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1. INTRODUCTION

Consider the problem on the periodic solutions of the wave equation

p(x)utt − (p(x)ux)x = g(x, t, u) + f(x, t), 0 < x < π, t ∈ R, (1)
u(x, t + T ) = u(x, t), 0 < x < π, t ∈ R. (2)

The boundary conditions have one of the forms

u(0, t) = u(π, t) = 0, t ∈ R, (3)
u(0, t) = u′(π, t) = 0, t ∈ R, (4)
u′(0, t) = u′(π, t) = 0, t ∈ R. (5)

The more general equation

�(z)utt − (μ(z)uz)z = h(z, t, u) + F (z, t),

which describes the propagation of seismic waves, can be reduced to Eq. (1) by the change of
variables [1] x =

∫ z

0

√
�(s)/μ(s) ds.

The function p(x) satisfies the conditions

p(x) ∈ C2[0, π], p(x) > 0, x ∈ [0, π]. (6)

Set Ω = [0, π] ×R/(TZ), ηp(x) = 2−1p′′/p − 4−1(p′/p)2, and Z+ = N ∪ {0}.
The problem on the periodic solutions of a quasilinear wave equation with constant coefficients

was studied in numerous papers (e.g., see [2–7]). It was proved in [1, 8–11] that there exist time-
periodic solutions of the wave equation with variable coefficients for the case in which the function
ηp(x) is of constant sign (ηp(x) > 0, x ∈ [0, π], in [1, 8–10] and ηp(x) < 0, x ∈ [0, π], in [11]).
The aim of the present paper is to prove theorems on the existence of time-periodic solutions of
the wave equation (1) with one of the boundary conditions (3), (4), and (5) for the case in which the
function ηp(x) can change sign on the interval [0, π].
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PERIODIC SOLUTIONS OF THE WAVE EQUATION 249

2. PROPERTIES OF THE LINEAR PART OF THE EQUATION

We seek solutions of problems (1)–(3); (1), (2), (4); and (1), (2), (5) as sums of Fourier series.
To construct the corresponding orthonormal systems, consider the Sturm–Liouville problems

−(p(x)ϕ′(x))′ = λp(x)ϕ(x), 0 < x < π, (7)
ϕ(0) = ϕ(π) = 0, (8)
ϕ(0) = ϕ′(π) = 0, (9)
ϕ′(0) = ϕ′(π) = 0. (10)

Consider the spaces L2(0, π) and L2(Ω) in which the inner product is defined by the formulas

(ϕ,ψ) =

π∫

0

ϕ(x)ψ(x)p(x) dx, ϕ, ψ ∈ L2(0, π),

(u, v) =
∫

Ω

u(x, t)v(x, t)p(x) dx dt, u, v ∈ L2(Ω).

It follows from problem (7), (8) [or (7), (9), or (7), (10)] that

λ

π∫

0

ϕ2(x)p(x) dx =

π∫

0

(ϕ′(x))2p(x) dx. (11)

Therefore, problems (7), (8); (7), (9); and (7), (10) have nonnegative simple [12, pp. 220–222 of
the Russian translation] eigenvalues λ = λ2

n, n ∈ N (λn ≥ 0), with the corresponding eigenfunc-
tions ϕn(x). Here the eigenvalues are numbered in ascending order, and for all three Sturm–Liouville
problems, we introduce the same notation for the eigenvalues and eigenfunctions. Note that the
inequality λn > 0, n ∈ N, holds for problems (7), (8) and (7), (9), and, for problem (7), (10),
we have λ1 = 0, λn > 0, n ≥ 2, and ϕ1 is a constant function.

We assume that the functions ϕn(x) are normalized in L2(0, π). By the Steklov theorem,
the function system {ϕn(x)} is complete and orthonormal in L2(0, π). Note that relations (8)–(11)
imply that the function system

{ϕ′
n(x)/λn} (12)

[n ≥ 2 for problem (7), (10)] is orthonormal in L2(0, π) as well.
The following asymptotic representation of eigenvalues of the Sturm–Liouville problem (7), (8)

was proved in the monograph [12, pp. 220–222 of the Russian translation] :

λn = n +
B

2π
1
n

+ αn, (13)

where B =
∫ π

0
ηp(x) dx and αn = O(1/n2), n ∈ N. For problem (7), (9), we have the relation

λn = n − 1
2

+
B

2π
1
n

+ βn, (14)

where B =
∫ π

0
ηp(x) dx− p′(π)/p(π) and βn = O(1/n2), n ∈ N, and, for problem (7), (10), we have

λ1 = 0 and

λn = n − 1 +
B

2π
1
n

+ γn, (15)

where B =
∫ π

0
ηp(x) dx + p′(0)/p(0) − p′(π)/p(π) and γn = O(1/n2), n ∈ N, n ≥ 2.

Let H1(Ω) be the Sobolev space obtained by the closure of the space C∞(Ω) in the norm
‖u‖1 = (

∫
Ω
(u2 +u2

x +u2
t )p(x) dx dt)1/2, and let H0

1 (Ω) be the closure, in the norm ‖ ·‖1, of the space
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of functions infinitely differentiable in Ω and compactly supported with respect to x on [0, π] for
each t. The function system

Λ =

{
1√
T

ϕn(x),
√

2√
T

ϕn(x) cos
2π
T

mt,

√
2√
T

ϕn(x) sin
2π
T

mt

}

n,m∈N

is complete and orthonormal in L2(Ω).
By D we denote the set of finite linear combinations of functions in the system Λ. We define

the operator A0 : L2(Ω) → L2(Ω) such that D(A0) = D and A0ϕ = pϕtt − (pϕx)x, ϕ ∈ D(A0).
Let A0ϕ = p−1A0ϕ, ϕ ∈ D(A0). Set A = (A0)∗ in L2(Ω). The functions in the system Λ are the

eigenfunctions of the operators A0 and A with eigenvalues μnm = λ2
n −

(
2π
T

m

)2

, n ∈ N , m ∈ Z+,

which correspond to the eigenfunctions Tmϕn(x) cos
2π
T

mt, n ∈ N, m ∈ Z+, Tmϕn(x) sin
2π
T

mt,

n,m ∈ N. Here Tm =
1√
T

for m = 0 and Tm =

√
2
T

for m > 0.

We seek periodic solutions for which the time period has the form

T = 2π
b

a
, a, b ∈ N, (a, b) = 1. (16)

The function

u =
∞∑

n=1

∞∑

m=0

Tmϕn(x)
(
anm cos

a

b
mt + bnm sin

a

b
mt

)
(17)

belongs to D(A) if and only if the series
∑∞

n=1

∑∞
m=0 μ2

nm(a2
nm + b2

nm) is convergent. In addition,

Au =
∞∑

n=1

∞∑

m=0

μnmTmϕn(x)
(
anm cos

a

b
mt + bnm sin

a

b
mt

)
.

Set σ(A) = {μnm| (n,m) ∈ N × Z+}. It follows from relations (13)–(15) that μnm = 0 if and
only if the relations

am − nb =
Bb

2πn
+ bαn, 2am − (2n − 1)b =

Bb

πn
+ 2bβn, am − (n − 1)b =

Bb

2πn
+ bγn, (18)

hold for problem (1)–(3), problem (1), (2), (4), and problem (1), (2), (5), respectively. If B �= 0,
then, for sufficiently large n, the right-hand sides of relations (18) belong to the interval (−1, 1)
and are nonzero. Therefore, Eq. (18) has at most finitely many solution pairs (n,m) for B �= 0.
Consequently, in this case, the space Ker A is finite-dimensional.

From relations (13)–(15), we obtain the following representations for μnm corresponding to
problem (1)–(3), problem (1), (2), (4), and problem (1), (2), (5), respectively:

μnm =
1
b2

(nb − am)(nb + am) +
B

π
+ ᾱn, (19)

μnm =
1

4b2
((2n − 1)b − 2am)((2n − 1)b + 2am) +

B

π
+ β̄n, (20)

μnm =
1
b2

((n − 1)b − am)((n − 1)b + am) +
B

π
+ γ̄n, (21)

where ᾱn → 0, β̄n → 0, and γ̄n → 0 as n → ∞.

DIFFERENTIAL EQUATIONS Vol. 52 No. 2 2016



PERIODIC SOLUTIONS OF THE WAVE EQUATION 251

Note that the equations nb − am = 0 and (n − 1)b − am = 0 have the solutions n = ar and
m = br, r ∈ N, respectively; n = ar + 1 and m = br, r ∈ N. Therefore, for problems (1)–(3)
and (1), (2), (5), we have the relations

lim
r→∞

μ(ar)(br) =
B

π
, lim

r→∞
μ(ar+1)(br) =

B

π
. (22)

If b is even (accordingly, a is odd), then the equation

(2n − 1)b − 2am = 0 (23)

has the solutions n = ar − (a − 1)/2, m = b(2r − 1)/2, r ∈ N, and for problem (1), (2), (4), there
exists a limit

lim
r→∞

μ(ar−a1)(b(2r−1)/2) =
B

π
, (24)

where a1 = (a − 1)/2.
Therefore, for problems (1)–(3) and (1), (2), (5), the set σ(A) has the unique limit point B/π.

For problem (1), (2), (4), the set σ(A) has the unique limit point B/π for even b, while for odd b
Eq. (23) has no integer solution, and σ(A) is a discrete unbounded set without finite limit points.

One can readily see that there exists a positive constant C0 such that

|μnm| ≥ C0(n + m) (25)

if μnm �= 0; bn �= am for problem (1)–(3), b(n − 1) �= am for problem (1), (2), (4), and either b is
odd or b(2n − 1) �= 2am for problem (1), (2), (5).

In a standard way (see [1]), one can prove the following properties of the operator A : (a) the op-
erator A is self-adjoint in L2(Ω); (b) R(A) is closed in L2(Ω); (c) L2(Ω) = KerA ⊕ R(A).

3. QUASILINEAR EQUATION

First, we assume that f ∈ L2(Ω) and the nonlinear term g is continuous with respect to all
variables and satisfies the following condition: there exist constants α, β ∈ R and C ∈ (0,+∞)
such that

α ≤ g(x, t, u)
p(x)u

≤ β, u ∈ (−∞,−C) ∪ (C,+∞), (x, t) ∈ Ω. (26)

Definition 1. A generalized solution of problems (1)–(3); (1), (2), (4); and (1), (2), (5) is
a function u ∈ L2(Ω) such that

∫

Ω

u(pϕtt − (pϕx)x) dx dt =
∫

Ω

(g(x, t, u) + f)ϕdx dt, ϕ ∈ D.

The following assertion holds for problem (1), (2), (4).

Theorem 1. Let the function g be continuous with respect to all variables and T -periodic in t,
and let conditions (6), (16), and (26) be satisfied , where b is odd and [α, β] ∩ σ(A) = ∅. Then for
each function f(x, t) ∈ L2(Ω), problem (1), (2), (4) has a generalized solution

u ∈ H1(Ω) ∩ C(Ω).

If , in addition, the function g(x, t, u) satisfies the condition

α(u − v)2 ≤ 1
p(x)

(g(x, t, u) − g(x, t, v))(u − v) ≤ β(u − v)2, u, v ∈ R, (x, t) ∈ Ω, (27)

that this generalized solution is unique.
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Proof. Set B(u) =
1

p(x)
g(x, t, u). Then B is an operator from L2(Ω) to L2(Ω). The function

u ∈ L2(Ω) is a generalized solution of problem (1), (2), (4) if and only if

Au − B(u) =
1
p
f. (28)

We prove the existence of a solution of Eq. (28) with the use of Theorem 3.1 in [10]. In a stan-
dard way (see [4]), one can prove the convergence of the series

∑
μnm �=0 1/μ2

nm < ∞. Therefore,
the operator A−1 : R(A) → R(A) is compact.

It follows from condition (26) and the assumptions of the theorem that there exist constants C1,
C2, α1, β1, d, and λ such that [α, β] ⊆ (α1, β1), [α1, β1] ∩ σ(A) = ∅, λ ∈ (α1, β1), d ∈ (0, β1 − λ),
C1, C2 ∈ (0,+∞), and g(x, t, u)/p(x) = λu + h(x, t, u), where

h(x, t, u)u ≥ −C1, |h(x, t, u)| ≤ d|u| + C2, (x, t, u) ∈ Ω × R. (29)

Consequently,

(B(u) − λu, u) =
∫

Ω

h(x, t, u)up(x) dx dt =
∫

Ω

|h(x, t, u)u + C1|p(x) dx dt − C1

∫

Ω

p(x) dx dt

≥
∫

Ω

|h(x, t, u)| |u|p(x) dx dt − 2C1

∫

Ω

p(x) dx dt

≥ 1
d

∫

Ω

h2(x, t, u)p(x) dx dt − C2

d

∫

Ω

|h(x, t, u)|p(x) dx dt − C3

≥ 1
d
‖h(x, t, u)‖2 − C4‖h(x, t, u)‖ − C3 ≥

(
1
d
− ε2

)

‖h(x, t, u)‖2 − C2
4

4ε2
− C3.

Here C3 and C4 are positive constants independent of u, and ε is an arbitrary positive constant.
The assumptions of Theorem 3.1 in [10] are satisfied for sufficiently small ε. This implies the
existence of a solution u ∈ L2(Ω) of Eq. (28).

Set h = B(u) + p−1f ∈ L2(Ω). We expand the function h in a Fourier series in the system Λ,

h =
∞∑

n=1

∞∑

m=0

Tmϕn(x)
(
ānm cos

a

b
mt + b̄nm sin

a

b
mt

)
.

Let u = u1 + u2, where u1 ∈ Ker A and u2 ∈ R(A). Then

u2 =
∑

μnm �=0

Tmϕn(x)
1

μnm

(
ānm cos

a

b
mt + b̄nm sin

a

b
mt

)
.

Since |ϕn(x)| ≤ C for arbitrary n and x ∈ [0, π] (see [12, pp. 220–222 of the Russian translation])
and

∑

μnm �=0

1
|μnm|(|ānm| + |b̄nm|) ≤

(
∑

μnm �=0

1
μ2

nm

)1/2

‖h‖ < ∞,

we have u2 ∈ C2(Ω). It follows from inequality (25) that the sequence
{

m

μnm

}

is bounded. Con-

sequently, (u2)t ∈ L2(Ω). It follows from relations (25) and (14) that the sequence
{

λn

μnm

}

is

bounded. Since system (12) is orthonormal, we have the inclusion (u2)x ∈ L2(Ω). Therefore,
u2 ∈ H1(Ω) ∩ C(Ω).
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The uniqueness of the solution under condition (27) can be proved by analogy with Assertion 1.1
in [13]. The proof of the theorem is complete.

Remark 1. Condition (27) is satisfied if, say, g ∈ C1(Ω × R) and α ≤ 1
p(x)

g′
u ≤ β, (x, t, u) ∈

Ω × R.
Consider problems (1)–(3) and (1), (2), (5) and problem (1), (2), (4) in the case of even b.

Theorem 2. Let the function g ∈ C1(Ω × R) be T -periodic in t, and let conditions (6) and
(16) be satisfied. In the case of problem (1), (2), (4), assume that b is even and there exist positive
constants M1,M2 > 0 such that

|gt(x, t, u)| ≤ M1|u| + M2, (u, x, t) ∈ R× Ω. (30)

In addition, assume that either B < 0 and condition (26) is satisfied , where

α > B/π, [α, β] ∩ σ(A) = ∅

and
−γ ≤ gu(x, t, u)

p(x)
≤ M3, (u, x, t) ∈ R× Ω,

or B > 0 and condition (26) is satisfied with β < B/π, [−β,−α] ∩ σ(A) = ∅, and

−γ ≤ −gu(x, t, u)
p(x)

≤ M3, (u, x, t) ∈ R × Ω,

where M3 > 0 and γ ∈ (0, |B|/π). Then, for each f(x, t) ∈ H1(Ω), problems (1)–(3); (1), (2), (4);
and (1), (2), (5) have a generalized solution u ∈ H1(Ω) ∩ C(Ω). In the case of problem (1)–(3),
the solution u belongs to H0

1 (Ω) ∩ C(Ω).

Proof. Consider the case in which B < 0. (The case of B > 0 can be considered in a similar
way.) We prove the existence of a solution of Eq. (28) by using Theorem 3.2 in [10] and by noting
that the assertion of this theorem remains valid if the condition λ ≥ 0 is replaced by the condition
λ ≥ −a. In this case, its proof remains the same.

We rewrite Eq. (28) in the form

−Au + B(u) = −1
p
f. (31)

Set a0 =
1
2

(

γ +
|B|
π

)

and b0 =
1
2

(

−γ +
3|B|
π

)

. It follows from relations (22) and (24) that there

exists a number r0 ∈ N such that the inclusions

−μ(ar)(br) ∈ [a0, b0], −μ(ar+1)(br) ∈ [a0, b0], −μ(ar−a1)(b(2r−1)/2) ∈ [a0, b0]

hold for the respective three problems for all r ≥ r0.
For each of the considered problems, by M and L we denote the sets

M = {(n,m) ∈ N × Z+| μnm �= 0, nb �= ma}
∪ {(n,m)| n = ar, m = br, r ∈ N, r < r0, μ(ar)(br) �= 0},

L = {(n,m)| n = ar, m = br, r ∈ N, r ≥ r0}

for problem (1)–(3),

M = {(n,m) ∈ N × Z+| μnm �= 0, (2n − 1)b �= 2ma}
⋃{

(n,m)| n = ar − a − 1
2

, m =
b

2
(2r − 1), r ∈ N, r < r0, μ(ar−a1)(b(r−1)/2) �= 0

}

,

L =
{

(n,m)| n = ar − a − 1
2

, m =
b

2
(2r − 1), r ∈ N, r ≥ r0

}
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for problem (1), (2), (4), and

M = {(n,m) ∈ N × Z+| μnm �= 0, (n − 1)b �= ma}
∪ {(n,m)| n = ar + 1, m = br, r ∈ N, r < r0, μ(ar+1)(br) �= 0},

L = {(n,m)| n = ar + 1, m = br, r ∈ N, r ≥ r0}

for problem (1), (2), (5). Here a1 = (a − 1)/2. In addition, we introduce the sets

Λ1 = {u ∈ Λ| Au = 0}, Λ2 =
{

ϕn(x) cos
a

b
mt, ϕn(x) sin

a

b
mt| (n,m) ∈ L

}
,

Λ3 =
{
ϕn(x) cos

a

b
mt, ϕn(x) sin

a

b
mt| (n,m) ∈ M

}
.

Let N1, N2, and N3 be the closures of the sets of finite linear combinations of Λ1, Λ2, and Λ3,
respectively, in L2(Ω). Note that N1 = Ker A.

In a standard way [4], one can show that
∑

(n,m)∈M 1/μ2
nm < ∞. Therefore, properties I and II

in [10] hold for the operator −A.
It follows from the assumptions of the theorem that there exists a number λ < α such that

[λ, α] ∩ σ(A) = ∅. Set h(x, t, u) = g(x, t, u)/p(x) − λu. It follows from condition (26) that there
exist constants C1, C2 ∈ (0,∞) and d ∈ (0, β − λ) such that inequalities (29) are true. Just as in
Theorem 1, one can prove the existence of a constant C5 such that

(B(u) − λu, u) ≥ γ−1
1 ‖B(u) − λu‖2 − C5, u ∈ L2(Ω).

Here γ1 ∈ (0, λ̄ − λ), and λ̄ is the least eigenvalue of A exceeding β. Therefore, the assumptions of
Theorem 3.2 in [10] are satisfied. This implies the existence of a generalized solution u ∈ L2(Ω)
of problems (1)–(3); (1), (2), (4); and (1), (2), (5).

Let us show that if u is a generalized solution of problem (1)–(3), then u ∈ H0
1 (Ω) ∩ C(Ω).

The inclusion u ∈ H1(Ω) ∩ C(Ω) for problems (1), (2), (4) and (1), (2), (5) can be proved in
a similar way.

By P1, P2, and P3 we denote the orthogonal projections in L2(Ω) onto the subspaces N1, N2,
and N3, respectively. Then u = u1 + u2 + u3, where ui = Piu, i ∈ {1, 2, 3}. We project Eq. (31)
onto N1, N2, and N3,

P1

(
1

p(x)
g(x, t, u)

)

+ P1

(
1

p(x)
f(x, t)

)

= 0,

Au2 = P2

(
1

p(x)
g(x, t, u)

)

+ P2

(
1

p(x)
f(x, t)

)

, (32)

Au3 = P3

(
1

p(x)
g(x, t, u)

)

+ P3

(
1

p(x)
f(x, t)

)

. (33)

We expand the function (1/p(x))f(x, t) in a Fourier series in the system Λ,

1
p
f =

∞∑

n=1

∞∑

m=1

Tmϕn(x)
(
anm cos

a

b
mt + bnm sin

a

b
mt

)
.

Since the function p−1f ∈ H1(Ω) is T -periodic in t, we have

∞∑

n=1

∞∑

m=1

m2(a2
nm + b2

nm) < ∞. (34)

Consequently,
∞∑

k=1

k2(α2
k + β2

k) < ∞, (35)
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where αk = a(ak)(bk) and βk = b(ak)(bk). Set fi = Pi(p−1f), i ∈ {1, 2, 3}. Then

f2 =
∞∑

k=r0

Tbkϕak(x)(αk cos(akt) + βk sin(akt)). (36)

It follows from inequality (34) that (f2)t ∈ L2(Ω). In addition,

∞∑

k=r0

|Tbkϕak(x)(αk cos(akt) + βk sin(akt))| ≤
∞∑

k=r0

|Tbk|ϕak(x)|(|αk | + |βk|)|

≤ C6

(
∞∑

k=r0

1
k2

)1/2 (
∞∑

k=r0

k2(α2
k + β2

k)

)1/2

< ∞,

because Tm|ϕn(x)| ≤ C6 for arbitrary n, m, and x ∈ [0, π] (see [12]). Consequently, f2 ∈ C(Ω).
Consider the series

∞∑

k=r0

Tbkϕ
′
ak(x)(αk cos(akt) + βk sin(akt)). (37)

Since system (12) is orthonormal, it follows from relations (13) and (35) that the series (37) is
convergent in L2(Ω). Consequently, (f2)x ∈ L2(Ω) and f2 ∈ H1(Ω). Since N1 is finite-dimensional,
we have the inclusion f3 ∈ H1(Ω).

Relation (33), inequality (25), and the convergence of the series
∑

(n,m)∈M 1/μ2
nm imply the

inclusion u3 ∈ H0
1 (Ω) ∩ C(Ω) (see [11]). By using the Rabinovich method [16], we show that

u2 ∈ H0
1 (Ω).

For a function F ∈ L2(Ω), let F h = h−1(F (x, t + h)−F (x, t)) for h �= 0. Take the inner product
of relation (32) by (uh

2)
−h ∈ N2 in L2(Ω),

(Auh
2 , uh

2) =
∫

Ω

(g(x, t, h))huh
2 dx dt +

∫

Ω

fhuh
2 dx dt.

Let us transform the integrated function as follows:

(g(x, t, u))h =
1
h

(g(x, t + h, u(x, t + h)) − g(x, t, u(x, t + h)))

+
1
h

(g(x, t, u(x, t + h)) − g(x, t, u(x, t)))

= g′
t(x, τ(x, t, h), u(x, t + h)) + gu(x, t, θ(x, t, h))uh.

Consequently,

((−A)uh
2 , uh

2) +
∫

Ω

gu(x, t, θ(x, t, h))(uh
2 )2 dx dt

= −
∫

Ω

(gt(x, τ(x, t, h), u(x, t + h)) + fh)uh
2 dx dt −

∫

Ω

gu(x, t, θ(x, t, h))(uh
1 + uh

3)u
h
2 dx dt.

From inequality (30), the assumptions of the theorem, and the definition of N2, we obtain the
estimate

α0‖uh
2‖2 ≤ C7(1 + ‖uh

1 + uh
3‖ + ‖fh‖)‖uh

2‖,

where α0 =
1
2

(
|B|
π

− γ

)

and C7 is some positive constant.

DIFFERENTIAL EQUATIONS Vol. 52 No. 2 2016



256 RUDAKOV

Since f, u1, u3 ∈ H1(Ω), we have

‖uh
1 + uh

2‖ + ‖f‖h ≤ C8

for some positive constant C8 independent of h. Therefore,

‖uh
2‖ ≤ α−1

0 C7(1 + C8)

for all h; consequently, there exists (u2)t ∈ L2(Ω). It follows from the definition of N2 that

u2 =
∞∑

r=r0

Tbrϕar(x)(αr cos(art) + βr sin(art)).

Since u2 is a periodic function, we have the relation

(u2)t = a
∞∑

r=r0

Tbrϕar(x)r(−αr sin(art) + βr cos(art)).

Since (u2)t ∈ L2(Ω), it follows that
∞∑

r=r0

r2(α2
r + β2

r ) < ∞. (38)

Since
∞∑

r=r0

(|αr| + |βr|) ≤
(

∞∑

r=r0

1
r2

)1/2 (
∞∑

r=r0

r2(α2
r + β2

r )

)1/2

< ∞,

it follows that u2 ∈ C(Ω). Since the function system (12) is orthonormal, it follows from rela-
tions (13) and (38) that (u2)x ∈ L2(Ω). Consequently, u2 ∈ H0

1 (Ω) ∩ C(Ω). The proof of the
theorem is complete.

Remark 2. The solution found in Theorem 2 is unique, if, in addition to assumptions of the
theorem, condition (27) holds for B < 0 and the condition

α(u − v)2 ≤ (1/p(x))(g(x, t, v) − g(x, t, u))(u − v) ≤ β(u − v)2,

u, v ∈ R, (x, t) ∈ Ω × R, is satisfied for B > 0.

4. WAVE EQUATION WITH NONLINEAR TERM OF POWER-LAW GROWTH

We write out the wave equation in the form

p(x)utt − (p(x)ux)x + g(x, t, u) = 0, 0 < x < π, t ∈ R. (39)

Suppose that there exist positive constants A1, A2, A3, A4, and r such that the inequality

A3|u|r−1 − A4 ≤ |g(x, t, u)| ≤ A1|u|r−1 + A2, (40)

where
r > 2,

2
r
A1 < A3 ≤ A1, (41)

holds for all (x, t, u) ∈ Ω × R.

Definition 2. A generalized solution of problems (38), (2), (3); (39), (2), (4); and (39), (2), (5)
is defined as a function u ∈ Lr(Ω) such that

∫

Ω

u(pϕtt − (pϕx)x) dx dt +
∫

Ω

g(x, t, u)ϕdx dt = 0, ϕ ∈ D.
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Theorem 3. Let conditions (6) and (16) be satisfied , let the function g be continuous on Ω×R,
be T -periodic with respect to t, and satisfy conditions (40) and (41), and let either g be indepen-
dent of t or g(x, t,−u) = −g(x, t, u) for all (x, t, u) ∈ Ω × R. In addition, suppose that either
B > 0 and the function g is nondecreasing with respect to u for all (x, t) ∈ Ω or B < 0 and the
function g is nonincreasing with respect to u for all (x, t) ∈ Ω. Then for each d > 0, there exists
a generalized solution u ∈ Lr(Ω) of problems (39), (2), (3); (39), (2), (4); and (39), (2), (5) such
that ‖u‖r ≥ d. For odd b, the generalized solution u of problem (38), (2), (4) satisfies the inclusion
u ∈ H1(Ω) ∩ C(Ω).

The proof of the theorem reproduces that of Theorem 3.1 in [15] with the use of the Feirisl
method [17].
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