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Abstract—We study the Cauchy problem for systems of weakly coupled Klein–Gordon equa-
tions with dissipations. We prove a theorem on the nonexistence of global solutions with positive
initial energy.
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Consider the Cauchy problem for systems of weakly coupled Klein–Gordon equations with dis-
sipations

uitt − Δui + ui + γuit =
m∑

j=1
j �=i

|uj|pj+1|ui|pi−1ui, i = 1, . . . ,m, (1)

ui(0, x) = ui0(x), uit(0, x) = ui1(x), x ∈ Rn, i = 1, . . . ,m, (2)

where (u1, . . . , um) are real functions depending on t ∈ R+ and x ∈ Rn,

n ≥ 2, pj ≥ 0, j = 1, . . . ,m, (3)

and in addition,

0 < pi + pj ≤
2

n − 2
, i, j = 1, . . . ,m if n ≥ 3. (4)

In the present paper, we study the nonexistence of global solutions with positive initial energy.
The nonexistence of global solutions was studied in [1] for nonlinear wave equations with negative

energy and in [2] for a class of abstract equations that, in particular, contains nonlinear wave
equations. The nonexistence of global solutions of nonlinear wave equations with positive initial
energy was considered in [3]. It was shown in the study of nonlinear wave equations in [4] that there
exist initial data with fixed initial energy such that the corresponding Cauchy problem does not have
a global solution. This result was improved in [5]. A mixed problem for systems of two semilinear
wave equations with viscosity and with memory was studied in [6], where the nonexistence of
global solutions with positive initial energy was proved. The nonexistence of global solutions
of problem (1), (2) with negative initial energy was studied in [7] for m = 2 and in [8] for m = 2
and p1 = p2. The nonexistence of global solutions of a generalized fourth-order Klein–Gordon
equation with positive initial energy was analyzed in [9]. A fairly comprehensive picture of the
studies in this direction can be gained from the monograph [10].

This problem with m = 2 and with distinct values of p1 and p2 was not considered in the above-
mentioned papers. For m > 2, each equation contains a sum of nonlinear terms of distinct growth,
which take into account the interaction of various fields [11].
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In what follows, we denote the norm on the space L2(Rn) by | · |, the inner product on L2(Rn)
by 〈· , ·〉, and the norm on the Sobolev space H1 = W 1

2 (Rn) by ‖ · ‖; i.e., ‖u‖ = [||∇u|2 + |u|2|]1/2,
where ∇ is the gradient. Let E(t) be the energy function

E(t) =
m∑

j=1

pj + 1
2

[
|u̇jt(t, ·)|2 + ‖uj(t, ·)‖2 + 2γ

t∫

0

|u̇jt(s, ·)|2 ds

]

−
m∑

i,j=1
i<j

∫

Rn

|ui(t, x)|pi+1|uj(t, x)|pj+1 dx.

In addition, we introduce the notation

I(φ1, . . . , φm) =
m∑

j=1

‖φj‖2 − 2
m∑

i,j=1
i<j

∫

Rn

|φi|pi+1|φj|pj+1 dx.

The main result of the present paper is stated in the following assertion.

Theorem 1. Let conditions (3) and (4) be satisfied , let ui0(·) ∈ H1 and ui1(·) ∈ L2(Rn),
i = 1, . . . ,m, and in addition, let the following conditions be satisfied :

E(0) > 0, (5)
I(u10, . . . , um 0) < 0, (6)

m∑

j=1

〈uj0, uj1〉 ≥ 0, (7)

m∑

j=1

|uj0|2 > 2E(0). (8)

Then the solution of the Cauchy problem (1), (2) blows up in finite time.

Note that, using the notation H = L2(Rn) × · · · × L2(Rn) and

w = [u1, . . . , um]T, A = diag(−Δ + 1, . . . ,−Δ + 1),
D(A) = H2 = H2 × · · · × H2, H2 = W 2

2 (Rn),
B = diag(γ, . . . , γ), D(B) = L2(Rn) × · · · × L2(Rn),

F (w) =

[
m∑

j=1
j �=1

|uj|pj+1|u1|p1−1u1, . . . ,

m∑

j=1
j �=m

|uj|pj+1|um|pm−1um

]T

,

one can rewrite problem (1), (2) in the matrix form

ẅ + Bẇ + Aw = F (w), (9)
w(0) = w0, ẇt(0) = w1 (10)

in the Hilbert space H, where

ẇ = [u̇1, . . . , u̇m]T, ẅ = [ü1, . . . , üm]T,

w0 = [u10(x), . . . , um0(x)]T, w1 = [u11(x), . . . , um1(x)]T.

Obviously, A is a self-adjoint positive definite operator. By using the embedding theorem and
conditions (3) and (4), one can show that the nonlinear operator F (w) from H1 = D(A1/2) =
H1 × · · · × H1 to H satisfies the local Lipschitz condition.

By using the solvability theorem for the Cauchy problem for nonlinear differential equations in
a Hilbert space (see [12]), one can prove the following assertion.

DIFFERENTIAL EQUATIONS Vol. 51 No. 12 2015



NONEXISTENCE OF GLOBAL SOLUTIONS OF THE CAUCHY PROBLEM 1565

Theorem 2. Let conditions (3) and (4) be satisfied. Then there exists a T ′ > 0 such that , for
arbitrary w0 ∈ D(A1/2) and w1 ∈ H, problem (9), (10) has a unique solution

w(·) ∈ C([0, Tmax);H1) ∩ C1([0, Tmax);H).

If Tmax = supT ′ (i.e., Tmax is the length of the maximal existence interval of the solution w(·) ∈
C([0, Tmax);H1) ∩ C1([0, Tmax);H)), then either

(i) Tmax = +∞, or
(ii) lim supt→Tmax−0[‖w(t)‖H1 + ‖ẇ(t)‖H] = +∞.

Remark 1. If w0 = D(A) and w1 ∈ D(A1/2), then

w(·) ∈ C([0, Tmax);H2) ∩ C1([0, Tmax);H1) ∩ ([0, Tmax);H),

where H2 = H2 × · · · × H2.

Proof of Theorem 1. First, we assume that ui0(·) ∈ H2 and ui1(·) ∈ H1, i = 1, . . . ,m. Let us
show that Tmax < +∞.

Suppose the contrary: Tmax = +∞. Let T2 > 0, T3 > 0, and k > 0 be some positive numbers.
Consider the functional

R(t) =
m∑

j=1

1
2

[
|uj(t, ·)|2 + γ

t∫

0

|uj(s, ·)|2 ds + γ|uj0|2(T1 − t)

]
+ k(T2 + t)2. (11)

Hence it follows that

Ṙ(t) =
m∑

j=1

1
2
[2〈uj(t, ·), u̇j(t, ·)〉 + γ|uj(t, ·)|2 − γ|uj0|2] + 2k(t + T2). (12)

Next, by using relations (1) and (2), from (11), we obtain

R̈(t) =
m∑

j=1

[|u̇j(t, ·)|2 − ‖uj(t, ·)‖2] + 2
m∑

i,j=1
i<j

∫

Rn

|ui|pi+1|uj|pj+1 dx + 2k. (13)

It follows from (1) and (2) that

m∑

i,j=1
i<j

∫

Rn

|ui|pi+1|uj|pj+1 dx = −2E(0) +
m∑

j=1

(pj + 1)

[
|u̇j(t, ·)|2 + ‖uj(t, ·)‖2 + 2γ

t∫

0

|u̇j(s, ·)|2 ds

]
,

and by taking into account this relation in (13), we obtain

R̈(t) =
m∑

j=1

(pj + 2)|u̇j(t, ·)|2 +
m∑

j=1

pj‖uj(t, ·)‖2 + 2γ
m∑

j=1

(pj + 1)

t∫

0

|u̇j(s, ·)|2 ds− 2E(0) + 2k. (14)

Lemma 1. Let the assumptions of Theorem 1 be satisfied. Then

I(u1(t, ·), . . . , um(t, ·)) < 0, t ∈ [0, Tmax).
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Lemma 2. Let the assumptions of Theorem 1 be satisfied. Then

ψ(t) =
m∑

j=1

|uj(t, ·)|2 − 2E(0) > 0,

the function ψ(t) is monotone increasing , and

R̈(t) > 0, t ∈ [0, Tmax).

The proof of these lemmas will be given after the proof of Theorem 1.
By using the Hölder inequality, from (12), we obtain the estimate

Ṙ2(t) ≤
[

m∑

j=1

(
|uj(t, ·)|2 + γ

t∫

0

|uj(s, ·)|2 ds

)
+ 2k(t + T2)2

]

×
[

2∑

j=1

(pj + 1)

(
|u̇j(t, ·)|2 + γ

t∫

0

|u̇j(s, ·)|2 ds

)
+ 2k

]
. (15)

By choosing a sufficiently large T2, from Lemma 2 and relations (11), (14), and (15), we obtain

R(t) · R̈(t) − μṘ2(t) ≥ R(t) · R̈(t) − μ

[
2R(t) − 2γ(T1 − t)

m∑

j=1

(pj + 1)|uj0|2
]

×
[

m∑

j=1

(pj + 1)

(
|u̇j(t, ·)|2 + γ

t∫

0

|u̇j(s, ·)|2 ds

)
+ 2k

]

≥ R(t)

[
R̈ − 2μ

(
m∑

j=1

|u̇j(t, ·)|2
)

− γ

m∑

j=1

t∫

0

|u̇j(s, ·)|2 ds + 2k

]

= R(t)

[
m∑

j=1

(pj + 2 − 2μ)|u̇j(t, ·)|2 +
m∑

j=1

pj‖uj(t, ·)‖2

+ 2γ
m∑

j=1

(pj + 1 − μ)

t∫

0

|u̇j(s, ·)|2 ds − 2E(0) + 2k(1 − 2μ)

]
. (16)

Now, by setting μ = minj=1,...,m pj + 1, we obtain

R(t)R̈(t) + (1 + λ)Ṙ2(t) ≥ R(t) · y(t),

where λ = minj=1,...,m pj and y(t) = ψ(t) − k(1 + 2λ).
By using Lemma 2 and by choosing a sufficiently small k, we obtain the inequality y(t) ≥ 0.
Therefore, the inequality

R(t) · R̈(t) − (1 + λ)Ṙ2(t) ≥ 0 (17)

holds for sufficiently large T1, T2 > 0 and for sufficiently small k > 0.
On the other hand, since

Ṙ(0) =
m∑

j=1

〈uj0, uj1〉 + 2kT2,

we have
Ṙ(0) > 0 (18)
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for sufficiently large T2 > 0. Next, by using inequalities (17) and (18), by the standard scheme
(see [1, 2]) we find that there exists a T ∗, 0 < T ∗ < +∞, such that limt→T∗−0 R(t) = +∞.
The resulting contradiction implies that Tmax < +∞.

Remark 2. If ui0(·) ∈ H1 and ui1(·) ∈ L2(Rn), i = 1, . . . ,m, then the justification can be
carried out in a standard way, by approximation of the initial data by smoother functions.

Proof of Lemma 1. By condition (6), there exists a T1 > 0 such that

I(u1(t, ·), . . . , um(t, ·)) < 0, t ∈ [0, T1). (19)

Let us show that T1 = Tmax. Let T1 < Tmax; then

I(u1(T1, ·), . . . , um(T1, ·)) = 0. (20)

We introduce the functional F (t) =
∑m

j=1 |uj(t, ·)|2. By using Remark 2, we obtain

Ḟ (t) = 2
m∑

j=1

〈uj(t, ·), u̇j(t, ·)〉,

F̈ (t) = 2
m∑

j=1

|u̇j(t, ·)|2 + 2
m∑

j=1

[〈uj(t, ·),Δuj(t, ·) − uj(t, ·) − γu̇j(t, ·)〉]

+ 2
m∑

i,j=1
i<j

∫

Rn

|ui(t, x)|pi+1|uj(t, x)|pj+1 dx.

Therefore,
F̈ (t) + γḞ (t) = ϕ(t), (21)

where

ϕ(t) = 2
m∑

j=1

|u̇j(t, ·)|2 − I(u1(t, ·), . . . , um(t, ·)).

By inequality (19), we have
ϕ(t) > 0, t ∈ [0, T1). (22)

It follows from condition (7) and relations (21) and (22) that

Ḟ (t) > 0, t ∈ [0, T1).

Therefore, the function F (t) is monotone increasing on [0, T1); consequently,

F (t) > F (0) =
m∑

j=1

|uj0|2. (23)

By taking into account the continuity of the function F (t), from inequalities (8) and (23),
we obtain

F (T1) > 2E(0). (24)

On the other hand, relation (20) and the definition of the function E(t) imply the inequality

m∑

j=1

|uj(T1, ·)|2 ≤ 2E(0). (25)

The resulting contradiction (24), (25) shows that our assumption fails. Therefore, T1 = Tmax.
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Proof of Lemma 2. By taking into account Lemma 1, from inequalities (8) and (23), we obtain

F (t) − 2E(0) > 0, t ∈ [0, Tmax);

i.e., the function ψ(t) is positive and monotone increasing. Then, by virtue of the representa-
tion (14), we obtain the desired inequality. The proof of the lemma is complete.
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