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Abstract—We study a method for the derivation of majorants for the distance between the ex-
act solution of an initial–boundary value reaction–convection–diffusion problem of the parabolic
type and an arbitrary function in the corresponding energy class. We obtain an estimate (for the
deviation from the exact solution) of a new type with the use of a maximally broad set of ad-
missible fluxes. In the definition of this set, the requirement of pointwise continuity of normal
components of the dual variable (which was a necessary condition in earlier-obtained estimates)
is replaced by the requirement of continuity in the weak (integral) sense. This result can be
achieved with the use of the domain decomposition and special embedding inequalities for func-
tions with zero mean on part of the boundary or for functions with the zero mean over the entire
domain.
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1. INTRODUCTION

The present paper deals with guaranteed and computable estimates for the difference between
generalized solutions of evolution reaction–convection–diffusion problems of the parabolic type and
arbitrary functions that belong to admissible energy classes. Such estimates are often said to be
a posteriori. They are required for numerical analysis, where one needs an adequate estimate for
the accuracy of a particular approximate solution constructed by an arbitrary numerical method.

First functional a posteriori error estimates for linear elliptic equations were obtained indepen-
dently in [1, 2]. However, they had the essential disadvantage of complicated practical implemen-
tation owing to the fact that such estimates hold only under a certain condition; more precisely,
the dual variable occurring in the estimate (the flux in scalar problems and the stress in vector ones)
should satisfy differential equations of the divergence type. It was shown in [3–6] that guaranteed
functional estimates of the error can be derived under much less restrictive conditions for the dual
variable, which permits one to derive efficient and easy-to-compute majorants for the error. Vari-
ational arguments were used in the first papers dealing with this approach (see [3] and [4]). Later,
similar results were obtain by a different (nonvariational) method based on transformations of the
generalized statement of the problem [5, 6]. Functional majorants do not contain local interpolation
constants depending on the grid. They are universal ; i.e., they hold for arbitrary functions in an ad-
missible energy class. They can be computed with the use of standard well-studied finite element
approximations in the space of H(div)-continuous finite elements (for example, Raviart–Thomas
and Brezzi–Douglas–Marini elements). For many equations of mathematical physics, it was theo-
retically shown and practically justified that majorants of the functional type also generate efficient
local error indicators, which can be used as a reliable criterion for adaptive algorithms. A detailed
comparison of the above-described approaches can be found in the monograph [7].
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In the present paper, we use a functional approach for the derivation of guaranteed and practi-
cally computable estimates for the distance between an arbitrary function (in an admissible energy
class) and the exact solution of an initial–boundary value problem of the parabolic type

ut − div p + a · ∇u + λ2u = f, (x, t) ∈ QT , (1)
p = A∇u, (x, t) ∈ QT , (2)

u(·, 0) = u0, x ∈ Ω, (3)
u = g, (s, t) ∈ SD, (4)

p · n = F, (s, t) ∈ SN , (5)

where QT := Ω×(0, T ) is a space-time cylinder in which Ω ⊂ R
d, d ∈ {1, 2, 3}, is a bounded domain

with Lipschitz boundary ∂Ω and (0, T ), T > 0, is a time interval. Next, ST := ∂Ω × [0, T ] stands
for the cylindrical lateral surface, where ∂Ω consists of measurable nonintersecting parts ΓD and
ΓN corresponding to the mixed Dirichlet–Neumann boundary condition,

ST := ∂Ω × [0, T ] = (ΓD ∪ ΓN) × [0, T ] = SD ∪ SN .

On the boundary part SN , the vector n defines the unit outward normal on ∂Ω, and the following
conditions are satisfied:

f ∈ L2(QT ), u0 ∈ H1
g (Ω), g ∈ L2(0, T ;H1(ΓD)) and F ∈ L2(0, T ;H1(ΓN)). (6)

The convection and reaction functions a and λ satisfy the conditions

a ∈ L∞(Ω, Rd), div a ∈ L∞(Ω), |a| ≤ a, (7)
λ ∈ L∞(Ω), |λ| ≤ λ, (8)

for almost all t ∈ (0, T ). Moreover, the flux a satisfies the condition

κ(x, t) = (n · a)(x, t) > 0 for almost all (x, t) ∈ SN . (9)

The matrix A = {Aij}d
i,j=1 [Aij ∈ L∞(Ω)] is symmetric and satisfies the condition

νA|ξ|2 ≤ A(x)ξ · ξ ≤ νA|ξ|2, ξ ∈ R
d, 0 < νA ≤ νA < ∞, (10)

where |ξ| :=
√

ξ · ξ. By virtue of condition (10), one can introduce the equivalent norms

‖τ‖2
Ω,A :=

∫

Ω

Aτ · τ dx, τ ∈ L2(Ω, Rd), and ‖q‖2
QT ,A :=

∫

QT

Aq · q dx dt, q ∈ L2(QT , Rd).

By multiplying (1) by a test function η ∈ H1,1
0 (QT ), where

H1,1
0 (QT ) := {u ∈ L2(QT )| ∇u ∈ L2(QT , Rd), ∂tu ∈ L2(QT ), u|SD

= 0},

one can give the generalized statement of problem (1)–(5) as follows: find a function u ∈ H1,1
g (QT ) :=

H1,1
0 (QT ) + g satisfying the integral identity

∫

QT

(A∇u · ∇η + λ2uη + a · ∇uη − uηt) dx dt +
∫

Ω

((uη)(x, T ) − (uη)(x, 0)) dx

=
∫

QT

fη dx dt +
∫

SN

Fη ds dt, η ∈ H1,1
0 (QT ). (11)

The generalized problem (11) is uniquely solvable provided that relations (6)–(8) hold (e.g.,
see [8–11]).
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In the present paper, we derive a posteriori error estimates following [12], where a method for the
derivation of functional error majorants for parabolic equations was suggested for the first time for
the example of the thermal conduction problem. First examples of the practical use of functional
a posteriori estimates for the heat equation were described in [13], and the properties of two-sided
error estimates for the reaction–diffusion equation were studied in detail in [14]. A form of the error
majorant for evolution convection–diffusion equations which admits a discontinuity of the arbitrary
function with respect to the time variable was obtained in [15]. Error majorants for parabolic
time-periodic problems (with a polyharmonic finite-element discretization) were considered in [16].
Indicators based on an estimate of the residual functional for a class of evolution equations were
considered in [17–20] (see also the bibliography therein).

A majorant of the error function e := u − v [where v ∈ H1,1
g (QT ) is assumed to be an arbitrary

function] is constructed for the norm

[e]2(ν,θ,χ,ζ) := ν‖∇e‖2
QT ,A + ‖θ(	)e‖2

QT
+ ‖χ(κ)e‖2

SN
+ ζ‖e(·, T )‖2

Ω, (12)

where ‖ · ‖2
ω is the L2-norm on the set ω, ν and ζ are some positive weights, and θ(	) and χ(κ) are

positive weight functions depending on

	2
0 ≤ 	2 := λ2 − 1

2
div a ≤ 	(λ, a) (13)

as well as on κ [see condition (9)]. The norm (12) is the natural (energy) norm for problem (11).
The first part of the paper deals with functional a posteriori estimates for the error in the dis-

tance to the exact solution of the considered problem, which contain global constants (i.e., constants
related to the entire domain) in the Friedrichs inequality and the trace inequality. For domains of
complicated geometric form with mixed boundary conditions, the computation of these constants
(or their upper guaranteed bounds) is a very complicated problem. These computations can be
simplified if one uses the decomposition of the domain Ω into a set of sufficiently simple convex
subdomains. This way, one can obtain estimates containing only the corresponding local constants
(see [6, 21, 22]). In the second part of the present paper, we consider a posteriori error estimates
under much weaker constraints on the continuity of the auxiliary fluxes; more precisely, the re-
quirement of pointwise continuity on the boundaries of subdomains (elements) is replaced by the
requirement of continuity of the means. The resulting set differs from the earlier used set [14, 21]
and provides more freedom in the implementation of estimates.

2. ERROR ESTIMATE USING A CONTINUOUS FLUX FIELD

First, we obtain a majorant for the distance to the exact solution of a reaction–convection–
diffusion equation of the parabolic type with mixed Dirichlet–Neumann boundary conditions. In the
derivation of these estimates, we use transformations of integral identities and inequalities which
follow from the embedding theorem for functions defined on the entire domain Ω. Note that the
error function e = u − v can be used as a test function in identity (11), which gives the relation∫

QT

(A∇e · ∇e + (a · ∇e)e + λ2e2) dx dt +
1
2
‖e(·, T )‖2

Ω − 1
2
‖e(·, 0)‖2

Ω

=
∫

QT

((f − vt − λ2v − a · ∇v)e − A∇v · ∇e) dx dt +
∫

SN

Fe ds dt. (14)

By the Gauss divergence theorem, we have the relation∫

QT

div ae2 dx dt = −
∫

QT

a · ∇(e2) dx dt +
∫

SN

(a · n)e2 ds dt = −2
∫

QT

(a · ∇e)e dx dt +
∫

SN

κe2 ds dt,

whence it follows that∫

QT

(a · ∇e)e dx dt =
1
2

( ∫

SN

κe2 ds dt −
∫

QT

div ae2 dx dt

)
. (15)
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Therefore, by substituting the expression (15) into relation (14), we obtain the energy identity

[e]2
(1,�,

√
κ/2,1/2)

:=

T∫

0

(
‖∇e‖2

Ω,A + ‖	e‖2
Ω +

∥∥∥∥
√

κ

2
e

∥∥∥∥
2

ΓN

)
dt +

1
2
‖e(·, T )‖2

Ω

=
1
2
‖e(·, 0)‖2

Ω +
∫

QT

((f − vt − λ2v − a · ∇v)e − A∇v · ∇e) dx dt +
∫

SN

Fe ds dt. (16)

Next, we transform the right-hand side of relation (16) with the use of an auxiliary vector function

y ∈ Y SN

div (QT ) := {y ∈ L2(0, T ;L2(Ω, Rd))| div y ∈ L2(QT ), y · n ∈ L2(SN)},

satisfying the identity
∫

QT

(div yw + y · ∇w) dx dt =
∫

SN

y · nw ds dt, w ∈ H1,1
0 (QT ). (17)

By using property (17), one can represent relation (16) in the form

[e]2
(1,�,

√
κ/2,1/2)

=
1
2
‖e(·, 0)‖2

Ω +
∫

QT

(Rf (v, y)e + RA(v, y) · ∇e) dx dt +
∫

SN

RF (v, y)e ds dt, (18)

where

Rf (v, y) := f − vt − λ2v − a · ∇v + div y, (19)
RA(v, y) := y − A∇v, (20)
RF (v, y) := F − y · n. (21)

The functionals Rf (v, y), RA(v, y), and RF (v, y) are the residuals in the differential relations form-
ing system (1)–(5). In what follows, we also use the “weighted” residuals

R
μ
f (v, y) := μRf , R

1−μ
f (v, y) := (1 − μ)Rf , (22)

R
η
F (v, y) := ηRF , R

1−η
F (v, y) := (1 − η)RF . (23)

Here μ and η are real-valued functions ranging on the interval [0, 1]; more precisely, the inclusions

μ ∈ L∞
[0,1](Ω) := {ξ ∈ L∞(Ω)| 0 ≤ ξ ≤ 1 almost everywhere on Ω}, (24)

η ∈ L∞
[0,1](ΓN) := {ξ ∈ L∞(ΓN)| 0 ≤ ξ ≤ 1 almost everywhere on ΓN} (25)

hold for almost all t ∈ (0, T ). The functions ν and η are introduced to counterbalance the contri-
bution of 	 and κ in the corresponding residuals by dividing them into two integrals with different
weights. The resulting estimate is more stable under strong changes in 	 and κ on some subdomains
of Ω or the boundary parts ΓN . These properties of the majorant were noted in the paper [14] for
an example of a parabolic reaction–diffusion equation.

In what follows, we need two sets Ω�,+ and Γκ,+
N , where 	 and κ, respectively, are nonzero for

almost all t ∈ (0, T ),

Ω�,+ := {x ∈ Ω| 	(x) 
= 0} and Γκ,+
N := {x ∈ ΓN | κ(x) 
= 0}.

The following theorem shows that a weighted combination of norms of the residuals (19)–(23)
controls the distance between u and v measured in the norm (12).
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Theorem 1. For arbitrary v ∈ H1,1
g (QT ) and y ∈ Y SN

div (QT ), one has the estimate

[e]2(ν,θ,χ,1) ≤ M
2

I (v, y; δ, γj , μ+, η+, αi)

:= ‖e(·, 0)‖2
Ω +

T∫

0

(
γ1

∥∥∥∥1
	

R
μ+
f

∥∥∥∥
2

Ω�,+

+ γ2

∥∥∥∥ 1√
κ

R
η+
F

∥∥∥∥
2

Γκ,+
N

+ α1‖RA‖2
Ω,A−1

+ α2

C2
FΩ

νA

‖R1−μ+
f ‖2

Ω�,+ + α3

C̃2
Tr ΓN

νA

‖R1−η+
F ‖2

Γκ,+
N

)
dt, (26)

where δ ∈ (0, 2], γ1 ∈ [1/2,+∞), and γ2 ∈ [1,+∞) are parameters of the majorant. In addition,
for almost all t ∈ (0, T ), the weight functions μ+ and η+ satisfy the inclusions

μ+ ∈ L�,+
[0,1](Ω) := {μ ∈ L∞

[0,1](Ω)| μ(x) ≡ 0 on Ω\Ω�,+}, (27)

η+ ∈ Lκ,+
[0,1](ΓN) := {η ∈ L∞

[0,1](ΓN)| η(s) ≡ 0 on ΓN\Γκ,+
N } (28)

and the αi(t), i = 1, 2, 3, are positive definite real-valued functions satisfying the identity

3∑
i=1

1
αi(t)

= δ. (29)

The weights in [e]2(ν,θ,χ,1) are defined as follows :

ν = 2 − δ, θ(x, t) = 	(x)
(

2 − 1
γ1(t)

)1/2

, and χ(s, t) :=
(

κ(s)
(

1 − 1
γ2(t)

))1/2

.

The constant C̃TrΓN
= CTrΓN

(1 + CF Ω) includes a constant from the Friedrichs inequality [see in-
equality (40) below] and a constant from the inequality for the trace of a function on the boundary
[see inequality (41) below].

Proof. Consider identity (18) and state it as follows:

[e]2
(1,�,

√
κ/2,1/2)

= If + IA + IF +
1
2
‖e(·, 0)‖2

Ω ,

where
If :=

∫

QT

Rfe dx dt, IA :=
∫

QT

RA · ∇e dx dt, and IF :=
∫

SN

RF e ds dt. (30)

The term IA can be estimated with the use of the Hölder inequality

IA ≤
T∫

0

‖RA‖Ω,A−1‖∇e‖Ω,A dt. (31)

Next, to estimate the term If , we introduce the function μ+ ∈ L�,+
[0,1] [see (27)], which counter-

balances the contribution of the term with factor 1/	 sharply increasing for sufficiently small 	.
(A similar method was used in [7, 23].) We thereby obtain the estimate

If =
∫

QT

(Rμ+
f + R

1−μ+
f )e dx dt ≤

T∫

0

(∥∥∥∥1
	

R
μ+
f

∥∥∥∥
Ω�,+

‖	e‖Ω�,+ +
CF Ω√

νA

‖R1−μ+
f ‖Ω‖∇e‖Ω,A

)
dt. (32)
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A similar argument is used to estimate the term IF . By using the auxiliary function η+ [see rela-
tion (28)] and the trace inequality [see relation (41) below], one can counterbalance the contribution
of the function κ into the majorant,

IF ≤
T∫

0

(∥∥∥∥ 1√
κ

R
η+
F

∥∥∥∥
Γκ,+

N

‖
√

κ e‖Γκ,+
N

+
C̃TrΓN√

νA

‖R1−η+
F ‖ΓN

‖∇e‖Ω,A

)
dt. (33)

By adding the resulting estimates (31)–(33), we obtain

[e]2
(1,1,

√
κ/2,1/2)

≤ 1
2
‖e(x, 0)‖2

Ω +

T∫

0

‖RA‖A−1‖∇e‖A dt

+

T∫

0

(∥∥∥∥1
	

R
μ+
f

∥∥∥∥
Ω�,+

‖	e‖Ω�,+ +
CF Ω√

νA

‖R1−μ+
f ‖Ω‖∇e‖Ω,A

)
dt

+

T∫

0

(∥∥∥∥ 1√
κ

R
η+
F

∥∥∥∥
Γκ,+

N

‖
√

κe‖Γκ,+
N

+
C̃TrΓN√

νA

‖R1−η+
F ‖ΓN

‖∇e‖Ω,A

)
dt. (34)

The terms on the right-hand side in inequality (34) containing ‖	e‖Ω�,+ and ‖
√

κ e‖Γκ,+
N

can be
estimated with the use of the Young inequality,

T∫

0

∥∥∥∥1
	

R
μ+
f

∥∥∥∥
Ω�,+

‖	e‖Ω dt ≤
T∫

0

(
γ1(t)

2

∥∥∥∥1
	

R
μ+
f

∥∥∥∥
2

Ω�,+

+
1

2γ1(t)
‖	e‖2

Ω�,+

)
dt, (35)

T∫

0

∥∥∥∥ 1√
κ

R
η+
F

∥∥∥∥
Γκ,+

N

‖
√

κe‖Γκ,+
N

dt ≤
T∫

0

(
γ2(t)

2

∥∥∥∥ 1√
κ

R
η+
F

∥∥∥∥
2

Γκ,+
N

+
1

2γ2(t)
‖
√

κe‖2
Γκ,+

N

)
dt, (36)

where the γj(t), j = 1, 2, are arbitrary real-valued functions ranging in the intervals [1/2,+∞) and
[1,+∞), respectively. In a similar way, we have

T∫

0

CF Ω√
νA

‖R1−μ+
f ‖Ω‖∇e‖Ω,A dt ≤ 1

2

T∫

0

(
α1(t)

C2
F Ω

νA

‖R1−μ+
f ‖2

Ω +
1

α1(t)
‖∇e‖2

Ω,A

)
dt, (37)

T∫

0

‖RA‖Ω,A−1‖∇e‖Ω,A dt ≤ 1
2

T∫

0

(
α2(t)‖RA‖2

Ω,A−1 +
1

α2(t)
‖∇e‖2

Ω,A

)
dt, (38)

and

T∫

0

C̃TrΓN√
νA

‖R1−η+
F ‖Γκ,+

N
‖∇e‖A dt ≤ 1

2

T∫

0

(
α3(t)

C̃2
Tr ΓN

νA

‖R1−η+
F ‖2

Γκ,+
N

+
1

α3(t)
‖∇e‖2

Ω,A

)
dt, (39)

where the αi(t), i = 1, 2, 3, are real-valued positive definite functions satisfying identity (29). Then,
by combining the estimates (35)–(39), we obtain the majorant (26). The proof of the theorem is
complete.
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3. MAJORANT USING A DISCONTINUOUS FLUX FIELD

The error majorant obtained in Section 2 contains the Friedrichs constant from the inequality

‖w‖Ω ≤ CF Ω‖∇w‖Ω, w ∈ H1
0 (Ω), (40)

and the constant from the trace inequality

‖w‖ΓN
≤ CTrΓN

‖w‖H1(Ω), w ∈ H1
0 (Ω), (41)

on the boundary ΓN . If the domain has a complicated geometric structure, then the computation
of these constants (or their guaranteed upper bounds) is a quite complicated technical problem.
To avoid these difficulties, the method of decomposition of a polygonal domain Ω into a set of
nonoverlapping convex subdomains was used in [21, 24], and similar functional inequalities on the
local level were used for these subdomains. In what follows, we show that the use of special classical
and Poincaré-type inequalities permits maximally weaken the constraints in the space of admissible
fluxes. The exact values, as well as upper bounds, for the corresponding constants were obtained
in [22, 25–27].

Assume that

Ω :=
⋃

Ωi∈OΩ

Ωi, Ωi ∩ Ωj = ∅, i 
= j, i, j = 1, . . . , N, (42)

where Ωi is a convex domain with Lipschitz boundary. The subdomain Ωi is an element of the
set OΩ. In practice, {Ωi}N

i=1 are usually represented by disjoint simplices or convex polygons.
The set of all faces of the resulting subpartition is denoted by G, and the elements of this set form
the subsets

Gint = {Γij ∈ G| Γij = Ωi ∩ Ωj}, (43)
GD = {ΓDi ∈ G| ΓDi = Ωi ∩ ΓD}, (44)
GN = {ΓNi ∈ G| ΓNi = Ωi ∩ ΓN}. (45)

For each Ωi, the Poincaré inequality has the form

‖w‖Ωi
≤ CP

Ωi
‖∇w‖Ωi

≤ diam Ωi

π
‖∇w‖Ωi

, w ∈ H̃1(Ωi), (46)

where H̃1(Ωi) := {u ∈ H1(Ωi) | {|u|}Ωi
= 0} and {|u|}Ωi

:= |Ωi|−1
∫
Ωi

w dx. Here we use the
estimate obtained for the constant CP

Ωi
in [25]. In addition, we use the following so-called Poincaré-

type inequalities for the functions H̃1(Ωi,Γi) := {u ∈ H1(Ωi) | {|u|}Γi
= 0}, where Γi is a part of

the boundary ∂Ωi (coinciding with Γij or ΓNi) :

‖w‖Ωi
≤ CP

Γi
‖∇w‖Ωi

, (47)

‖w‖Γi
≤ CTr

Γi
‖∇w‖Ωi

. (48)

In the new form of the majorant obtained in this section, we use the following space of admissible
fluxes: y ∈ Ŷ SN

div (QT ,OΩ), where

Ŷ SN

div (QT ,OΩ) :=
{

y(x) = yi(x), if x ∈ Ωi | yi ∈ L2(Ωi, R
d), div yi ∈ L2(Ωi),

{|div yi + f − a · ∇v − λ2v|}Ωi
= 0, Ωi ∈ OΩ,

{|(yi − yj) · nij|}Γij
= 0, Γij ∈ Gint,

{|yi · ni − F |}ΓNi
= 0, ΓNi ∈ GN

}
(49)

for almost all t ∈ (0, T ).
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The set Ŷ SN

div (QT ,OΩ) substantially differs from Y SN

div (QT ). Here the requirement of continuity
of the normal components of fluxes are maximally weakened. For a simpler elliptic boundary
value problem, a similar space was considered in [28]. The extension of the space Y SN

div (QT ) is
useful from the practical viewpoint. Indeed, the functions in Y SN

div (QT ) should have a continuous
normal component on all Γij ∈ Gint and satisfy the pointwise boundary condition on ΓNi ∈ GN . This
imposes very restrictive conditions on the corresponding approximation. A function in Ŷ SN

div (QT ,OΩ)
satisfies a weaker condition; more precisely, the normal flux components should be continuous on
the boundaries of subdomains only in the integral sense. In a similar way, the Neumann condition is
required to be valid only in the sense of average values on the boundary parts ΓN . These properties
simplify the practical construction of the vector function y.

Integration by parts for y ∈ Ŷ SN

div (QT ,OΩ) has the following form: the relation
∑

Ωi∈OΩ

∫

Ωi

(y · ∇w + div yw) dx =
∑

Γij∈Gint

∫

Γij

(yi − yj) · nijw ds +
∑

ΓNi∈GN

∫

ΓNi

(yi · ni − F )w ds

holds for any function w ∈ H1,1
0 (QT ) and for almost all t ∈ (0, T ). Now identity (11) can be

represented in the form

‖∇e‖2
QT ,A + ‖	e‖2

QT
+

1
2
‖e(·, T )‖2

Ω = If + IA + I
jmp
Γij

+ I
jmp
ΓNi

+
1
2
‖e(x, 0)‖2

Ω , (50)

where If and IA are defined in (30) and

I
jmp
Γij

:=

T∫

0

∑
Γij∈Gint

∫

Γij

(yi − yj) · nije ds dt, I
jmp
ΓNi

:=

T∫

0

∑
ΓNi∈GN

∫

ΓNi

(yi · ni − F )e ds dt.

Next, we use the following complexes based on local residuals:

R
1−μ+
O (t) :=

∑
Ωl∈OP

(CP
Ωl

)2

νA

‖R1−μ+
f (v, y)‖2

Ωl
, (51)

RGjmp(t) :=
∑

Ωi∈OΩ

(CTr
i,max)2

νA

η2
i (y), (52)

and
η2

i (y) =
∑

Γij∈Gint
Γij∩∂Ωi �=∅

1
4
r2

ij(y) +
∑

ΓNi∈GN
ΓNi∩∂Ωi �=∅

	2
i (y), (53)

where
rij(y) := ‖(yi − yj) · nij‖Γij

, 	i(y) := ‖yi · ni − F‖ΓNi
.

Theorem 2. (i) The inequality

[e]2(ν,θ,2,1) ≤ M
2

I,N,Ŷ (v, y; δ, 	, μ+, αi) := ‖e(x, 0)‖2
Ω

+

T∫

0

(
	

∥∥∥∥1
	

R
μ+
f (v, y)

∥∥∥∥
2

Ω

+ α1(t)‖rA(v, y)‖2
Ω,A−1 + α2(t)R

1−μ+
O (t) + α3(t)RGjmp(t)

)
dt (54)

holds for arbitrary v ∈ H1,1
g (QT ) and y ∈ Ŷ SN

div (QT ,OΩ), where δ ∈ (0, 2], 	 ∈ [1/2,+∞), μ+ ∈
L�,+

[0,1](QT ), and the αi(t), i = 1, 2, 3, are positive definite real-valued functions satisfying iden-
tity (29). The weights in relation (16) are defined as

ν = 2 − δ, θ(x, t) = 	(x)
(

2 − 1
	(t)

)1/2

.
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(ii) For the parameters defined in the assertion (i), the variational problem

inf
v∈H1,1

g (QT )

y∈Ŷ
SN
div (QT ,OΩ)

M
2

I,N,Ŷ (v, y; δ, 	, αi, μ+) (55)

has a solution, and the functional M
2

I,N,Ŷ attains its minimum (which is zero) if and only if v = u
and y = A∇u.

Proof. (i) Consider identity (50) by splitting the integral If into the sum of two integrals

If = I
μ+
f + I

1−μ+
f . (56)

We estimate the terms IA and I
μ+
f with the use of the Hölder inequality. By taking into account

the relation
y ∈ Ŷ SN

div (QT ,OΩ),

we estimate the integral I
1−μ+
f with regard of inequality (46),

I
1−μ+
f ≤

T∫

0

(R1−μ+
OΩ

)1/2‖∇e‖Ω,A dt. (57)

Any subdomain Ωi ∈ OΩ can be represented as the sum of simplices Tij with edge ∂Tij that is
a part of the boundary ∂Ωi; i.e., the domain Ωi forms a set of finite elements with one vertex.
Suppose that CTr

i,max stands for the maximum among constants in the corresponding Poincaré-type
inequalities (48) specifying the faces ∂Tij ∈ ∂Ωi; then the terms I

jmp
Γij

and I
jmp
ΓNi

occurring in the
estimate (50) can be estimated as follows:

I
jmp
Γij

+ I
jmp
ΓNi

=

T∫

0

( ∑
Γij∈Gint

rij(y)‖e − {|e|}Γij
‖Γij

+
∑

ΓNi∈G

	k(y, v)‖e − {|e|}ΓNi
‖ΓNi

)
dt

≤
T∫

0

R
1/2
Gjmp

(t)‖∇e‖Ω,A dt,

where the complex R
1/2
Gjmp

is defined by relation (52). By using the Hölder inequality once more and
the Young inequality, we obtain

T∫

0

∥∥∥∥1
	
rf,μ

∥∥∥∥
Ω

‖	e‖Ω dt ≤ 1
2

T∫

0

(
γ1(t)

∥∥∥∥1
	

rf,μ

∥∥∥∥
2

Ω

+
1

γ1(t)
‖	e‖2

Ω

)
dt, (58)

T∫

0

‖rA‖Ω,A−1‖∇e‖Ω,A dt ≤ 1
2

T∫

0

(
α1(t)‖rA‖2

Ω,A−1 +
1

α1(t)
‖∇e‖2

Ω,A

)
dt, (59)

T∫

0

(R1−μ+
O )1/2‖∇e‖Ω,A dt ≤ 1

2

T∫

0

(
α2(t)R

1−μ+
O +

1
α2(t)

‖∇e‖2
Ω,A

)
dt, (60)

T∫

0

R1/2
Gij

(t)‖∇e‖Ω,A dt ≤ 1
2

T∫

0

(
α3(t)RGij

(t) +
1

α3(t)
‖∇e‖2

Ω,A

)
dt. (61)

By combining relations (58)–(61), we obtain inequality (54).
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(ii) To prove the existence of a pair (v, y) ∈ H1,1
g (QT )× Ŷ SN

div (QT ,OΩ) minimizing the functional

M
2

I,N,Ŷ , it suffices to set v = u and y = A∇u. In this case, we have e(x, 0) = 0, R
μ+
f (v, y) = 0,

rA(v, y) = 0, R
1−μ+
O (v, y) = 0, and RGjmp(v, y) = 0. Since the functional M

2

I,N,Ŷ is nonnegative,
we find that this choice of the functions v and y corresponds to the minimizer. On the other hand,
if M

2

I,N,Ŷ = 0, then R
μ+
f = 0, rA = 0, R

1−μ+
O = 0, and RGjmp = 0. It follows that the function v is

a solution of problem (1)–(5). By virtue of the uniqueness of the solution of the initial–boundary
value problem, we find that the other minimizing elements are absent. The proof of the theorem is
complete.

In conclusion, note that the use of local inequalities (46)–(48) permits one to obtain sharper
majorants (for example, in comparison with [12, 14]), because the constants CP

Ωi
, CP

Γi
, and CTr

Γi

depend on the domain diameter. In addition, as usual, the subdomains Ωi have a simpler form
than Ω, which simplifies the computation of the exact values CP

Ωi
, CP

Γi
, and CTr

Γi
(or the corresponding

majorants) (see [22, 27]).
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Problems Based on Poincaré Type Inequalities, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst.
Steklova, 2014, vol. 425, no. 1, pp. 7–34.

25. Payne, L.E. and Weinberger, H.F., An Optimal Poincaré Inequality for Convex Domains, Arch. Ration.
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