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1. INTRODUCTION. STATEMENT OF THE PROBLEM

Of basic methods for the study of the existence of periodic solutions of differential equations,
we note the method of Poincaré–Andronov point mappings [1, p. 328; 2, p. 66], the topological
method, the method of directing functions [3, p. 72; 4, p. 172], variational methods, etc. The ap-
proach suggested in the present paper is most close to the method of integral equations, which is
presented in detail in the monograph [5, p. 146]; however, we substantially modify it. Such an ap-
proach was also used in the monograph [6, p. 26] and in a number of other publications for the
study of periodic and bounded solutions of differential equations. These papers are characterized
by the procedure of construction of a Green operator function, which is used for the construction
of a periodic solution. The construction of a Green operator function and verification of conditions
that should be satisfied for it are cumbersome procedures. The solution of each particular prob-
lem requires a nontrivial preliminary study. One should separately study whether the solution is
classical.

The approach developed in the present paper permits one to avoid these difficulties. The condi-
tions ensuring the existence and uniqueness of a classical ω-periodic solution are easy to verify and
are stated in terms of characteristics of the right-hand side of the differential equation (the Lipschitz
constant, the value of deviations in the case of a functional-differential equation of point type, and
the coefficients of the linearized equation). The linearization of the right-hand side of the equation
is one essential characteristic of the approach considered below. As a rule, the Taylor linearization
is the most widespread method for the extraction of the linear part. There are examples that show
that the Taylor linearization does not necessarily permit one to prove the existence of a periodic
solution; but this is possible with other linearizations.

In the present paper, we consider the functional-differential equation of point type

ẋ(t) = g(t, x(t + τ1), . . . , x(t + τs)), t ∈ R, (1)

where the function g(·) ∈ C
(k)(R × R

n×s, Rn), k ∈ {0, 1, . . .}, is 2π-periodic with respect to time.
A solution of Eq. (1) is defined as any absolutely continuous function x(·) satisfying the equation.
Since the right-hand side of the equation belongs to the space C

(k)(R × R
n×s, Rn), k ∈ {0, 1, . . .},

it follows that any solution x(·) belongs to the space C
(k+1)(R, Rn). An equation of any period ω > 0
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can be obviously reduced to an equation of period 2π. We state conditions for the existence and
uniqueness of a 2π-periodic solution x(·) of Eq. (1), describe an iterative algorithm for constructing
such a solution, and estimate the convergence rate of the process.

Since we study 2π-periodic solutions, it follows that, without loss of generality, one can assume
that all deviations τ1, . . . , τs belong to the interval [0, 2π). Indeed, if one has deviations τj ∈
[2πk, 2π(k + 1)), j ∈ {1, . . . , s}, k ∈ N, then, instead of them, one can take the deviations τ j =
τj − 2πk. If one has deviations τj ∈ [−2π(k + 1),−2πk), k ∈ N, then, instead of them, one can
take the deviations τ j = τj +2π(k +1). Obviously, the resulting equation has the same 2π-periodic
solutions as the original one.

In addition, we assume that the deviations τ1, . . . , τs satisfy the condition of commensurability.
This means that, for arbitrary τi and τj, i, j ∈ {1, . . . , s}, there exist numbers n1, n2 ∈ N ∪ {0}
satisfying the conditions n1 + n2 �= 0 and n1|τi| = n2|τj|.

Equation (1) can be represented in the form

ẋ(t) =
s∑

j=1

ajx(t + τj) + f(t, x(t + τ1), . . . , x(t + τs)), t ∈ R, (2)

where
aj ∈ R, τj ∈ [0, 2π), j ∈ {1, . . . , s},

f(t, x(t + τ1), . . . , x(t + τs)) = g(t, x(t + τ1), . . . , x(t + τs)) −
s∑

j=1

ajx(t + τj),

and the deviations τ1, . . . , τs are commensurable. The present paper deals with the study of con-
ditions imposed on aj, τj, j ∈ {1, . . . , s}, and f(·) and ensuring the existence and uniqueness of
a 2π-periodic solution.

This type of functional-differential equations was studied in the monograph [7, p. 37], where
conditions were obtained ensuring the existence and uniqueness of a solution of the Cauchy problem

ẋ(t) = g(t, x(t + τ1), . . . , x(t + τs)), t ∈ R, (3)
x(0) = x, x ∈ R

n, (4)

in a special function class. The function g(·) should satisfy the following conditions.
I. g(·) ∈ C

(k)(R × R
n×s, Rn), k ∈ {0, 1, . . .}.

II. The inequalities

‖g(t, x1, . . . , xs)‖Rn ≤ M0(t) + M1

s∑

j=1

‖xj‖Rn , M0(·) ∈ C
(0)(R, R),

‖g(t, x1, . . . , xs) − g(t, x1, . . . , xs)‖Rn ≤ Lg

s∑

j=1

‖xj − xj‖Rn

hold for all t, xj, and xj, j = 1, . . . , s. Note that the second inequality is the Lipschitz condition.
III. There exists a μ∗ ∈ R such that the expression

sup
i∈Z

M0(t + i)(μ∗)|i|

has finite value for any t ∈ R and is a continuous function of the argument t.
IV. There exists a μ∗ ∈ R such that the family of functions

g̃i,z1,...,zs
(t) = g(t + i, z1, . . . , zs)(μ∗)|i|, i ∈ Z, (z1, . . . , zs) ∈ R

n×s,

is equicontinuous on any finite interval.
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Obviously, by virtue of the periodicity of the right-hand side g(·) of Eq. (1), condition III is
necessarily satisfied; therefore, throughout the following, we assume that μ∗ = 1.

We introduce the space

Ln
μC

(k)(R) =
{

x(·)| x(·) ∈ C
(k)(R; Rn), max

0≤r≤k
sup
t∈R

‖x(r)(t)e−δ|t|‖Rn < +∞
}

,

where k ∈ {0, 1, . . .} and μ = e−δ.
The following assertion was proved in the monograph [7, p. 45].

Theorem 1. If the function g(·) satisfies conditions I–IV and the inequality

Lg

s∑

j=1

μ−|τj| < lnμ−1 (5)

holds for some μ ∈ (0, μ∗) ∩ (0, 1), then for each x ∈ R
n, there exists a solution x(·) ∈ Ln

μC
(k)(R)

of the Cauchy problem (3), (4). This solution is unique and, moreover , belongs to the class
Ln

μC
(k+1)(R).

If the function g(·) ∈ C
(k)(R × R

n×s, Rn), k ∈ {0, 1, . . .}, occurring on the right-hand side in
Eq. (3) is ω-periodic, one can state a corollary of this theorem.

Corollary 1. Let the function g(·) ∈ C
(k)(R × R

n×s, Rn), k ∈ {0, 1, . . .}, occurring in Eq. (3)
be ω-periodic with respect to time. If it satisfies conditions II and IV and inequality (5) holds for
some μ ∈ (0, 1), then for each x ∈ R

n, there exists a solution x(·) ∈ Ln
μC

(k)(R) of the Cauchy
problem (3), (4). Such a solution is unique and , moreover , belongs to the class Ln

μC
(k+1)(R).

Consider the function space

Vμ∗(R × R
ns, Rn) = {f(·) : f(·) satisfies the conditions I–III}.

For all functions in Vμ∗(R × R
ns, Rn), the parameter μ∗ ∈ R+ coincides with the corresponding

constant in condition III. In the space Vμ∗(R × R
ns, Rn), one can introduce the Lipschitz norm

‖g(·)‖Lip
= sup

t∈R
‖f(t, 0, . . . , 0)e−δ∗ |t|‖Rn

+ sup
t,z1,...,zs,z̄1,...,z̄s∈R×Rns×Rns

‖g(t, z1, . . . , zs) − g(t, z̄1, . . . , z̄s)‖Rn

(
s∑

j=1

‖zj − z̄j‖Rn

)−1

,

μ∗ = e−δ∗
.

Obviously, for a function g(·) ∈ Vμ∗(R×R
ns, Rn), the least value of the constant Lg in the Lipschitz

condition (condition II in this section) coincides with the value of the second term in the definition
of the norm of f(·). Throughout the following, the Lipschitz constant Lg is treated in the sense of
its minimum value. We consider the right-hand side of a functional-differential equation of point
as an element of the Banach space Vμ∗(R × R

ns, Rn).
To indicate the dependence of the solution of the Cauchy problem (3), (4) on the initial value

x̄ and on the right-hand side g(·) of the functional-differential equation itself, we use the notation
x(t; t̄, x̄, g). The continuous dependence of the solution x(·) is treated as its continuous dependence
on the variables t̄, x̄, g ∈ R

1 × R
n × Vμ∗(R × R

ns, Rn).
The following assertion was proved in [7, p. 47].

Theorem 2 (the structural stability theorem). Under the assumptions of Theorem 1 and Corol-
lary 1, the solution of the main Cauchy problem (3), (4) depends continuously on the variables t̄,
x̄, and g.
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1544 BEKLARYAN, BELOUSOV

Remark 1 [7, p. 47]. In Theorem 2, the solution treated as an element of the space Ln
μC

(0)(R)
depends continuously on x̄ and g(·).

Since we consider only periodic functions in what follows, instead of the spaces Ln
μC

(k)(R) we
use the ordinary spaces C

(k)(R, Rn), k ∈ {0, 1, . . .} of continuous functions.

2. PROPERTIES OF PERIODIC SOLUTIONS
OF THE LINEAR HOMOGENEOUS EQUATION

Let us prove some properties of linear functional-differential equations of point type which will
be used in forthcoming considerations.

Consider the homogeneous functional-differential equation of point type

ẋ(t) =
s∑

j=1

ajx(t + τj), t ∈ R, (6)

where aj ∈ R, τj ∈ [0, 2π), j ∈ {1, . . . , s}.
Let us describe the domain of all (a1, . . . , as, τ1, . . . , τs) ∈ R× · · · ×R× [0, 2π)× · · · × [0, 2π) for

which the homogeneous equation (6) has only the zero 2π-periodic solution.

Lemma 1. The homogeneous equation (6) has a unique 2π-periodic solution if and only if the
parameter set (a1, . . . , as, τ1, . . . , τs) ∈ R

s × [0, 2π)× · · · × [0, 2π) simultaneously satisfies the condi-
tions

s∑

j=1

aj �= 0;

∣∣∣∣∣

s∑

j=1

aj cos kτj

∣∣∣∣∣ +

∣∣∣∣∣k −
s∑

j=1

aj sin kτj

∣∣∣∣∣ �= 0 (7)

for all k ∈ N. Such a 2π-periodic solution is trivial. Otherwise, the homogeneous equation (6) has
infinitely many 2π-periodic solutions.

Proof. By taking into account the fact that, in particular, the solutions of the homogeneous
equation (6) belong to the space C

(1)(R, Rn), one can represent any ith coordinate, i ∈ {1, . . . , n},
of an arbitrary 2π-periodic solution on the interval [0, 2π] in the form of the convergent Fourier
series

xi(t) = αi,0 +
∞∑

k=1

αi,2k−1 cos kt + αi,2k sin kt, i ∈ {1, . . . , n}.

By substituting which representation into Eq. (6) and by matching the coefficients of the corre-
sponding basis functions, we find that the relations

1 : − αi,0

s∑

j=1

aj = 0,

cos kt : − αi,2k−1

s∑

j=1

aj cos kτj + αi,2k

(
k −

s∑

j=1

aj sin kτj

)
= 0,

sin kt : αi,2k−1

(
−k +

s∑

j=1

aj sin kτj

)
− αi,2k

s∑

j=1

aj cos kτj = 0

should hold for arbitrary i ∈ {1, . . . , n} and k = 1, 2, . . . Consequently, there exists a nonzero
2π-periodic solution of Eq. (6) if and only if either

∑s

j=1 aj = 0 or the relation detAk = 0 holds
for some k ∈ N, where

Ak =

(
−

∑s

j=1 aj cos kτj k −
∑s

j=1 aj sin kτj

−k +
∑s

j=1 aj sin kτj −
∑s

j=1 aj cos kτj

)
. (8)
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One can readily see that

detAk =

(
s∑

j=1

aj cos kτj

)2

+

(
k −

s∑

j=1

aj sin kτj

)2

,

which implies the assertion of the lemma.
If the right-hand side of Eq. (6) consists of a single term, i.e., has the form

ẋ(t) = ax(t + τ), t ∈ R, (9)

then the result can be refined. In this case, we have detAk = a2 + k2 − 2ak sin kτ , k ∈ N, and
the represented expression can be zero if either a = k and sin kτ = 1 or a = −k and sin kτ = −1.
By taking into account the above argument, we state one more assertion. To this end, we introduce
the system of sets

Hk =
{

(a, τ)| a = k, τ =
π

2k
+ 2π

j

k
, j ∈ {0, . . . , k − 1}

}
,

H−k =
{

(a, τ)
∣∣∣∣ a = −k, τ =

3π
2k

+ 2π
j

k
, j ∈ {0, . . . , k − 1}

}
, k ∈ N.

Lemma 2. The homogeneous equation (9) has a unique 2π-periodic solution if and only if a �= 0
and the set of parameters (a, τ) ∈ R× [0, 2π) does not belong to the countable set

⋃
k∈N

(Hk ∪H−k).
Such a solution is trivial. Otherwise, the equation has infinitely many 2π-periodic solutions.

3. PROPERTIES OF PERIODIC SOLUTIONS
OF THE LINEAR INHOMOGENEOUS EQUATION

Let us present some general properties of periodic solutions, which are well-known for ordi-
nary differential equations and are necessary for forthcoming considerations. Similar results for
ordinary differential equations can be found in [8].

For an equation of the general form (1), we state a simple but very important assertion.

Proposition 1. Let the assumptions of Corollary 1 be satisfied ; then a solution x(·) of Eq. (1)
is 2π-periodic if and only if it satisfies the relation x(0) = x(2π).

Proof. The desired assertion readily follows from the 2π-periodicity of the function g(·) with
respect to t and the validity of the condition for the existence and uniqueness of the solution of the
Cauchy problem (3), (4) (see Corollary 1). The proof of the assertion is complete.

Let us proceed to the study of the linear inhomogeneous equation

ẋ(t) =
s∑

j=1

ajx(t + τj) + ξ(t), t ∈ R, (10)

where aj ∈ R, τj ∈ [0, 2π), j ∈ {1, . . . , s}, and ξ(·) ∈ C
(1)(R, Rn) is a 2π-periodic function. Along

with it, we consider the corresponding linear homogeneous equation (6).
Obviously, conditions I–IV hold for the right-hand sides of Eqs. (10) and (6). Let us introduce

the constant
M = max

1≤j≤s
|aj|.

Theorem 3. Let inequality (5), which acquires the form

M

s∑

j=1

μ−|τj| < ln μ−1, (11)

hold for some μ ∈ (0, 1). Then Eq. (10) has a unique 2π-periodic solution if and only if the identical
zero is the unique 2π-periodic solution of the homogeneous equation (6).
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Proof. Before proceeding to the proof, we introduce the fundamental solution matrix φ(t). It is
the solution of the matrix equation

φ̇(t) =
s∑

j=1

ajφ(t + τj), t ∈ R,

with the initial condition
φ(0) = I.

The existence of such a fundamental solution matrix follows from Corollary 1. By Corollary 1,
any solution of the homogeneous equation (6) can be represented in the form x(t) = φ(t)x(0), and
an arbitrary solution of the inhomogeneous equation (10) admits the representation

x(t) = φ(t)x(0) + ψ(t),

where ψ(t) is the particular solution of Eq. (10) with the initial condition ψ(0) = 0.

Sufficiency. Let the trivial solution be the unique 2π-periodic solution of the homogeneous
equation (6). Then Proposition 1, together with the representation x(2π) = φ(2π)x(0) of solutions
of the homogeneous equation (6), implies that x = 0 should be the unique solution of the equation
x = φ(2π)x. Consequently, det(I − φ(2π)) �= 0. On the other hand, an arbitrary solution of the
inhomogeneous equation (10) satisfies the relation x(2π) = φ(2π)x(0) + ψ(2π). Since a periodic
solution satisfies the condition x(0) = x(2π), it follows that the equation can be reduced to the so-
lution of the equation (I−φ(2π))x = ψ(2π). Since det(I−φ(2π)) �= 0, we find that the 2π-periodic
solution of the inhomogeneous equation (10) is unique.

Necessity. Assume that the inhomogeneous equation (10) has a unique 2π-periodic solution.
We argue by contradiction. Suppose that the homogeneous equation (6), in addition to the zero
solution, has at least one more 2π-periodic solution. Hence it follows that det(I−φ(2π)) = 0. In this
case, the equation (I − φ(2π))x = ψ(2π) either has no solutions or has infinitely many solutions,
which contradicts the uniqueness of the 2π-periodic solution of the inhomogeneous equation (10).
The proof of the theorem is complete.

In the proof of the theorem, we have shown that if the homogeneous equation (6) has a nonzero
periodic solution, then the corresponding inhomogeneous equation (10) either has infinitely many
periodic solutions or does not have them. For illustration, consider the simplest one-dimensional
ordinary differential equation ẋ(t) = ξ(t) as an example. For this equation, we have aj ≡ 0,
j ∈ {1, . . . , s}, and the corresponding linear equation acquires the form ẋ = 0; i.e., the linear
equation has infinitely many periodic solutions x(t) = C, C ∈ R. Then for ξ(t), we take the
function ξ(t) ≡ 1. In this case, the set of solutions has the form x(t) = t + C, C ∈ R; i.e., this
equation has no periodic solutions. On the other hand, if we set ξ(t) = cos t, then the solutions of
the equation acquire the form x(t) = sin t + C, C ∈ R; i.e., all solutions are periodic.

Now, on the basis of Theorem 3 and Lemma 1, one can state a corollary refining Theorem 3.

Corollary 2. Let inequality (11) be satisfied for some μ ∈ (0, 1). The inhomogeneous equa-
tion (10) has a unique 2π-periodic solution if and only if the set of parameters

(a1, . . . , as, τ1, . . . , τs) ∈ R
s × [0, 2π) × · · · × [0, 2π)

simultaneously satisfies conditions (7) for all k ∈ N.

We separately consider the case with a single term on the right-hand side. The inhomogeneous
equation (10) is reduced to an equation of the form

ẋ(t) = ax(t + τ) + ξ(t), t ∈ R, (12)

where a ∈ R, τ ∈ [0, 2π), and ξ(·) ∈ C
(k)(R, Rn), k ∈ {0, 1, . . .}, is a 2π-periodic function.
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Corollary 3. Let the inequality
aμ−|τ | < ln μ−1

be satisfied for some μ ∈ (0, 1). Then the inhomogeneous equation (12) has a unique 2π-periodic
solution if and only if a �= 0 and the set of parameters (a, τ) ∈ R × [0, 2π) does not belong to the
countable set

⋃
k∈N

(Hk ∪ H−k).

4. OPERATOR OF PERIODIC SOLUTIONS

Let us return to the study of the linear inhomogeneous equation (10), where aj ∈ R, the de-
viations τj ∈ [0, 2π), j ∈ {1, . . . , s}, are commensurable, and ξ(·) ∈ C

(k)(R, Rn), k ∈ {0, 1, . . .},
is a 2π-periodic function. Consider both the corresponding linear homogeneous equation (6) and
homogeneous equations (6) for which the parameters

(a1, . . . , as, τ1, . . . , τs) ∈ R
s × [0, 2π) × · · · × [0, 2π)

satisfy the assumptions of Corollary 2. Each homogeneous equation defines an operator P of periodic
solutions as follows: by Corollary 2, for each 2π-periodic function ξ(·) ∈ C

(k)(R, Rn), k ∈ {0, 1, . . .},
one should set Pξ(·) = x(·), where x(·) is a 2π-periodic solution of the corresponding linear inho-
mogeneous equation (10) [moreover, x(·) ∈ C

(k+1)(R, Rn)]. For each k = 0, 1, . . . , we introduce the
spaces

C
(k)
2π (R, Rn) = {x(·) ∈ C

(k)(R, Rn)| x(j)(t) = x(j)(t + 2π), j = 0, . . . , k, t ∈ R}.

We have thereby defined the linear operator

P : C
(k)
2π (R, Rn) → C

(k+1)
2π (R, Rn), Pξ(·) = x(·), (13)

for each k = 0, 1, . . . One can readily see that the action of the operator P is one-to-one. For the
operator P, we omit the index k since this does not lead to any misunderstanding. Moreover,
the operator P for k ∈ {1, 2, . . .} is a restriction of a similar operator for the index k − 1.

For each k = 0, 1, . . . , we introduce the spaces

C
(k),n
2π = {x(·) ∈ C

(k)([0, 2π], Rn)|, x(j)(0) = x(j)(2π), j = 0, . . . , k}.

We introduce the same norm on these spaces as on C
(k)([0, 2π], Rn). By virtue of Proposition 1

applied to the inhomogeneous equation (6), the operator P of periodic solutions is in a one-to-one
correspondence with its restriction to the interval [0, 2π] and, for each k = 0, 1, . . . , has the form

P̂ : C
(k),n
2π → C

(k+1),n
2π , P̂ξ̂(·) = x̂(·). (14)

Let J : C
(k+1),n
2π → C

(k),n
2π , k = 0, 1, . . . , be the natural embedding operator. In what follows, the

operator of periodic solutions is treated as the linear operator

J P̂ : C
(k),n
2π → C

(k),n
2π , k = 0, 1, . . .

Obviously, the action of the operator J P̂ is one-to-one.
Theorem 2 and Corollary 1 implies the following assertion.

Proposition 2. Let inequality (11) hold for some μ ∈ (0, 1), and let conditions (7) be simulta-
neously satisfied for all k ∈ N. Then the operator

J P̂ : C
(0),n
2π → C

(0),n
2π , P̂ξ̂(·) = x̂(·), (15)

is continuous.
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The continuity of the operator J P̂ is insufficient. In addition, we need a sharp estimate for
the norm of such an operator. However, the derivation of such an estimate is quite cumbersome.
In fact, it suffices to have estimates obtained for the restriction of the considered operator to the
subspace of 2π-periodic functions of the class C

(1). To this end, we introduce the quantities

A =

∣∣∣∣∣

s∑

j=1

aj

∣∣∣∣∣

−1

, D =

(
∞∑

k=1

1
detAk

)1/2

, (16)

det Ak =

(
s∑

j=1

aj cos kτj

)2

+

(
k −

s∑

j=1

aj sin kτj

)2

, k = 1, 2, . . . (17)

Proposition 3. Let the assumptions of Proposition 2 be satisfied. Then

sup
ξ̂(·)∈C

(1),n
2π , ‖ξ̂(·)‖

C
(0),n
2π

=1

‖J P̂ξ̂(·)‖
C

(0),n
2π

≤
√

A2 + 2D2.

Proof. We split the proof into four stages and carry it out in the one-dimensional case. The de-
sired assertion in the n-dimensional case follows from the fact that system (10) consists of n
independent one-dimensional equations. A detailed proof will be given at the end of Section 4.

1. Construction of the operator J P̂ in closed form (n = 1, the one-dimensional
case). By using Fourier series, we construct the operator (J P̂)−1. We expand the periodic solution
x̂(·) of Eq. (10) and the function ξ̂(·) on the right-hand side in this equation in Fourier series,

x̂(t) = α0 +
∞∑

k=1

α2k−1 cos kt + α2k sin kt,

ξ̂(t) = β0 +
∞∑

k=1

β2k−1 cos kt + β2k sin kt.

Then

ξ̂(t) = ((J P̂)−1x̂(·))(t) = ˙̂x(t) −
s∑

j=1

ajx̂((t + τj)(mod 2π));

or, by replacing the corresponding functions by their Fourier series expansions and by matching
the coefficients of like basis functions, we obtain

β0 = −α0

s∑

j=1

aj,

β2k−1 = −α2k−1

s∑

j=1

aj cos kτj + α2k

(
k −

s∑

j=1

aj sin kτj

)
,

β2k = α2k−1

(
−k +

s∑

j=1

aj sin kτj

)
− α2k

s∑

j=1

aj cos kτj, k ∈ N.

For each k ∈ N, the coefficients β2k−1 and β2k are found from the matrix equation

(
β2k−1

β2k

)
= Ak

(
α2k−1

α2k

)
,
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where, just as above, Ak is a matrix of the form (8). Consequently, to define the operator J P̂ in
closed form, one should invert the matrix Ak. It follows from the assumptions of the proposition
that these matrices are nonsingular; therefore,

α0 = −β0

a
,

(
α2k−1

α2k

)
= A−1

k

(
β2k−1

β2k

)
, k ∈ N,

where

A−1
k =

1
detAk

(
−

∑s

j=1 aj cos kτj −k +
∑s

j=1 aj sin kτj

k −
∑s

j=1 aj sin kτj −
∑s

j=1 aj cos kτj

)
.

Consequently, the operator J P̂ acquires the form

(J P̂ξ̂(·))(t) = −β0

(
s∑

j=1

aj

)−1

+
∞∑

k=1

1
det Ak

{(
−β2k−1

s∑

j=1

aj cos kτj

+ β2k

(
−k +

s∑

j=1

aj sin kτj

))
cos kt

+

(
β2k−1

(
k −

s∑

j=1

aj sin kτj

)
− β2k

s∑

j=1

aj cos kτj

)
sin kt

}
.

2. A majorant for the norm ‖J P̂ξ̂(·)‖
C
(0),1
2π

, ξ̂(·) ∈ C
(1),1
2π , ‖ξ̂(·)‖

C
(0),1
2π

≤ 1. To derive the
estimates stated in Assertion 3, one should solve the extremal problem

‖J P̂ξ̂(·)‖
C

(0),1
2π

→ sup
ξ̂(·)

(18)

under the condition
ξ̂(·) ∈ C

(1),1
2π , ‖ξ̂(·)‖

C
(0),1
2π

≤ 1. (19)

To this end, we use the closed-form expression for the action of the operator J P̂ on the functions
ξ̂(·) ∈ C

(1),1
2π , ‖ξ̂(·)‖

C
(0),1
2π

= 1, which has been obtained in part 1 of the proof. First, we prove the
estimate

1
detAk

{(
−β2k−1

s∑

j=1

aj cos kτj + β2k

(
−k +

s∑

j=1

aj sin kτj

))
cos kt

+

(
β2k−1

(
k −

s∑

j=1

aj sin kτj

)
− β2k

s∑

j=1

aj cos kτj

)
sin kt

}
≤

√
β2

2k−1 + β2
2k√

detAk

, k ∈ N.

Indeed, let us introduce the notation

Γk =

(
−β2k−1

s∑

j=1

aj cos kτj + β2k

(
−k +

s∑

j=1

aj sin kτj

))
,

Δk =

(
β2k−1

(
k −

s∑

j=1

aj sin kτj

)
− β2k

s∑

j=1

aj cos kτj

)
, k ∈ N.
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One can readily see that

Γ2
k + Δ2

k = det Ak(β2
2k−1 + β2

2k), k ∈ N.

In the new notation, the left-hand side of the considered inequality acquires the form

Γk cos kt + Δk sin kt

det Ak

.

By transforming the resulting expression, we obtain

1
detAk

(Γk cos kt + Δk sin kt) =

√
Γ2

k + Δ2
k

detAk

(cos θk cos kt + sin θk sin kt)

=

√
Γ2

k + Δ2
k

detAk

cos(θk − kt) =

√
β2

2k−1 + β2
2k√

detAk

cos(θk − kt),

where
cos θk =

Γk√
Γ2

k + Δ2
k

, sin θk =
Δk√

Γ2
k + Δ2

k

.

Obviously, this expression attains its maximum for t such that cos(θk − kt) = 1. This completes
the proof of the estimate.

Thus, for any function ξ̂(·) ∈ C
(1),1
2π , ‖ξ̂(·)‖

C
(0),1
2π

= 1, the norm ‖J P̂ξ̂(·)‖
C

(0),1
2π

is majorized as
follows:

‖J P̂ξ̂(·)‖
C

(0),1
2π

≤
∣∣∣∣∣β0

(
s∑

j=1

aj

)−1∣∣∣∣∣ +
∞∑

k=1

√
β2

2k−1 + β2
2k√

det Ak

. (20)

In what follows, we show that the series on the right-hand side in inequality (20) is convergent.

3. An auxiliary extremal problem for estimating the norm ‖J P̂ξ̂(·)‖
C
(0),1
2π

. It is very
difficult to estimate this norm. Therefore, we replace this problem by a simpler one. To this
end, we replace the norm ‖J P̂ξ̂(·)‖

C
(0),1
2π

by a new function in the form of the right-hand side of
inequality (20) and maximize the new function on a wider set of functions satisfying the condition
‖ξ̂(·)‖L2([0,2π],R) ≤

√
2π. This extremal problem is posed as follows:

∣∣∣∣∣β0

(
s∑

j=1

aj

)−1∣∣∣∣∣ +
∞∑

k=1

√
β2

2k−1 + β2
2k√

detAk

→ sup
βk,k∈N∪{0}

(21)

under the condition
‖ξ̂(·)‖L2([0,2π],R) ≤

√
2π. (22)

Obviously, in this case, the value of the functional on the solution of problem (21), (22) exceeds
the value of the functional on the solution of problem (18), (19). By the Parseval relation, for the
orthogonal basis {1, cos kt, sin kt}k∈N of the space L2([0, 2π], R), we have

‖ξ(·)‖2
L2[0,2π] =

2π∫

0

ξ̂2(t)dt = 2πβ2
0 + π

∞∑

k=1

β2
k .

In this case, the extremal problem (21), (22) can be considered under the new condition

β2
0 +

1
2

∞∑

k=1

β2
k ≤ 1. (23)
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4. Completion of the proof of the proposition. Let us introduce the space l2 of numerical
sequences. Consider the elements r1 and r2 of this space defined by the formulas

r1 =

{
1√
2

∣∣∣∣∣

s∑

j=1

aj

∣∣∣∣∣

−1

,
1√

detA1

,
1√

detA2

, . . .

}
,

r2 =
{√

2|β0|,
√

β2
1 + β2

2 ,
√

β2
3 + β2

4 , . . .
}

.

One can readily see that r1 belongs to the space l2, because the relation
1

detAk

= O

(
1
k2

)
holds

for sufficiently large k and ‖r1‖l2 < +∞. Then the optimization problem (21), (23) acquires the
form

(r1, r2)l2 → sup
r2∈l2

provided that
‖r2‖2

l2
≤ 2.

By using the Cauchy–Schwarz inequality, we obtain the upper bound

(r1, r2)l2 ≤ ‖r1‖l2‖r2‖l2 ≤
√

2‖r1‖l2 .

Let us compute the norm of r1,

‖r1‖2
l2

=
1
2

(
s∑

j=1

aj

)−2

+
∞∑

k=1

1
detAk

.

It is well known that the equality in the Cauchy–Schwarz inequality is achieved for collinear vectors.
Consequently, if we choose β̄k, k ∈ N ∪ {0}, for which the vector r2 is collinear to the vector r1

and the inequality ‖r2‖l2 ≤
√

2 holds, then this will solve the original maximization problem.
Obviously, there exists such a β̄k, k ∈ N∪{0}. In this case, at the point of maximum, the objective
functional (21) is equal to

∣∣∣∣∣β̄0

(
s∑

j=1

aj

)−1∣∣∣∣∣ +
∞∑

k=1

√
β̄2

2k−1 + β̄2
2k√

detAk

=

((
s∑

j=1

aj

)−2

+ 2
∞∑

k=1

1
detAk

)1/2

=
√

A2 + 2D2 ,

which completes the proof of the proposition in the one-dimensional case.
Let us present the proof of the proposition in the multidimensional case. Let

ξ̂(·) = (ξ̂1(·), . . . , ξ̂n(·))′ ∈ C
(1),n
2π .

The operator J P̂ satisfies the estimate

sup
ξ̂(·)∈C

(1),n
2π , ‖ξ̂(·)‖

C
(0),n
2π

≤1

‖J P̂ξ̂(·)‖2

C
(0),n
2π

= sup
ξ̂(·)∈C

(1),n
2π , ‖ξ̂(·)‖

C
(0),n
2π

≤1

(‖J P̂1ξ̂1(·)‖2

C
(0),1
2π

+ · · · + ‖J P̂1ξ̂n(·)‖2

C
(0),1
2π

)

≤ sup
ξ̂(·)∈C

(1),n
2π , ‖ξ̂(·)‖

C
(0),n
2π

≤1

((A2 + 2D
2)‖ξ̂1(·)‖2

C
(0),1
2π

+ · · · + (A2 + 2D
2)‖ξ̂n(·)‖2

C
(0),1
2π

) = A
2 + 2D

2,

where J P̂1 stands for the operator of periodic solutions in the one-dimensional case. Consequently,
for the multidimensional case, we obtain the estimate

sup
ξ̂(·)∈C

(1),n
2π , ‖ξ̂(·)‖

C
(0),n
2π

≤1

‖J P̂ξ̂(·)‖2

C
(0),n
2π

≤ A
2 + 2D

2.

The proof of the proposition is complete.
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In the case of the simplest linearization with a unique term in the linear part, one can obtain a re-
fined result. Consider the homogeneous linear equation (12) and the corresponding inhomogeneous
linear equation (9). In this case, we have

A =
1
|a| , D =

(
∞∑

k=1

1
det Ak

)1/2

, detAk = (a2 + k2 − 2ak sin kτ).

Corollary 4. Let the inequality
aμ−|τ | < ln μ−1

be satisfied for some μ ∈ (0, 1), and let

a �= 0, (a, τ) /∈
⋃

k∈N

(Hk ∪ H−k).

Then

sup
ξ̂(·)∈C

(1),n
2π , ‖ξ̂(·)‖

C
(0),n
2π

=1

‖J P̂ξ̂(·)‖
C

(0),n
2π

≤
(

1
a2

+ 2D
2

)1/2

.

Remark 2. If τ = 0, then the linear inhomogeneous functional-differential equation (9) becomes
an ordinary differential equation. In this case, instead of Proposition 3, one can use a result in [8],
where it was shown that the operator J P̂ : C

(0),n
2π → C

(0),n
2π satisfies the relation ‖J P̂‖ = 1/|a|.

5. EXISTENCE AND UNIQUENESS OF A 2π-PERIODIC SOLUTION
OF NONLINEAR EQUATION. CASE OF SIMPLEST LINEARIZATION

We obtain conditions providing the existence and uniqueness of periodic solutions of the nonlin-
ear functional-differential equation of point type (1), where g(·) ∈ C

(1)(R×R
n×s, Rn) is a 2π-periodic

function. Along with Eq. (1), consider Eq. (2) obtained by the linearization of Eq. (1). If the func-
tion g(·) occurring in Eq. (1) satisfies the Lipschitz condition with constant Lg, i.e., if

‖g(t, x1, . . . , xs) − g(t, x1, . . . , xs)‖Rn ≤ Lg

s∑

j=1

‖xj − xj‖Rn , (24)

then the function f in Eq. (2), that is,

f(·) = g(t, x(t + τ1), . . . , x(t + τs)) −
s∑

j=1

ajx(t + τj)

satisfies the Lipschitz condition with some constant Lf as well. Each linearization of Eq. (1) is
related to a linear inhomogeneous system of the form (8). In turn, if the set (a1, . . . , as, τ1, . . . , τs) ∈
R

s × [0, 2π) × · · · × [0, 2π) satisfies the assumptions of Corollary 2, then the operator J P̂ is well
defined. Let us introduce the operator

F : C
(k)
2π (R, Rn) → C

(k)
2π (R, Rn), k = 0, 1,

F[x(·)](t) = f(t, x(t + τ1), . . . , x(t + τs)), t ∈ R.

The restriction of this operator to functions defined on the interval [0, 2π] is denoted by F̂,

F̂ : C
(k),n
2π → C

(k),n
2π , k = 0, 1,

F̂[x̂(·)](t) = f(t, x̂((t + τ1)(mod 2π)), . . . , x̂( (t + τs)(mod 2π))), t ∈ [0, 2π].
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Theorem 4. Let the function g(·) ∈ C
(1)(R×R

n×s, Rn) occurring in the nonlinear equation (1)
be 2π-periodic and satisfy the Lipschitz condition (24); let Lf be the Lipschitz constant for the
function f(·); let the inequality

M
s∑

j=1

μ−|τj| < ln μ−1, M = max
1≤j≤s

|aj|,

hold for some μ ∈ (0, 1), and let condition (7) be simultaneously valid for all k ∈ N. If the inequality

sLf

√
A2 + 2D2 < 1 (25)

holds, then Eq. (1) has a 2π-periodic solution. This solution is unique and belongs to the space
C

(2)(R, Rn).
Moreover , for any initial function x̂0(·) ∈ C

(2),n
2π , the sequence

x̂k(·) = (JP̂F̂)k[x̂0(·)]

tends to a unique function x̂(·) ∈ C
(2),n
2π , and the convergence rate can be estimated as

‖(J P̂F̂)k[x̂0(·)](·) − x̂(·)‖
C

(0),n
2π

≤ (sLf

√
A2 + 2D2)k‖x̂0(·) − x̂(·)‖

C
(0),n
2π

.

The periodic solution x(·) ∈ C
(2)(R, Rn) is induced by the function x̂(·) by its 2π-periodic extension

to the entire numerical line R.

Proof. In the space C
(0),n
2π , we define the operator equation

(J P̂F̂[x̂(·)])(·) = x̂(·). (26)

By Corollary 2, the 2π-periodic extension of any solution of Eq. (26) to the entire numerical line
gives a periodic solution of Eq. (2) [respectively, (1)], and vice versa. Since g(·) ∈ C

(1)(R×R
n×s, Rn),

it follows that each solution of Eq. (26) belongs to the space C
(2),n
2π .

The Lipschitz condition for the function f(·) implies the inequality

‖F̂[ŷ(·)] − F̂[ẑ(·)]‖
C

(0),n
2π

≤ sLf‖ŷ(·) − ẑ(·)‖
C

(0),n
2π

.

By Proposition 3, the following chain of inequalities holds for arbitrary ŷ(·), ẑ(·) ∈ C
(1),n
2π :

‖J P̂F̂[ŷ(·)] − J P̂F̂[ẑ(·)]‖
C

(0),n
2π

= ‖J P̂(F̂[ŷ(·)] − F̂[ẑ(·)])‖
C

(0),n
2π

=

∥∥∥∥∥J P̂

(
F̂[ŷ(·)] − F̂[ẑ(·)]

‖F̂[ŷ(·)] − F̂[ẑ(·)]‖

)∥∥∥∥∥
C

(0),n
2π

≤
√

A2 + 2D2 ‖F̂[ŷ(·)] − F̂[ẑ(·)]‖
C

(0),n
2π

≤ sLf

√
A2 + 2D2 ‖ŷ(·) − ẑ(·)‖

C
(0),n
2π

. (27)

From inequality (27), one can readily obtain the Cauchy property of the sequence

x̂k(·) = (J P̂F̂)k[x̂0(·)](·), k ∈ N,

for any function x̂0(·) ∈ C
(1),n
2π . By Proposition 2, the operator J P̂ is continuous; hence so is J P̂F̂.

Therefore, each Cauchy sequence (J P̂F̂)k[x̂0(·)](·) converges to a fixed point of Eq. (26). It remains
to show that the fixed point of Eq. (26) is unique. As was mentioned above, each fixed point of
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Eq. (26) belongs to the space C
(2),n
2π . If ŷ(·) and ẑ(·) are distinct fixed points of Eq. (26), then,

by virtue of inequality (27), the relation

‖ŷ(·) − ẑ(·)‖
C

(0),n
2π

= ‖J P̂F̂[ŷ(·)] − J P̂F̂[ẑ(·)]‖
C

(0),n
2π

< ‖ŷ(·) − ẑ(·)‖
C

(0),n
2π

should hold, which is impossible. The proof of the theorem is complete.
In Theorem 4, for the choice of the linearization in the linear part, we take only deviations

occurring on the right-hand side in the original functional-differential equation (1), and this is
important. If, for the choice of the linearization, it turns out that the function f(·) contains at least
one deviation τ̄ that does not coincide with any deviation τ1, . . . , τs, then, as a rule, inequality (25)
fails.

We separately consider the case of the simplest linearization with a single term in the linear
part. In this case, Eq. (2) acquires the form

ẋ(t) = ajx(t + τj) + f(t, x(t + τ1), . . . , x(t + τs)), t ∈ R, (28)

where (aj , τj) ∈ R\{0} × [0, 2π), j ∈ {1, . . . , s}.

Corollary 5. Let g(·) ∈ C
(1)(R×R

n×s, Rn) occurring in the nonlinear equation (1) be a 2π-peri-
odic function and satisfy the Lipschitz condition (24); let Lf be the Lipschitz constant of the func-
tion f(·); let the inequality

|aj|μ−|τj| < ln μ−1

hold for some μ ∈ (0, 1), and let the condition

(aj , τj) /∈
⋃

k∈N

(Hk ∪ H−k)

be satisfied. If the inequality

sLf

(
1
a2

j

+ 2D
2

)1/2

< 1

holds, then Eq. (1) has a 2π-periodic solution. Such a solution is unique and belongs to the space
C

(2)(R, Rn).
Moreover , for any initial function x̂0(·) ∈ C

(2),n
2π , the sequence

x̂k(·) = (JP̂F̂)k[x̂0(·)]

converges to the unique function x̂(·) ∈ C
(2),n
2π , and the convergence rate can be estimated as

‖(J P̂F̂)k[x̂0(·)](·) − x̂(·)‖
C

(0),n
2π

≤
(

sLf

(
1
a2

j

+ 2D
2

)1/2
)k

‖x̂0(·) − x̂(·)‖
C

(0),n
2π

.

The periodic solution x(·) ∈ C
(2)(R, Rn) is induced by the function x̂(·) as its 2π-periodic extension

to the entire numerical line R.

Remark 3. If, among the deviations τ1, . . . , τs, there is a zero deviation τj = 0, j ∈ {1, . . . , s},
then, for the linear part of Eq. (28), one can take ajx(t). Then, by Remark 2, it suffices to satisfy
the condition sLf/|aj| < 1 for the existence of a unique 2π-periodic solution.
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