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Abstract—We study the electrical impedance tomography problem with piecewise constant
electric conductivity coefficient, whose values are assumed to be known. The problem is to
find the unknown boundaries of domains with distinct conductivities. The input information
for the solution of this problem includes several pairs of Dirichlet and Neumann data on the
known external boundary of the domain, i.e., several cases of specification of the potential and
its normal derivative. We suggest a numerical solution method for this problem on the basis
of the derivation of a nonlinear operator equation for the functions that define the unknown
boundaries and an iterative solution method for this equation with the use of the Tikhonov
regularization method. The results of numerical experiments are presented.
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1. INTRODUCTION

The electric impedance tomography problem in the case of a piecewise constant conductivity
is the problem of finding the boundaries of inhomogeneities inside the domain Ω on the basis of
measurements of the potential (Dirichlet data) and its normal derivative (Neumann data) on the
external boundary of the domain Ω. The uniqueness of the solution of this problem in some special
cases was studied in [1–4]. Numerical solution methods for this problem were suggested in [5–14].
Either problems of finding one boundary were solved, or methods for finding several boundaries
of a very simple form were constructed in that connection. Note that even in the case of one
unknown boundary, the electric impedance tomography problem is strongly unstable. Therefore,
for a sufficiently accurate determination of the unknown boundary, one should use several pairs of
Dirichlet–Neumann data rather than one pair and apply regularizing algorithms [15, p. 53]. If the
problem of finding several unknown boundaries is to be solved, then it is so much the more necessary
to use several pairs of Dirichlet–Neumann data. In the present paper, we suggest a numerical
method for finding the unknown boundaries on the basis of several pairs of Dirichlet–Neumann
data. To simplify the formulas, we consider the case of two unknown boundaries, although the
suggested scheme of the numerical method can be used in the case of more boundaries as well.

Let Ω be a bounded connected domain on the plane, let the curve Γ0 be its boundary, let Ω1

and Ω2 be connected domains bounded by curves Γ1 and Γ2, respectively, such that Ω1,Ω2 ⊂ Ω
and Ω1 ∩ Ω2 = ∅. The curves Γ0, Γ1, and Γ2 are sufficiently smooth. Let Ω0 = Ω\(Ω1 ∪ Ω2).

Consider the functions f j(M), j = 1, . . . , k, that are continuous and not constant on Γ0. Let
the functions uj(M) satisfy the conditions uj ∈ C(Ω) and uj(M) = uj

i (M), M ∈ Ωi (i = 0, 1, 2),
where uj

i ∈ C2(Ωi) ∩ C1(Ωi),

Δuj
i(M) = 0, M ∈ Ωi, i = 0, 1, 2, (1.1)
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uj
0(M) = uj

i (M), M ∈ Γi, i = 1, 2, (1.2)

σ0

∂uj
0(M)

∂n
= σ

∂uj
i (M)

∂n
, M ∈ Γi, i = 1, 2, (1.3)

uj
0(M) = f j(M), M ∈ Γ0, (1.4)

and σ0 and σ are positive constants.

The electric impedance tomography problem can be stated as the problem inverse to the Dirich-
let problems (1.1)–(1.4). Let the curve Γ0, the constants σ0 and σ, and the functions f j(M),
j = 1, . . . , k (the Dirichlet data), be given in the Dirichlet problems (1.1)–(1.4). The problem is
to find the curves Γ1 and Γ2 on the basis of the following additional information on the solutions
uj(M) of the Dirichlet problems (1.1)–(1.4) :

∂uj(M)

∂n
= gj(M), M ∈ Γ0, (1.5)

where n is the inward normal on Γ0 and the gj(M) are given functions (Neumann data) continuous
on the curve Γ0.

2. NUMERICAL METHOD

The numerical method for solving the stated problem includes the derivation of a nonlinear
operator equation for the unknown boundaries and the construction of an iterative method for the
solution of this operator equation.

To construct the solutions uj(M), j = 1, . . . , k, of the Dirichlet problems (1.1)–(1.4), we use the
theory of potential [16, p. 348].

For each j = 1, . . . , k, consider the following system of integral equations for the densities μj(P ),
νj
1(P ), and νj

2(P ) :∫

Γ0

μj(P ) ln

(
1

�MP

)
dlP + σ∗

∫

Γ1

νj
1(P ) ln

(
1

�MP

)
dlP

+ σ∗
∫

Γ2

νj
2(P ) ln

(
1

�MP

)
dlP = f j(M), M ∈ Γ0, (2.1)

πνj
1(M) +

∫

Γ0

μj(P )
∂

∂nm

ln

(
1

�MP

)
dlP + σ∗

∫

Γ1

νj
1(P )

∂

∂nm

ln

(
1

�MP

)
dlP

+ σ∗
∫

Γ2

νj
2(P )

∂

∂nm

ln

(
1

�MP

)
dlP = 0, M ∈ Γ1, (2.2)

πνj
2(M) +

∫

Γ0

μj(P )
∂

∂nm

ln

(
1

�MP

)
dlP + σ∗

∫

Γ1

νj
1(P )

∂

∂nm

ln

(
1

�MP

)
dlP

+ σ∗
∫

Γ2

νj
2(P )

∂

∂nm

ln

(
1

�MP

)
dlP = 0, M ∈ Γ2, (2.3)

where σ∗ = (σ0 − σ)/(σ0 + σ) and nm is the inward normal to the curve Γ1 or Γ2.

Assertion. If continuous functions μj(P ), νj
1(P ), and νj

2(P ) satisfy the system of integral
equations (2.1)–(2.3), then the function

uj(M) =

∫

Γ0

μj(P ) ln

(
1

�MP

)
dlP +σ∗

∫

Γ1

νj
1(P ) ln

(
1

�MP

)
dlP +σ∗

∫

Γ2

νj
2(P ) ln

(
1

�MP

)
dlP , (2.4)

M ∈ Ω, is a solution of the Dirichlet problem (1.1)–(1.4).
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Proof. Since the simple layer potentials occurring in the representation (2.4) are continuous in
the domain Ω, it follows that uj(M) belongs to C(Ω). Since the simple layer potentials are twice
continuously differentiable and satisfy the Laplace equation in the domain Ω0 ∪Ω1 ∪Ω2, it follows
that the function uj(M) has the same properties. Therefore, the function uj(M) satisfies Eq. (1.1)
and condition (1.2). The Dirichlet condition (1.4) holds, because the potential densities μj(P ),
νj
1(P ), and νj

2(P ) satisfy Eq. (2.1).

Let us show that the function uj(M) determined by relation (2.4) satisfies condition (1.3). Let
the point M belong to the curve Γ1. By computing the exterior limit of the normal derivative,
we obtain

σ0

∂uj(M)

∂nm

= σ0

∫

Γ0

μj(P )
∂

∂nm

ln

(
1

�MP

)
dlP + σ0σ

∗
∫

Γ1

νj
1(P )

∂

∂nm

ln

(
1

�MP

)
dlP

+ σ0σ
∗
∫

Γ2

νj
2(P )

∂

∂nm

ln

(
1

�MP

)
dlP + πσ0σ

∗νj
1(M), M ∈ Γ1, (2.5)

and by computing the interior limit of the normal derivative, we obtain the relation

σ
∂uj(M)

∂nm

= σ

∫

Γ0

μj(P )
∂

∂nm

ln

(
1

�MP

)
dlP + σσ∗

∫

Γ1

νj
1(P )

∂

∂nm

ln

(
1

�MP

)
dlP

+ σσ∗
∫

Γ2

νj
2(P )

∂

∂nm

ln

(
1

�MP

)
dlP − πσσ∗νj

1(M), M ∈ Γ1. (2.6)

It follows from relations (2.5) and (2.6) and Eq. (2.2) that the function uj(M) satisfies condi-
tion (1.3) everywhere on the curve Γ1.

In a similar way, by using Eq. (2.3), one can prove the validity of relation (1.3) for the function
uj(M) on the curve Γ2. The proof of the assertion is complete.

By using the representation (2.4) and the additional conditions (1.5), we obtain the equation

−πμj(M) +

∫

Γ0

μj(P )
∂

∂nm

ln

(
1

�MP

)
dlP + σ∗

∫

Γ1

νj
1(P )

∂

∂nm

ln

(
1

�MP

)
dlP

+ σ∗
∫

Γ2

νj
2(P )

∂

∂nm

ln

(
1

�MP

)
dlP = gj(M), M ∈ Γ0. (2.7)

We pass in Eqs. (2.1)–(2.3) and (2.7) to the polar coordinates. Let the curve Γ0 be defined in
the polar coordinate system with origin M0 by the function R(ψ) ∈ C2[0, 2π]. Take a Cartesian
coordinate system with origin M0. The points M(x, y) on the curve Γ0 have the coordinates

x = R(ψ) cosψ, y = R(ψ) sinψ, 0 ≤ ψ ≤ 2π.

Consider the class of unknown curves Γ1 and Γ2 such thatM01(x01, y01) andM02(x02, y02) are known
points that are centers of star shapes for all curves Γ1 and Γ2, respectively. For the parametriza-
tion of the curves Γ1 and Γ2, we use two polar coordinate systems with origins M01(x01, y01) and
M02(x02, y02). Let the points M(x, y) of the curve Γ1 be defined by the function r1(ψ) ∈ C2[0, 2π],

x = r1(ψ) cosψ + x01, y = r1(ψ) sinψ + y01, 0 ≤ ψ ≤ 2π,

and let the points M(x, y) of the curve Γ2 be defined by the function r2(ψ) ∈ C2[0, 2π],

x = r2(ψ) cosψ + x02, y = r2(ψ) sinψ + y02, 0 ≤ ψ ≤ 2π.

DIFFERENTIAL EQUATIONS Vol. 52 No. 7 2016



880 GAVRILOV, DENISOV

We impose an additional condition on the class of the curves Γ1 and Γ2. Let ‖ri‖C2[0,2π] ≤ ci,
i = 1, 2, where the ci, i = 1, 2, are given numbers.

Let us rewrite Eqs. (2.1)–(2.3), (2.7) in polar coordinates. We introduce the functions

E(p, q) =
√

p2 + q2,

N(ϕ,ψ) = −1

2

√
R2(ϕ) + (R′(ϕ))2 ln(R2(ϕ) +R2(ψ)− 2R(ϕ)R(ψ) cos(ϕ− ψ)),

Di(ζ, ψ, p, q)

= −1

2
E(p, q) ln([R(ψ) cos ψ − p cos ζ − x0i]

2 + [R(ψ) sinψ − p sin ζ − y0i]
2), i = 1, 2.

By passing to polar coordinates in Eq. (2.1), we obtain

2π∫

0

N(ϕ,ψ)μj(ϕ) dϕ + σ∗

2π∫

0

D1(ζ, ψ, r1(ζ), r
′
1(ζ))ν

j
1(ζ) dζ

+ σ∗

2π∫

0

D2(θ, ψ, r2(θ), r
′
2(θ))ν

j
2(θ) dθ = f j(ψ), 0 ≤ ψ ≤ 2π. (2.8)

We introduce the functions

Q(ϕ,ψ, p1, q1, p2, q2) =
E(p2, q2)

E(p1, q1)

[p1 − p2 cos(ψ − ϕ)]p1 − p2q1 sin(ψ − ϕ)

p21 + p22 − 2p1p2 cos(ψ − ϕ)
,

W (ϕ,ψ, p1, q1, p2, q2, a, b, c, d) =
E(p2, q2)

E(p1, q1)
([p1 cosψ + a− p2 cosϕ− c][q1 sinψ + p1 cosψ]

− [p1 sinψ + b− p2 sinϕ− d][q1 cosψ − p1 sinψ])([p1 cosψ + a− p2 cosϕ− c]2

+ [p1 sinψ + b− p2 sinϕ− d]2)−1.

We pass in Eqs. (2.2) and (2.3) to polar coordinates,

πνj
1(ψ) +

2π∫

0

W1(ϕ,ψ, r1(ψ), r
′
1(ψ))μ

j(ϕ) dϕ + σ∗

2π∫

0

Q(ζ, ψ, r1(ψ), r
′
1(ψ), r1(ζ), r

′
1(ζ))ν

j
1(ζ) dζ

+ σ∗

2π∫

0

W2(θ, ψ, r1(ψ), r
′
1(ψ), r2(θ), r

′
2(θ))ν

j
2(θ) dθ = 0, 0 ≤ ψ ≤ 2π, (2.9)

πνj
2(ψ) +

2π∫

0

W3(ϕ,ψ, r2(ψ), r
′
2(ψ))μ

j(ϕ) dϕ + σ∗

2π∫

0

W4(ζ, ψ, r2(ψ), r
′
2(ψ), r1(ζ), r

′
1(ζ))ν

j
1(ζ) dζ

+ σ∗

2π∫

0

Q(θ, ψ, r2(ψ), r
′
2(ψ), r2(θ), r

′
2(θ))ν

j
2(θ) dθ = 0, 0 ≤ ψ ≤ 2π, (2.10)

where
W1(ϕ,ψ, p, q) = W (ϕ,ψ, p, q,R(ϕ), R′(ϕ), x01, y01, 0, 0),

W2(θ, ψ, p1, q1, p2, q2) = W (θ, ψ, p1, q1, p2, q2, x01, y01, x02, y02),

W3(ϕ,ψ, p, q) = W (ϕ,ψ, p, q,R(ϕ), R′(ϕ), x02, y02, 0, 0),

W4(ζ, ψ, p1, q1, p2, q2) = W (ζ, ψ, p1, q1, p2, q2, x02, y02, x01, y01).
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We pass to polar coordinates in Eqs. (2.7),

−πμj(ψ) +

2π∫

0

QR(ϕ,ψ)μ
j(ϕ) dϕ + σ∗

2π∫

0

W5(ζ, ψ, r1(ζ), r
′
1(ζ))ν

j
1(ζ) dζ

+ σ∗

2π∫

0

W6(θ, ψ, r2(θ), r
′
2(θ))ν

j
2(θ) dθ = gj(ψ), 0 ≤ ψ ≤ 2π, (2.11)

where the functions QR(ϕ,ψ), W5(ζ, ψ, p, q), and W6(θ, ψ, p, q) are defined as follows:

QR(ϕ,ψ) = Q(ϕ,ψ,R(ψ), R′(ψ), R(ϕ), R′(ϕ)),

W5(ζ, ψ, p, q) = W (ζ, ψ,R(ψ), R′(ψ), p, q, 0, 0, x01 , y01),

W6(θ, ψ, p, q) = W (θ, ψ,R(ψ), R′(ψ), p, q, 0, 0, x02 , y02).

For each j = 1, . . . , k, consider the nonlinear operator Aj that takes the functions r1(ψ) and
r2(ψ) to the values of the normal derivative of the solution of the Dirichlet problem (1.1)–(1.4)
on the boundary Γ0. The operator Aj acts as follows. For given functions r1(ψ) and r2(ψ), the
system of integral equations (2.8)–(2.10) is solved, and the densities of the potentials μj(ψ), νj

1(ψ),
and νj

2(ψ) are computed. Then, for these densities, one computes the left-hand side of Eq. (2.11),
that is, the value of the operator Aj(r1, r2). By A(r1, r2) we denote the operator defined by all
operators Aj(r1, r2), that is, the operator taking the functions r1(ψ) and r2(ψ) to the values of
normal derivatives of solutions of the Dirichlet problems (1.1)–(1.4) on the boundary Γ0 for all
j = 1, . . . , k. Then the posed electric impedance tomography problem can be represented in the
form of a nonlinear operator equation for the unknown functions r1(ψ) and r2(ψ),

A(r1, r2) = g(ψ), (2.12)

where A = {A1, A2, . . . , Ak}, and g(ψ) = {g1(ψ), g2(ψ), . . . , gk(ψ)}.
Consider an iterative method for solving the operator equation (2.12). Since the two functions

r1(ψ) and r2(ψ) are unknown, we perform iterations successively for each of them; i.e., we make
several steps for one function, then several steps for the other, and so on. Let r1n(ψ) and r2m(ψ)
be some functions obtained in the iteration process. Consider the linearization of Eq. (2.12) with
respect to r1(ψ) in a neighborhood of r1n(ψ) and r2m(ψ); as a result, we obtain a linear equation
for the unknown increment �1n(ψ) of the function r1n(ψ). By μj(ψ; r1n, r2m), ν

j
1(ψ; r1n, r2m), and

νj
2(ψ; r1n, r2m) we denote the solutions of system (2.8)–(2.10) with the functions r1n(ψ) and r2m(ψ).

We introduce the functions

Lj
0(ψ; r1n, r2m, �1n) = σ∗

2π∫

0

∂Q

∂p1
(ζ, ψ, r1n(ψ), r

′
1n(ψ), r1n(ζ), r

′
1n(ζ))ν

j
1(ζ; r1n, r2m)�1n(ψ) dζ

+ σ∗

2π∫

0

∂Q

∂q1
(ζ, ψ, r1n(ψ), r

′
1n(ψ), r1n(ζ), r

′
1n(ζ))ν

j
1(ζ; r1n, r2m)�

′
1n(ψ) dζ

+ σ∗

2π∫

0

∂Q

∂p2
(ζ, ψ, r1n(ψ), r

′
1n(ψ), r1n(ζ), r

′
1n(ζ))ν

j
1(ζ; r1n, r2m)�1n(ζ) dζ

+ σ∗

2π∫

0

∂Q

∂q2
(ζ, ψ, r1n(ψ), r

′
1n(ψ), r1n(ζ), r

′
1n(ζ))ν

j
1(ζ; r1n, r2m)�

′
1n(ζ) dζ
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and

Lj
1(ψ; r1n, r2m, �1n) = σ∗

2π∫

0

∂D1

∂p
(ζ, ψ, r1n(ζ), r

′
1n(ζ))ν

j
1(ζ; r1n, r2m)�1n(ζ) dζ

+ σ∗

2π∫

0

∂D1

∂q
(ζ, ψ, r1n(ζ), r

′
1n(ζ))ν

j
1(ζ; r1n, r2m)�

′
1n(ζ) dζ.

Consider the following system of linear integral equations for the unknown functions
μ̂j(ψ; r1n, r2m), ν̂

j
1(ψ; r1n, r2m), and ν̂j

2(ψ; r1n, r2m) :

2π∫

0

N(ϕ,ψ)μ̂j(ϕ; r1n, r2m) dϕ+ σ∗

2π∫

0

D1(ζ, ψ, r1n(ζ), r
′
1n(ζ))ν̂

j
1(ζ; r1n, r2m) dζ

+ σ∗

2π∫

0

D2(θ, ψ, r2m(θ), r
′
2m(θ))ν̂

j
2(θ; r1n, r2m) dθ = −Lj

1(ψ; r1n, r2m, �1n), 0 ≤ ψ ≤ 2π, (2.13)

πν̂j
1(ψ; r1n, r2m) +

2π∫

0

W1(ϕ,ψ, r1n(ψ), r
′
1n(ψ))μ̂

j(ϕ; r1n, r2m) dϕ

+ σ∗

2π∫

0

Q(ζ, ψ, r1n(ψ), r
′
1n(ψ), r1n(ζ), r

′
1n(ζ))ν̂

j
1(ζ; r1n, r2m) dζ

+ σ∗

2π∫

0

W2(θ, ψ, r1n(ψ), r
′
1n(ψ), r2m(θ), r′2m(θ))ν̂

j
2(θ; r1n, r2m) dθ

= −Lj
2(ψ; r1n, r2m, �1n), 0 ≤ ψ ≤ 2π, (2.14)

πν̂j
2(ψ; r1n, r2m) +

2π∫

0

W3(ϕ,ψ, r2m(ψ), r′2m(ψ))μ̂
j(ϕ; r1n, r2m) dϕ

+ σ∗

2π∫

0

W4(ζ, ψ, r2m(ψ), r′2m(ψ), r1n(ζ), r
′
1n(ζ))ν̂

j
1(ζ; r1n, r2m) dζ

+ σ∗
2π∫

0

Q(θ, ψ, r2m(ψ), r
′
2m(ψ), r2m(θ), r′2m(θ))ν̂

j
2(θ; r1n, r2m) dθ

= −Lj
3(ψ; r1n, r2m, �1n), 0 ≤ ψ ≤ 2π, (2.15)

where

Lj
2(ψ; r1n, r2m, �1n) =

2π∫

0

∂W1

∂p
(ϕ,ψ, r1n(ψ), r

′
1n(ψ))μ

j(ϕ; r1n, r2m)�1n(ψ) dϕ

+

2π∫

0

∂W1

∂q
(ϕ,ψ, r1n(ψ), r

′
1n(ψ))μ

j(ϕ; r1n, r2m)�
′
1n(ψ) dϕ + Lj

0(ψ; r1n, r2m, �1n)

+ σ∗

2π∫

0

∂W2

∂p1
(θ, ψ, r1n(ψ), r

′
1n(ψ), r2m(θ), r

′
2m(θ))ν

j
2(θ; r1n, r2m)�1n(ψ) dθ
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+ σ∗
2π∫

0

∂W2

∂q1
(θ, ψ, r1n(ψ), r

′
1n(ψ), r2m(θ), r

′
2m(θ))ν

j
2(θ; r1n, r2m)�

′
1n(ψ) dθ,

Lj
3(ψ; r1n, r2m, �1n) = σ∗

2π∫

0

∂W4

∂p2
(ζ, ψ, r2m(ψ), r

′
2m(ψ), r1n(ζ), r

′
1n(ζ))ν

j
1(ζ; r1n, r2m)�1n(ζ) dζ

+ σ∗

2π∫

0

∂W4

∂q2
(ζ, ψ, r2m(ψ), r′2m(ψ), r1n(ζ), r

′
1n(ζ))ν

j
1(ζ; r1n, r2m)�

′
1n(ζ) dζ.

The functions Lj
1(ψ; r1n, r2m, �1n), Lj

2(ψ; r1n, r2m, �1n), and Lj
3(ψ; r1n, r2m, �1n), which are the

right-hand sides of Eqs. (2.13)–(2.15), linearly depend on �1n(ψ).

By linearizing Eqs. (2.11) for all j = 1, . . . , k, we obtain

−πμ̂j(ψ; r1n, r2m) + Lj
4(ψ; r1n, r2m, �1n) +

2π∫

0

QR(ϕ,ψ)μ̂
j(ϕ; r1n, r2m) dϕ

+ σ∗

2π∫

0

W5(ζ, ψ, r1n(ζ), r
′
1n(ζ))ν̂

j
1(ζ; r1n, r2m) dζ

+ σ∗

2π∫

0

W6(θ, ψ, r2m(θ), r
′
2m(θ))ν̂

j
2(θ; r1n, r2m) dθ

= gj(ψ)−Aj(r1n, r2m)(ψ), 0 ≤ ψ ≤ 2π, (2.16)

where

Lj
4(ψ; r1n, r2m, �1n) = σ∗

2π∫

0

∂W5

∂p
(ζ, ψ, r1n(ζ), r

′
1n(ζ))ν

j
1(ζ; r1n, r2m)�1n(ζ) dζ

+ σ∗

2π∫

0

∂W5

∂q
(ζ, ψ, r1n(ζ), r

′
1n(ζ))ν

j
1(ζ; r1n, r2m)�

′
1n(ζ) dζ

and the functions Aj(r1n, r2m)(ψ) are obtained by applying the operators Aj to the functions r1n(ψ)
and r2m(ψ).

Equations (2.16), together with system (2.13)–(2.15), define the linear operator equations

Bj [r1n, r2m]�1n(ψ) = hj(ψ), 0 ≤ ψ ≤ 2π. (2.17)

for the unknown function �1n(ψ). The values of the operators Bj[r1n, r2m]�1n(ψ) linear with re-
spect to �1n(ψ) are defined by the left-hand sides of Eqs. (2.16) with the functions μ̂j(ψ; r1n, r2m),
ν̂j
1(ψ; r1n, r2m), and ν̂j

2(ψ; r1n, r2m) found from system (2.13)–(2.15), and the functions hj(ψ) have
the form hj(ψ) = gj(ψ) −Aj(r1n, r2m)(ψ).

The set of equations (2.17) for all j = 1, . . . , k can be represented in the form of a linear operator
equation for the function �1n(ψ),

B[r1n, r2m]�1n = h(ψ), (2.18)

where
B[r1n, r2m] = {B1[r1n, r2m], B

2[r1n, r2m], . . . , B
k[r1n, r2m]},

h(ψ) = {h1(ψ), h2(ψ), . . . , hk(ψ)}.
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By solving this equation and by finding the function �1n(ψ), we obtain

r1n+1(ψ) = r1n(ψ) + �1n(ψ).

The linear equation for the unknown increment �2m(ψ) of the function r2m(ψ) can be constructed
in a similar way. For the initial approximation to the functions r10(ψ) and r20(ψ) one can take very
simple curves, for example, circles. We have thereby completely described the iterative method.

3. IMPLEMENTATION OF THE METHOD AND COMPUTER EXPERIMENTS

Consider an implementation of the suggested iterative method. The definition of the initial ap-
proximation to r10(ψ) and r20(ψ) in the form of circles with fixed radius is an easy problem. After
the definition of these circles, for their centers we take the points M01(x01, y01) and M02(x02, y02),
respectively. Next, we introduce the above-mentioned polar coordinate systems, and on the in-
terval [0, 2π] we introduce grids and grid counterparts of all functions. After the replacement of
integrals by quadrature formulas, the discrete analogs of integral equations are systems of linear
algebraic equations. Therefore, the discrete analog of Eq. (2.18) is a system of linear algebraic
equations. To solve this system of linear algebraic equations, we use the Tikhonov regularization
method [15, p. 122]. The value of the regularization parameter is coordinated with the accuracy of
the determination of the original information and with the step of the iterative process.

Consider examples of use of the suggested iterative method for the numerical solution of the
electric impedance tomography problem. In the first numerical experiment, the boundary Γ0 was
given by a circle of radius 50. For the unknown boundary Γ1 we take an ellipsoid with the principal
axes 40 and 20, and for the unknown boundary Γ2 we take a convex curve defined by a cubic
spline (see Fig. 1). We use the constants σ0 = 5 and σ = 1. The number of measurements on the
external boundary is k = 15. The values of the functions f j(M) = f j(x, y) on Γ0 are defined in
the polar coordinate system with origin coinciding with the center of the circle Γ0 by the functions
f j(50 cosψ, 50 sinψ) = f j(ψ), ψ ∈ [0, 2π] of the polar angle, and

f j(ψ) = 50(exp[−4 sin2(ψ/2 − jπ/15)] − exp[−4 cos2(ψ/2 − jπ/15)]), j = 1, . . . , 15.

The scheme of the numerical experiment was as follows. For given Γ0, Γ1, Γ2, σ0, σ, and
f j(ψ), we solved the Dirichlet problems (1.1)–(1.4) and found the values of the functions gj(ψ),
that is, the values of the normal derivatives of solutions of the Dirichlet problems (1.1)–(1.4) on
the boundary Γ0. These functions were perturbed, and we obtained the functions gjδ(ψ) such that

‖gj(ψ)− gjδ(ψ)‖L2 [0,2π]

‖gj(ψ)‖L2 [0,2π]

= 0.01, j = 1, . . . , 15.

Fig. 1. Results of the first numerical experiment.
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Fig. 2. Results of the second numerical experiment.

Next, for the functions gjδ(ψ) we solved the electric impedance tomography problem by the suggested
iterative method. Figure 1 presents the results of the first numerical experiment. For the initial
approximation to the boundaries Γ0

1 and Γ0
2 we took circles. On the curves Γ0, Γ1, and Γ2, we chose

uniform grids with 120, 60, and 60 nodes, respectively. The curves Γ8
1 and Γ11

2 were obtained by the
solution of the inverse problem after 8 iterations for the curve Γ1 and 11 iterations for the curve Γ2.
The termination condition for the iterative process was given by the error level for the discrepancy.

In the second numerical experiment, the boundary Γ0 was given by an ellipsoid with half-axes 120
and 70 (Fig. 2). For the boundaries Γ1 and Γ2 we took ellipsoids with half-axes 40 and 24 (Fig. 2).
The constants σ0 and σ and the number of measurements k were the same as in the preceding
experiment. The values of the functions f j(M) = f j(x, y) on Γ0 were defined in the polar coordinate
system with origin coinciding with the center of the ellipsoid Γ0 by the functions

f j(60 cosψ, 35 sinψ) = f j(ψ), ψ ∈ [0, 2π],

f j(ψ) = 50(exp[−4 sin2(ψ/2 − jπ/15)] − exp[−4 cos2(ψ/2 − jπ/15)]), j = 1, . . . , 15.

The scheme of the numerical experiment was similar to the previous experiment. For given
Γ0, Γ1, Γ2, σ0, σ, and f j(ψ), we solved the Dirichlet problems (1.1)–(1.4) and found values of the
functions gj(ψ). We perturbed these functions and obtained functions gjδ(ψ) such that

‖gj(ψ)− gjδ(ψ)‖L2 [0,2π]

‖gj(ψ)‖L2 [0,2π]

= 0.01, j = 1, . . . , 15.

Next, for the functions gjδ(ψ) we solved the electric impedance tomography problem. Figure 2
presents the results of the second numerical experiment. For the initial approximation to the
boundaries Γ0

1 and Γ0
2 we took circles. On the curves Γ0, Γ1, and Γ2, we chose uniform grids of 120,

60, and 60 nodes, respectively. The curves Γ14
1 and Γ16

2 were obtained by the solution of the inverse
problem after 14 iterations for the curve Γ1 and 16 iterations for the curve Γ2. The termination
condition for the iterative process was given by the error level for the discrepancy.

It follows from our numerical experiments that a sufficiently accurate determination of several
boundaries requires a large number of Dirichlet–Neumann pairs.
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