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1. INTRODUCTION

In the present paper, we study a new class of boundary value problems on a smooth compact
manifold M with boundary X = ∂M in which the main and boundary operators are nonlocal and
are associated with smooth mappings of the manifold M into itself. As special cases, such problems
include some well-known classes of problems: problems for invertible mappings (i.e., for diffeomor-
phisms) (see [1, p. 3]), problems with homotheties in R

n (see [2, 3]), and finally the well-known
Bitsadze–Samarskii problems [4], in which the values of the unknown function on the boundary
are related to its values on a submanifold lying inside the domain. Note that classical boundary
value problems for pseudodifferential operators on manifolds with boundary were studied in [5, 6].
(See also the paper [7] on the solvability of pseudodifferential equations on the semiaxis.)

In the present paper, we derive conditions for the Fredholm property of problems for the case in
which the problem is associated with a contraction that is a mapping of the manifold with bound-
ary strictly into its interior. It is most interesting to derive an analog of the Shapiro–Lopatinskii
condition in this situation. Recall that, in the classical theory, thus, in the case without nonlocal-
ity where the main and boundary operators are defined by differential expressions, the Shapiro–
Lopatinskii condition (providing the Fredholm property of the problem) is obtained as follows: the
coefficients of the problem are frozen at an arbitrary point of the boundary, and the Fourier trans-
form is performed with respect to the variables along the boundary; the problem is then reduced
to a family of ordinary differential equations with constant coefficients on the half-line (with coef-
ficients defined by the symbol of the main operator) equipped with initial conditions (defined by
the symbol of the boundary operator), and the Shapiro–Lopatinskii condition implies the unique
solvability of that family. In the present paper, we show that, in the case of nonlocal problems asso-
ciated with contractions, the ellipticity condition has an essentially new form, because the presence
of a contraction operator necessitates freezing the coefficients on the whole orbit of the boundary
point generated by the action of iterations of the contraction operator. As a result, the generalized
Shapiro–Lopatinskii condition obtained below requires the unique solvability of an infinite matrix
system corresponding to a trajectory of an arbitrary point on the boundary.

Let us describe methods for the derivation of the above-mentioned results. First, we realize
a manifold M with boundary X as a submanifold of some closed manifold W and obtain all results
on boundary value problems as corollaries of similar results on the closed manifold. Second, on the
closed manifold W , we use methods of the theory of C∗-algebras and their crossed products for
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the construction of symbols and the proof of the finiteness theorem. To use these methods for the
derivation of desired results, on the manifold W , we construct and study an algebra generated by
pseudodifferential problems with transmission conditions on the submanifold X and its images un-
der the action of iterations of the contraction. Here we use the results in [8], where the C∗-algebra
of transmission problems was considered for the case of a single submanifold. After the construc-
tion of the C∗-algebra of transmission problems, we use methods of elliptic theory associated with
group actions (see [1, p. 297; 9] and also [10, p. 27]), derive expressions for the symbols of the
problem, and prove the finiteness theorem.

Note that only elliptic problems of zero order in the space L2 are considered in the present
paper. However, the results can be used to study problems of arbitrary order with the use of order
reduction operators.

2. GEOMETRIC SITUATION

Let M ⊂ W be a smooth manifold with boundary X = ∂M , which is a closed submanifold of
codimension zero in a smooth closed manifold W .

Definition 1. A diffeomorphism g : W −→ W is called a contraction of the manifold M if
g(M) ⊂ M\∂M , i.e., if g(M) lies in the interior of M .

Example 1. In the space R
n, consider the mapping gx = kx, where 0 < k < 1. This mapping

is a contraction of any ball with center at the origin.
It turns out that the points of the manifold W fall into three types depending on the behavior

of their orbits under the action of iterations of the diffeomorphism g.
1. Points whose orbits meet X. The set of such points is the countable union

⋃

n∈Z

gn(X)

of submanifolds of codimension 1; since g is a contraction, it follows that the submanifolds in the
union are pairwise disjoint.

2. Points whose orbits lie entirely either in M or outside M . Such points form the closed set

W∞ =
( ⋂

n≥0

gn(M)
) ⋃( ⋂

n<0

gn(W\M)
)
.

(In the general case, the space W∞ is not necessarily a manifold.)
3. The remaining points (that is, points whose orbits do not meet X and lie neither in M nor

in W\M) form the open set
⋃

n∈Z

gn(U), U = M\(X ∪ g(M)). (1)

3. PROBLEMS ON CLOSED MANIFOLDS

In this section, we construct a C∗-algebra of pseudodifferential problems on the manifold W
with boundary conditions and coconditions on the countable family of submanifolds

gnX ⊂ W, n ∈ Z. (2)

The symbols of these operators may have jump discontinuities along the above-mentioned subman-
ifolds. We introduce the notion of symbol and prove the finiteness theorem.

Definition of the Algebra of Problems

Given N ≥ 0, consider the finite set of submanifolds

gnX ⊂ W, −N ≤ n ≤ N + 1. (3)
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ELLIPTIC DILATION–CONTRACTION PROBLEMS ON MANIFOLDS WITH BOUNDARY 1333

These submanifolds are pairwise disjoint (see above). Consider the direct sum

HN = L2(W, vol) ⊕
⊕

−N≤n≤N+1

L2(gnX, voln) (4)

of L2-subspaces on the main manifold and on the submanifolds (3), where vol stands for the volume
form on manifold W and voln = (∂g−n)∗volX stands for the volume form on the submanifold gnX.
In the representation (4) and below, in the notation of the spaces L2, we indicate the volume form
occurring in their definition. Then we have a well-defined C∗- algebra of operators continuously
acting in the space (4), which consists of transmission problems in the sense of [8] and is the closure,
in the operator norm, of boundary value problems for pseudodifferential operators on the comple-
ment of the union of submanifolds (3). The above-mentioned algebra is denoted by Ψtr,N(W ).

In addition, consider the closure

Ψtr(W ) =
⋃

N≥1

Ψtr,N(W ) ⊂ BH, where H = L2(W, vol) ⊕
⊕

n∈Z

L2(gnX, voln) (5)

(here and throughout the following, BH is the algebra of linear bounded operators in the Hilbert
space H) of the increasing sequence of C∗-algebras

Ψtr,0(W ) ⊂ Ψtr,1(W ) ⊂ Ψtr,2(W ) ⊂ · · · ⊂ Ψtr,N(W ) ⊂ · · ·

Obviously, this closure is a C∗-algebra.
Let us construct the symbol mapping for the operator algebra Ψtr(W ). First, we define the

interior symbol.

Interior Symbol

Let us describe the space on which the interior symbols of the operators in the algebra Ψtr(W )
are defined. As a set, this space is defined as the disjoint union

S̃∗W =
( ∞⊔

n=−∞
S∗(gnU )

)
	 S∗W |W∞ (6)

of cosphere bundles of the closed submanifolds gnU ⊂ W and the restriction of the cosphere
bundle of the manifold W to the closed subset W∞ ⊂ W . The topology on the space (6) is
defined as follows: the spaces S∗(gnU) are not glued to each other [since the interior symbols of
pseudodifferential operators in Ψtr(W ) can have discontinuities along the submanifolds gnX], but
their disjoint union is glued to the space S∗W |W∞ by the following rule: a sequence (xn, ξn) ∈
S∗(gnU) converges to (x, ξ) ∈ S∗W |W∞ as n → ∞ if (xn, ξn) → (x, ξ) in the topology of the
space S∗W . This definition of convergence corresponds to the fact that the algebra Ψtr(W ) is
obtained as a completion from elements whose interior symbols are continuous in a neighborhood
of the set W∞. One can readily see that the resulting space (6) is compact.

Since the interior symbols of operators in Ψtr,N(W ) with any N ≥ 0 are continuous functions
on S∗W with jumps on the submanifolds gnX, −N ≤ n ≤ N +1, it follows that the interior symbol
defines a homomorphism

σN
int : Ψtr,N(W )/K → C(S̃∗W ) (7)

of C∗-algebras, where K stands for the ideal of compact operators. This notion is well defined by
virtue of the results in [8].

Now we define the boundary symbol.

Boundary Symbol

Given x0 ∈ X ⊂ W , the boundary symbol of an operator D ∈ Ψtr,N(W ) at the point gnx0 ∈ gnX
is defined as follows (see [8]).
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1. First, we freeze the coefficients of the operator D and pass to an operator on the tangent
space Tgnx0W at that point, which acts in the space

L2(Tgnx0W, volgnx0) ⊕ L2(Tgnx0(g
nX), volngnx0

), (8)

which is the direct sum of L2-spaces with respect to the volume forms vol and voln of the man-
ifolds W and gnX at that point. In what follows, for brevity, we omit the notation of points at
which the volume forms are computed.

2. Next, we define isomorphisms of the spaces

L2(Tgnx0W, vol) ⊕ L2(Tgnx0(g
nX), voln) � L2(T ∗

gnx0
W, vol) ⊕ L2(T ∗

gnx0
(gnX), voln)

� L2(T ∗
x0

W, (∂gn)∗vol) ⊕ L2(T ∗
x0

X, volX) � L2

(
T ∗

x0
X, volX ;L2

(
R,

(∂gn)∗vol
volX

)
⊕ C

)

� L2(T ∗
x0

X, volX ;L2(R) ⊕ C). (9)

Here the first isomorphism is defined by the Fourier transform Fx→p mapping functions on the tan-
gent space with coordinates x into functions on the cotangent space with coordinates p; the second
isomorphism is defined by the mapping (∂gn)∗ induced by the codifferential ∂gn : T ∗

x0
W → T ∗

gnx0
W

[recall that the codifferential is expressed via the differential by the formula ∂gn = ((dgn)t)−1]; to de-
fine the third isomorphism in (9), we choose a local coordinate system (x′, t) in a neighborhood of
a point x0 of the submanifold X ⊂ W such that X is defined by the equation t = 0. The dual co-
ordinates in the cotangent space are denoted by (η, τ). Then the expansion T ∗

x0
W = T ∗

x0
X ⊕T ∗

0 R is
valid for the cotangent space; it defines the third isomorphism under which the functions on T ∗

x0
W

are considered as L2-functions on T ∗
x0

X with respect to the volume form volX . Moreover, these
functions take values in the space L2 on the line with the coordinate τ with respect to the volume
form

μx0,n =
(∂gn)∗volgnx0

volX,x0

;

the fourth isomorphism in (9) corresponds to the isomorphism

L2(R, μx0,n) −→ L2(R), u �−→ u
(μx0,n

dτ

)1/2

.

We have thereby constructed isomorphisms of the spaces occurring in formula (9). As follows
from their definition, these isomorphisms are isometric.

Now the boundary symbol of the operator D at the point gnx0 (see [8]) is a continuous operator
family

σb(D)(gnx0, η) ∈ B(L2(R) ⊕ C), (10)

which is twisted-homogeneous with respect to the covariables η; i.e., the relation

σb(D)(gnx0, λη) = κ
−1
λ σb(D)(gnx0, η)κλ

holds for all λ > 0 and |η| 
= 0, where

κλ(f(t), z) = (λ−1/2f(λ−1t), z)

is the unitary dilation group in the space L2(R) ⊕ C.
Now one can define the boundary symbol mapping on the algebra Ψtr,N(W ) as a homomorphism

of C∗-algebras,
σN

b : Ψtr,N(W )/K −→ l∞(Z, C̃(T ∗
0 X,B(L2(R) ⊕ C))), (11)

where on the right-hand side we have the C∗-algebra of norm-bounded sequences of elements of the
C∗-algebra C̃(T ∗

0 X,B(L2(R) ⊕ C)) of continuous twisted-homogeneous functions defined on T ∗
0 X

and taking values in operators acting in the space L2(R) ⊕ C.
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ELLIPTIC DILATION–CONTRACTION PROBLEMS ON MANIFOLDS WITH BOUNDARY 1335

Properties of Operators

Consider the symbol mapping

σN = (σN
int, σ

N
b ) : Ψtr,N(W )/K −→ Σ, (12)

consisting of the interior and boundary symbols (7) and (11), where Σ stands for the symbol
C∗-algebra

Σ = C(S̃∗W ) ⊕ l∞(Z, C̃(T ∗
0 X,B(L2(R) ⊕ C))).

Proposition 1. The symbol mappings σN with distinct N are compatible with the embeddings
Ψtr,N(W ) ⊂ Ψtr,N+j(W ) [i.e., the relation σN(D) = σN+j(D) holds for any operator D ∈ Ψtr,N(W )
and for arbitrary j ≥ 0] and extend by continuity up to the monomorphism of C∗-algebras

σ = (σint, σb) : Ψtr(W )/K −→ Σ. (13)

Proof. 1. The compatibility of symbol mappings follows from the construction. Therefore,
for the operator

D ∈
∞⋃

N=1

Ψtr,N(W )

we denote the symbol by σ(D). The equality

‖σ(D)‖ = ‖D‖B/K (14)

of the norm of a symbol and the norm of the corresponding operator in the Calkin algebra B/K
was obtained in [8]. It follows from (14) that the symbol can be extended by continuity to the
closure of the above-mentioned union of algebras, i.e., to the algebra Ψtr(W ).

2. The homomorphy of the symbol mapping D �→ σ(D) follows from the similar property of the
symbols σN .

3. Let us show that the symbol mapping σ defines a monomorphism of the Calkin algebra (13).
Suppose the contrary. Let σ(D) = 0 and D /∈ K. Then there exists a sequence of operators
DN ∈ Ψtr,N(W ) such that DN → D in norm, and, in addition, σ(DN ) → 0 as N → ∞. By (14),
hence we obtain

‖DN‖B/K −→ 0 as N → ∞.

Consequently, the operator D, being the limit of the sequence DN , defines the zero element in the
Calkin algebra, thus, is compact. We obtain a contradiction with the assumption that D /∈ K.
The proof of the assertion is complete.

4. DILATION–CONTRACTION PROBLEMS ON THE CLOSED MANIFOLD

We define the action of the group Z on the space H [see formula (5)] so as to ensure that the
unity of the group is mapped into the operator

T0 : H −→ H,

T0(u, {un}) = (J1/2(g−1)∗u, (g−1)∗un−1),

where the positive coefficient

J =
(g−1)∗vol

vol
, J ∈ C∞(W ),

is chosen so as to ensure that T0 is a unitary operator. Then the conjugation with the operator
T0 defines an action of the group Z on the algebra Ψtr(W ) by automorphisms, and the C∗-crossed
product Ψtr(W ) � Z is well defined (e.g., see [11]). The elements

D = {Dn}n∈Z ∈ Ψtr(W ) � Z

DIFFERENTIAL EQUATIONS Vol. 52 No. 10 2016



1336 SAVIN, STERNIN

of the crossed product are defined as Z-operators

D =
∑

n∈Z

DnT n
0 : H −→ H (15)

in the space H. Our aim is to define the symbol of such operators.

Definition 2. The symbol of the Z-operator (15) is defined as the element

σ(D) ∈ Σ � Z,

consisting of the interior symbol
σint(D) ∈ C(S̃∗W ) � Z

and the boundary symbol

σb(D) ∈ l∞(Z, C̃(T ∗
0 X,B(L2(R) ⊕ C))) � Z.

Proposition 2. The symbol mapping D �→ σ(D) induces the monomorphism

(Ψtr(W )/K) � Z −→ Σ � Z.

Proof. The functor A �→ A�Z of the crossed product of C∗-algebras A by the group Z is exact;
i.e., the fact that the symbol mapping (13) is monomorphic (see Proposition 1) implies that the
symbol mapping

σ : (Ψtr(W )/K) � Z −→ Σ � Z (16)

is monomorphic. The proof of the proposition is complete.
Since the algebra Ψtr(W ) is nonunital, we find that its elements [as well as elements of the

crossed product Ψtr(W ) � Z] do not define Fredholm operators. However, the Fredholm property
can be obtain by restricting operators to appropriate subspaces or by unitization of the algebra.

5. DILATION–CONTRACTION PROBLEMS ON THE MANIFOLD
WITH BOUNDARY

Consider the orthogonal projection

P : H −→ H

onto the subspace

L2(M) ⊕ L2(X) = {(u, {un})|u|W\M = 0, un = 0 if n 
= 0}.

Obviously, this projection, defined via the characteristic function of the manifold M ⊂ W , lies
in the algebra Ψtr(W ) (as follows from the definition of the above-mentioned algebra). We intro-
duce the following notion.

Definition 3. A dilation–contraction problem on the manifold M with boundary is defined as
the restriction

PDP : L2(M) ⊕ L2(X) −→ L2(M) ⊕ L2(X), D ∈ Ψtr(W ) � Z,

of the Z-operator D on the ambient manifold W to the subspace

ImP � L2(M) ⊕ L2(X).

DIFFERENTIAL EQUATIONS Vol. 52 No. 10 2016
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Definition 4. The dilation–contraction problem PDP is said to be elliptic if there exists
a symbol σ(D)−1 ∈ Σ � Z such that the relations

σ(P )σ(D)σ(P )σ(D)−1σ(P ) = σ(P ), σ(P )σ(D)−1σ(P )σ(D)σ(P ) = σ(P ) (17)

hold in the algebra Σ � Z, i.e., if the symbol of the original problem is invertible on the range of
the projection σ(P ).

Theorem 1. An elliptic dilation–contraction problem is Fredholm.

Proof. Let the problem PDP be elliptic. It follows that there exists an inverse symbol σ(D)−1.
By D′ ∈ Ψtr�Z we denote an arbitrary dilation–contraction operator corresponding to that symbol.
Now let us show that the operator PD′P : Im P → Im P is an almost inverse of the operator
PDP : Im P → ImP . Indeed, it follows from (17) that the symbols of the operators

PD′PDP − P and PDPD′P − P

are zero, and (by virtue of Proposition 1) these operators are compact. Hence we obtain the desired
Fredholm property. The proof of the theorem is complete.

6. TRAJECTORY SYMBOLS

To verify the ellipticity condition in Theorem 1 for particular operators, it is convenient to pass
to the trajectory representation of the crossed product (see [1, 9]). This representation and the
corresponding trajectory symbol will be described in this section.

Trajectory Symbols for Dilation–Contraction Problems
on the Closed Manifold

For the dilation–contraction problem, one has

D =
∑

k

DkT
k
0 : H −→ H,

where
H = L2(W, vol) ⊕

⊕

n∈Z

L2(gnX, voln),

and, with respect to this expansion, the operators Dk ∈ Ψtr(W ) have the form of matrices

Dk =

(
Dk Ck

Bk Qk

)

with pseudodifferential operators Dk, boundary operators Bk, coboundary operators Ck, and pseu-
dodifferential operators Qk.

Then the interior trajectory symbol

σint(D)(x, ξ) =
∑

k∈Z

σint(Dk)(∂gn(x, ξ))T k : l2(Z) −→ l2(Z), T u(n) = u(n − 1), (18)

is defined for each point (x, ξ) ∈ S̃∗W of the cosphere bundle; it is a finite-difference operator
acting in the space l2 of functions on the trajectory of the point (x, ξ). [The trajectory {∂gn(x, ξ)}
is isomorphic to the set of integers.]

For each point (x′, η) ∈ T ∗
0 X of the cotangent bundle of the submanifold X, we define the

boundary trajectory symbol

σb(D)(x′, η) =
∑

k∈Z

σb(Dk)(x′, η)T k : l2(Z, L2(R) ⊕ C) −→ l2(Z, L2(R) ⊕ C), (19)

where
T (u(n, τ), v(n)) = (u(n − 1, τ), v(n − 1)).

DIFFERENTIAL EQUATIONS Vol. 52 No. 10 2016



1338 SAVIN, STERNIN

Proposition 3. A symbol a ∈ Σ+
� Z, where Σ+ is the algebra of symbols with adjoint unit , is

invertible if and only if the following symbols are invertible.
1. The interior trajectory symbol aint(x, ξ) for all (x, ξ) ∈ S̃∗W [see relation (18)].
2. The boundary trajectory symbol ab(x′, η) for all (x′, η) ∈ S∗X [see (19)].

Proof. It follows from the properties of crossed products that a symbol a is invertible in the
crossed product Σ+

� Z if and only if its interior and boundary components

aint ∈ C(S̃∗W ) � Z, ab ∈ l∞(Z, C̃(T ∗
0 X,B(L2(R) ⊕ C))) � Z

are invertible. Next, the invertibility of the interior symbol is equivalent to the invertibility of
all of its restrictions aint(x, ξ) to trajectories (see [1, p. 297]). Finally, the boundary symbol ab

is an operator function ab(x′, η) on T ∗X that ranges in bounded operators acting in the space
l2(Z, L2(R) ⊕ C). The invertibility of the latter function is equivalent to its invertibility at each
point. The proof of the assertion is complete.

Trajectory Symbols for Dilation–Contraction Problems on the Manifold with Boundary

Now let

DP = PDP : L2(M) ⊕ L2(X) −→ L2(M) ⊕ L2(X), where D ∈ Ψtr(W ) � Z,

be a dilation–contraction problem on the manifold M with boundary X. We have the following
expression in closed form for such a problem:

DP = P

( ∑
k DkT

k
0

∑
k≥0 CkT

k
0∑

k≤0 BkT
k
0 DX

)
, (20)

where DX is a pseudodifferential operator on X, Dk is a pseudodifferential operator on M , and Ck

and Bk are (co)boundary operators on X.
To derive expressions for the trajectory symbols of problem (20), it suffices to restrict the

trajectory symbols of the problem D to the range of the trajectory symbol of the projection P .
The following expressions for symbols can be obtained by straightforward computations.

Just as above, the interior symbol of problem (20) at points (x, ξ) ∈ S̃∗M , where x ∈ M∞
(i.e., the orbit of the point x lies entirely in M), is expressed in the form

σint(DP )(x, ξ) =
∑

k∈Z

σint(Dk)(∂gn(x, ξ))T k : l2(Z) −→ l2(Z), T u(n) = u(n − 1). (21)

But if the orbit of the point x does not lie entirely in M , then the trajectory symbol of the projection
P is simply the projection onto the subspace of half-infinite sequences. As a result, we obtain the
expression

σint(DP )(x, ξ) = π+

∑

k∈Z

σint(Dk)(∂gn(x, ξ))T k : l2(Z+) −→ l2(Z+), T u(n) = u(n − 1), (22)

for the interior symbol at the points (x, ξ) ∈ S̃∗M , where x ∈ M\g(M), Z+ = {n ≥ 0}, and
π+ : l2(Z) → l2(Z+) stands for the operator of “forgetting” the negative part of sequences.

Now let us compute the boundary trajectory symbol of the problem DP . Note that the boundary
symbol σb(P )(x′, η) of the projection P is the projection onto the subspace

Im Π+ ⊕ l2(Z>0, L
2(R)) ⊕ C ⊂ l2(Z+, L2(R)) ⊕ C, Z>0 = {n > 0} ∩ Z.

Here
Π+ : L2(R) −→ L2(R)

DIFFERENTIAL EQUATIONS Vol. 52 No. 10 2016



ELLIPTIC DILATION–CONTRACTION PROBLEMS ON MANIFOLDS WITH BOUNDARY 1339

is the projection onto the subspace of functions that admit an analytic continuation to the lower
half-plane (or, equivalently, the Fourier transform of the subspace of functions vanishing for t < 0).

Hence it follows that, for the problem DP , its boundary trajectory symbol at a point (x′, η) ∈ T ∗
0 X

of the cotangent bundle of the submanifold X is an operator acting in the space

σb(DP )(x′, η) : Im Π+ ⊕ l2(Z>0, L
2(R)) ⊕ C −→ Im Π+ ⊕ l2(Z>0, L

2(R)) ⊕ C. (23)

By a straightforward computation, one can obtain the following expression for the boundary tra-
jectory symbol:

σb(DP )(x′, η) = σ(P )

( ∑
k σb(Dk)(x′, η)T k

∑
k≥0 σb(Ck)(x′, η)T k

∑
k≤0 σb(Bk)(x′, η)T k σ(DX)(x′, η)

)
.

Via components, the action of the symbol can be written out as

(u0, u1, u2, . . . , z)
σb(DP )(x′,η)�−→ (Π+v0, v1, v2, . . . , w),

vn =
∑

k≤n

[σb(Dk)](x′, η)un−k + σb(Cn)(x′, η)z, n ≥ 0,

w =
∑

n≥0

σb(B−n)(x′, η)un + σ(DX)(x′, η)z.

The last operator can also be written out in the form of the infinite operator matrix

σb(DP ) =

⎛

⎜⎜⎜⎜⎜⎜⎝

Π+σb(D0) Π+σb(D−1) Π+σb(D−2) . . . Π+σb(C0)

σb(D1) σb(D0) σb(D−1) . . . σb(C1)

σb(D2) σb(D1) σb(D0) . . . σb(C2)

· · · · · · · · · · · · · · ·
σb(B0) σb(B−1) σb(B−2) . . . σ(DX)

⎞

⎟⎟⎟⎟⎟⎟⎠
. (24)

Here, for brevity, we omit the arguments (x′, η) of symbols. The matrix (24) is an analog of the
Lopatinskii operator in the theory of classical boundary value problems.

As a consequence of Theorem 1 and Proposition 3, we obtain the following theorem, which is
the main result of the present paper.

Theorem 2. The dilation–contraction problem DP on a manifold with boundary [see (20)] is
Fredholm if it is trajectory elliptic, i.e., if the following conditions are satisfied.

1. The interior trajectory symbol σint(DP )(x, ξ) is invertible for all (x, ξ) ∈ S̃∗M [see rela-
tions (21) and (22)].

2. The boundary trajectory symbol σb(DP )(x′, η) is invertible for all (x′, η) ∈ S∗X [see (23)].
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