⎢
⎣

3 · 2

· · ·
· · 1

⎤

⎥
⎦.

For this auxiliary game on the set G, we obtain

AG
1 =

⎡

⎢
⎣

+ · +

· · ·
· · +

⎤

⎥
⎦, AG

2 =

⎡

⎢
⎣

+ · ·
· · ·
· · +

⎤

⎥
⎦, AG =

⎡

⎢
⎣

+ · ·
· · ·
· · +

⎤

⎥
⎦.

Hence we obtain B1 = B2 = B = (a11, a33); moreover, all stronger notions of equilibrium (D̄, D′,
and others [10, 15]) do not single out the strongest equilibrium in this pair. Since the pair of
strongest equilibria (a11, a33) in the auxiliary game on the set G is “indistinguishable,” it follows
that a fair sharing of the cooperative profit in this auxiliary game is given by the relations [13, p. 175]

y1 = 9
1 + 3
4 + 4

= 4.5, y2 = 9
1 + 3
4 + 4

= 4.5;
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i.e., the share y1 of the first player is given by the product of the cooperative profit equal to 9 by the
ratio, whose numerator is equal to the sum of profits of the first player in the strongest equivalent
equilibrium situations, and the denominator is equal to the sum of profits of both players in these
situations. The fair share y2 of the second player is defined in a similar way.

Obviously, cooperative sharing in this auxiliary game differs essentially from the solution of
auxiliary problems of the first and second type. It follows that side profits in the original game
affect the result of the game. Players should take the sharing found from the problem of the second
type as a basis and correct it with regard of the sharing found from a problem of the third type.

4. DIFFERENTIAL GAMES WITH SIDE INTERESTS OF PLAYERS

Unlike static problems, for dynamic problems, the notion of Ac-equilibrium [9–15] is more fruit-
ful than the notion of A-equilibrium; unlike the A-equilibrium, for it one can obtain necessary
equilibrium conditions similar to necessary optimality conditions in variational problems, which, in
turn, permit one to reduce the original differential game to some set of static “local” game problems
(where Hamiltonians are used as payoff functions); their solution is much simpler than the solution
of the original differential game.

Note that a formal generalization of the notion of A-equilibrium to differential games would
imply that, for any attempt of one conflict participant to deviate at some time t′ from some
A(t′)-equilibrium situation [i.e., from a point x(t′) lying on the trajectory x(t)], there always exists
a penalizing strategy (i.e., by default it is assumed that such a penalizing exists somewhere on the
remaining part of the trajectory). But in this case, on the one hand, the evaluation of A(t′) at time
t′ depends on infinitely many subsequent points on that trajectory, which is extremely complicated;
consequently, it seems to be essentially impossible to find usable necessary optimality conditions
for the set A(t) in a similar case of the penalty implementation.

However, these disadvantages can be removed for a wide class of differential games by introduc-
ing (instead of A) the notion of an Ac-equilibrium [9–15], which implies that, for any admissible
deviation of any ith player from a situation of equilibrium on some time interval, other players
can use penalty strategies only on the same time interval rather than at some other times; in this
connection, such an equilibrium can said to be “coordinated.” Note that this constraint (intro-
duced in the definition of the Ac-equilibrium) imposed on the character of penalty strategies is
not important for a wide class of problems. From the practical viewpoint, the above-mentioned
“defect” of the use of very simple necessary conditions of the Ac-equilibrium in comparison with the
case of very unusable necessary conditions of the A-equilibrium is not very important, because first,
the simplicity of finding a solution in the case of the use of necessary conditions for the existence of
an Ac-equilibrium dominates much the threat that a found solution turns out to be not a solution,
and second, in the general case, one can always verify whether a solution found with the use of
necessary conditions of an Ac-equilibrium is really a solution. Thus, as a practical basis of the
study of differential games, one can use the below-represented conditions [9–15] of an equilibrium
in the class of pure and mixed strategies, which are based on the notion of an Ac-equilibrium and
its strengthening similar to those used for the A-equilibrium.

Let us illustrate the possibility of the use of suggested new notions of equilibrium for the solution
of differential games.

Consider conflicting dynamical systems described by differential equations in which the ith
player (i = 1, . . . , N) uses pure strategies ui(t) or mixed strategies qi(ui, t) to maximize his payoff
functional (criterion)

Ji(q) =
∫

T

dt

∫

Wi(t)

f i
0(u, x, t) dq, i = 1, . . . , N, (7)

under the constraints

ẋ =
∫

W ′(t)

f(u, x, t) dq, t ∈ T = [t0, t1] ⊂ E1, (8)

(u, t) ∈ W ′ ⊂ U × T, (9)
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xj(t0) = x0
j , j = 1, . . . , n, xk(t1) = x1

k, k ∈ K ⊂ {1, . . . , n}, (10)

where x = (x1, . . . , xn) ∈ En is the n-dimensional Euclidean space; U =
⋃N

k=1 Uk; Uk is a finite-
dimensional space, k = 1, . . . , N ; u = (u1, . . . , uN); W ′ =

⋃N

k=1 Wk; W =
⋂N

k=1 Wk; Wi are compact
sets in U ; qi(ui, t) is a mixed strategy of the ith player; q(u, t) = q1(u1, t) · · · qN(uN , t); W (t) and
W ′(t) are cross-sections of the sets W and W ′ at time t ∈ T = [t0, t1]; Ûi = PrUi

W is the projection
of the set W onto Ui; Qi is the set of mixed strategies qi(ui, t) of the ith player in problem (7)–(9)
with the initial condition x(t0) = x0 and with the set W replaced by the set Û = Û1 × · · · × ÛN ;
qi = q1 · · · qi−1qi+1 · · · qN ; and J i =

∑N

k=1 Jk − Ji.

Let G′ be a subset of the set Q =
∏N

i=1 Qi formed only by strategies q(u, t) that can provide
the validity of all constraints of the problem, where condition (9) introduces a close dependence
between strategies of players into problem (7)–(10), and the constraints (10) introduce an implicit
dependence; in this connection, at Lebesgue almost every time t ∈ T , the set G′ contains only
measures q(·, t) whose supports lie in W ′(t). The sets Gi and G are defined in a similar way.

Assumption 2. Let T = [t0, t1] be a bounded fixed segment of the real line E1, let W be
a compact set in U × T ; let

f̂ = (f 1
0 , . . . , fN

0 , f1, . . . , fn) : U × En × T → En+N

be a mapping such that the function f̂(u, x, ·) is Lebesgue measurable for all u ∈ U and x ∈ En,
the function f̂(·, ·, t) is continuous for each t ∈ T , and the function |f̂ | is majorized on T by the
function s(t)(|x| + 1), where s(t) is some integrable function; let x(t) : T → En be an absolutely
continuous function satisfying Eq. (8); in addition, let the function f̂ satisfy the Lipschitz condition

|f̂(u, x̄, t) − f̂(u, x, t)| ≤ b(t)|x̄ − x|
with an integrable function b(t) for all u ∈ U , x, x̄ ∈ En, and t ∈ T .

Note that the Ac-equilibrium is obtained from Definition 1 of an A-equilibrium for game problems
on intersecting sets by an additional requirement [after the list of requirements (1)–(3)] represented
in the following definition.

Definition 6. A situation q∗ in the differential game (7)–(10) is Ac
i -extremal if each of rela-

tions (1)–(3) holds under the condition that the nonzero (in the Lebesgue sense) set in T on which
q̂i(t) 
= q∗i(t) is a subset of a set in T on which qi(t) 
= q∗

i (t). A situation q∗ ∈
⋂N

i=1 Ac
i is an

Ac-equilibrium in a problem of the first , second , and third types, respectively, if conditions (1)–(3),
respectively, hold at the point q∗ for all i = 1, . . . , N ; i.e., Ac = Ac

1 ∩ · · · ∩ AN .

The following necessary conditions for an Ac-equilibrium permit one to reduce the solution of
the original differential game to the solution of some auxiliary (“local”) static games in which the
Hamiltonians of players of the original differential game are used as payoff functions [9–15]. In gen-
eral, in practice the assumption Ac = A can be used even in the case of an arbitrarily complicated
nonlinear problem (7)–(10), because a solution found with the use of below-represented necessary
optimality conditions can approximately be estimated from the viewpoint of its optimality. In any
case, it is almost impossible to find a solution of a complicated differential game without the below-
represented theorem. Its use for the solution of very complicated essentially nonlinear differential
games was illustrated by an example in [10, pp. 138–146].

To find solutions of differential games with side interests of players, one can use some modifi-
cations of necessary conditions of the existence of equilibria obtained in [10–12, 14], in particular,
Theorem 3 in [9].

Theorem. Let q∗ be an Ac-equilibrium in problem (7)–(10) with N players, which satis-
fies Assumption 2. Then there exist N nonzero absolutely continuous vector functions pi(t) =
(pi

0, p
i
1(t), . . . , pi

n(t)), pi
0 = 1, i = 1, . . . , N, satisfying the equations

ṗi
k = −

∫ ∫

Wi(t)

pi ∂f i

∂xk

dq∗, k = 1, . . . , n, i = 1, . . . , N, pi
j(t1) = 0, j /∈ K, (11)
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almost everywhere in T, where f i = (f i
0, f1, . . . , fn), the Hamiltonians H i =

∫
Wi(t)

pif i dq∗ are
continuous in T, and the Ac-equilibrium situation q∗ satisfies the inequalities

[H i](q̂i, qi) ≤ [H i](q∗), qi ∈ G(q∗i), q̂i ∈ G(qi), i = 1, . . . , N. (12)

Example 2. Let us present a much more detailed study (with the use of the above-suggested new
notions of equilibrium) of a rather complicated differential game with two players on intersecting
game sets, which was posed in [9]. The players choose their strategies u1(t) and u2(t) so as to
maximize their payoff functionals

J1 =

1∫

0

x1 dt, J2 =

1∫

0

x2 dt (13)

under the constraints

ẋ1 = f1(u1, u2) = (u1 − u2)2, (14)
ẋ2 = f2(u1, u2) = (u1 + u2)2, (15)

x1(0) = 0, x2(0) = 0, (16)

where the game set W1 of the first player is given by the interior of the figure OKFHO (Fig. 2)
including its boundary, and the set W2 is the interior of the figure OEFLO together with its
boundary. Thus the total game set is W ′ = W1 ∪W2, and the game set W = W1 ∩W2 = OKFLO
on which the players have a close conflict is given by the intersection of their game sets W1 and
W2 on which their payoff functionals Ji are defined. Figure 2 represents some specific level lines of
the functions f1 = const and f2 = const.

First, let us find the strongest equilibrium in the natural class of weak threats (1).
Since the statement of problem (13)–(16) does not contain products of state coordinates and

controls, and the problem is linear in the state coordinates, it follows that one can set Ac = A and,
by using the necessary optimality (equilibrium) conditions (14) and (15), reduce the solution of the
considered differential game to the solution of only one auxiliary (“local”) static game in which
the Hamiltonians of players are payoff functions.

First, let us find a solution of Eq. (11) and use it to reduce the Hamiltonians of the game
(13)–(16) to a form convenient for the statement of a “local” game. Since the Hamiltonians have
the form

H1 = p1
0x1 + p1

1(u1 − u2)2 + p1
2(u1 + u2)2, H2 = p2

0x2 + p2
1(u1 − u2)2 + p2

2(u1 + u2)2,

it follows that Eqs. (11) can be reduced to the form

ṗ1
1 = −p1

0, p1
1(1) = 0, ṗ1

2 = 0, p1
2(1) = 0,

ṗ2
2 = −p2

0, p2
2(1) = 0, ṗ2

1 = 0, p2
1(0) = 0.

Fig. 2.
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These equations have the following obvious solutions:

p1
1 = p1

0(1 − t) = (1 − t), p1
2 = 0, p2

2 = p2
0(1 − t) = (1 − t), p2

1 = 0;

their substitution into the Hamiltonians reduces them to the form

H1 = x1 + (1 − t)(u1 − u2)2, H2 = x2 + (1 − t)(u1 + u2)2.

Since (1 − t) > 0 on the entire trajectory (outside the inessential point t = 1), it follows that
finding a solution of the original differential game (13)–(16) can be reduced to finding a solution of
the following auxiliary static “local” game (at each time t) with the payoff functions

f1 = (u1 − u2)2, f2 = (u1 + u2)2. (17)

For the “local” game (17), we first find new equilibria P = P1 ∩ P2 and DP , which requires the
simultaneous analysis of Fig. 2 and its mapping onto the plane (f1, f2) shown in Fig. 3. Note that
the segment between the points O and (K,L) shown in Fig. 3 is described [in view of Eqs. (14)
and (15)] by the equation f2 = 9f1, and the curve between the points F and (EH) is described by
the equation

f2 = 4 − 4
√

f1 + f1.

The search of the equilibria P = P1∩P2 and DP mentioned in Definitions 2 and 3 is very difficult
even with the use of Fig. 3 :

P1 = [V KF ] ∪ [NH], P2 = [OK] ∪ [KF ],

P = [V K] ∪ [KF ], DP = [V K].

Thus, as a preliminary result, in the auxiliary “local” game with side interests of players, we find
that all situations from the segment [V K] are equivalent to the strongest equilibria in Fig. 2.

Next, we find the strongest equilibria in the auxiliary problem of the type (1) with weak threats:

A1 = W1, A2 = EFLME, A = KFLMV K,

B1 = [OK] ∪ [KF ], B2 = [ML] ∪ [LN ] ∪ [V E], B = V.
(18)

Fig. 3.
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It follows from Fig. 2 that the set A2 is the closed polygon [EFLME], the set A is the closed
polygon [KFLMV K], the set B1 consists of two closed straight-line segments [OK] and [KF ],
the set B2 consists of three closed straight-line segments [ML], [LN ], and [V E], and the set B is
reduced to the singleton V in Fig. 2, which provides the strongest equilibrium in the “local” game.

The analysis of the auxiliary “local” game (17) in the class of strong threats (2) lead to the same
equilibria (18).

However, an auxiliary game on the intersection W of game sets of players leads to a set of
equilibria that contains both the strongest equilibrium found above in local problems and some
additional set [OQ). Indeed, we have

AW
1 = W, AW

2 = KFLK ∪ OK = AW ,

BW
1 = [OK] ∪ [KF ], BW

2 = [OQ) ∪ [LN ] ∪ [V K], BW = [V K] ∪ [OQ).

The intersection of all types of strongest equilibria in the above-considered auxiliary local prob-
lems provides the unique point V , which should be chosen as the strongest equilibrium. In this
case, it is natural to consider that all points of the half-open interval (V K] are weaker equilibria,
and all point of the half-open interval [OQ) are even weaker equilibria.

The point V of the strongest equilibrium in auxiliary “local” games defines the pair of constant
equilibrium strategies of players (u∗

1, u
∗
2) = (1/3, 2/3) in the original differential game. By substi-

tuting this pair into the original differential game, we obtain the equations

ẋ1 = (u∗
1 − u∗

2)
2 = 1/9, ẋ2 = (u∗

1 + u∗
2)

2 = 1.

By integrating those equations, we get x1 = t/9 and x2 = t. After the substitution of these solutions
into the payoff functionals, we have the following profits of players in the equilibrium situation:

J1 =

1∫

0

x1 dt =
1
18

, J2 =

1∫

0

x2 dt =
1
2
.

If the players cooperate, then they can get much more than in the equilibrium situation. Indeed,
a cooperative solution is attained at the point F in Fig. 2 at which their strategies are equal
to u1 = u2 = 1. The equations of motion in the case of a cooperative solution can be reduced to
the form ẋ1 = 0, ẋ2 = 4, and their solutions, to the form x1 = 0, x2 = 4t. By evaluating the
cooperative profit of players, we obtain J1 + J2 = J2 =

∫ 1

0
4t dt = 2, which is much more than

the sum of their profits in the strongest equilibrium situation. The fair sharing of the cooperative
profit is given by formulas (4) in [9] (or (4.2) in [13, p. 174]) : y1 = 2/10, y2 = 18/10, where yi is
the fair share of the ith player in the cooperative profit, which is equal to 2.
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