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Abstract—We study the solutions of the stationary Schrödinger equation in unbounded do-
mains on Riemannian manifolds with noncompact boundary. Our approach to the statement of
boundary value problems is based on the notion of a class of equivalent functions. We obtain
sufficient conditions for the solvability of boundary value problems and prove the solvability of
the Dirichlet problem on the cone of a model manifold with continuous boundary data on the
boundary.
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1. INTRODUCTION

The study of elliptic equations on Riemannian manifolds is a topical trend in modern mathe-
matics and belong in the rapidly developing field of geometric nonlinear analysis and qualitative
theory of differential equations on noncompact Riemannian manifolds.

One main problem in this direction is to study the solvability of various classes of boundary value
problems for elliptic differential equations, including problems in unbounded domains of Euclidean
space and on noncompact Riemannian manifolds. In particular, the solvability of the Dirichlet
problem on the reconstruction of a harmonic function from continuous boundary data on non-
compact Riemannian manifolds that admit a natural compactification was studied. For example,
the solvability of the Dirichlet problem on connected Riemannian manifolds M with negative sec-
tional curvature bounded away from zero and infinity was studied in [1, 2]. The compactification
of M by adding the sphere S(∞) at infinity was used there to prove the unique solvability of the
Dirichlet problem on M = M ∪S(∞) on the reconstruction of a harmonic function from continuous
boundary data on S(∞). Another class of noncompact Riemannian manifolds that admit a natural
compactification is the class of spherically symmetric or, more generally, model and quasimodel
manifolds. Solvability conditions for various boundary value problems for elliptic linear equations
on these manifolds were obtained in [3–8].

On the other hand, the statement of the Dirichlet problem on an arbitrary noncompact Rieman-
nian manifold is very complicated. The use of classes of equivalent functions, originally suggested
in [9], is one possible approach to coping with this difficulty. This approach permits one to pose
boundary value problems on manifolds without a natural geometric compactification. We ob-
tain sufficient conditions for the solvability of some boundary value problems on such manifolds.
The above-mentioned approach was developed in [10–13] and other papers. However, the results
obtained there dealt with solutions of linear and quasilinear equations on manifolds with empty
boundary or solutions of such equations on manifolds with compact boundary. But the solvability
of boundary value problems on manifolds with noncompact boundary and in unbounded domains
on Riemannian manifolds remained unstudied.

In the present paper, we study the solutions of the stationary Schrödinger equation

Lu ≡ Δu − c(x)u = 0 (1)
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in unbounded domains on Riemannian manifolds with noncompact boundary. Here c(x) is a smooth
nonnegative function; moreover, c(x) �≡ 0. Throughout the following, the solutions of Eq. (1) are
referred to as L-harmonic functions. The aim of the present paper is to obtain solvability conditions
for boundary value problems for L-harmonic functions in the considered domains.

Let us proceed to precise statements. Let M be a connected noncompact smooth Riemannian
manifold without boundary, and let Ω be a connected bounded domain in M with smooth bound-
ary ∂Ω. Let {Bk}∞k=1 be a smooth exhaustion of M , that is, a sequence of precompact open subsets
of M with smooth boundaries ∂Bk such that M =

⋃∞
k=1 Bk and Bk ⊂ Bk+1 for all k. Throughout

the following, we assume that the exhaustion satisfies the following conditions: all sets Bk ∩ Ω are
nonempty and simply connected, and ∂Bk is transversal to ∂Ω for each k. In the present paper,
we consider L-harmonic functions u(x) (on M or on Ω).

Let f1 and f2 be continuous functions on M (or on Ω, or on ∂Ω). We say that f1 and f2 are
equivalent on M (or on Ω, or on ∂Ω) and write f1

M∼ f2 (respectively, f1
Ω∼ f2 or f1

∂Ω∼ f2) if the
relation

lim
k→∞

sup
M\Bk

|f1 − f2| = 0

(respectively, limk→∞ supΩ\Bk
|f1−f2| = 0 or limk→∞ sup∂Ω\Bk

|f1 − f2| = 0) holds for some smooth
exhaustion {Bk}∞k=1 of the manifold M . The relation “∼” is an equivalence relation and is inde-
pendent of the choice of the exhaustion M (see [9, 13]).

We say that a continuous function f on Ω (respectively, on M) belongs to the class of admissible
functions on Ω (respectively, on M) and write f ∈ K(Ω) [respectively, f ∈ K(M)] if, for some
compact set B on Ω\B (respectively, on M\B), there exists an L-harmonic function u with the
property u

Ω∼ f (respectively, u
M∼ f ; see also [10–12]).

Let us introduce the notion of L-potential of the manifold M with respect to some compact
set B ⊂ M . Without loss of generality, we assume that B ⊂ Bk for all k. Let {vk}∞k=1 be the
sequence of solutions of the following Dirichlet problems in Bk\B :

Lvk = 0 on Bk\B, vk = 1 on ∂B, vk = 0 on ∂Bk.

By the maximum principle, the function sequence {vk}∞k=1 is monotone increasing and converges to
a limit function vM\B(x) = limk→∞ vk(x), which is L-harmonic on M\B and satisfies vM\B |∂B = 1
and 0 ≤ vM\B(x) ≤ 1 on M\B. The function vM\B(x) is called the L-potential of the manifold M
with respect to the compact set B (see also [9]).

Following [9], we say that a manifold M is L-strict if the L-potential of M with respect to some
compact set B ⊂ M is equivalent to zero. Note that the property of being L-strict is independent
of the choice of the compact set B (e.g., see [9]).

We define the L-potential of an unbounded domain Ω as follows. Set B′
k = Bk\Ω. Let vM\B′

k
be

the L-potential of M with respect to B′
k. By the maximum principle, the sequence {vM\B′

k
}∞k=1 is

monotone increasing and bounded; therefore, there exists a limit function vΩ, which is L-harmonic
in Ω and satisfies 0 ≤ vΩ ≤ 1; moreover, vΩ|∂Ω = 1. The function vΩ will be called the L-potential
of the set Ω.

The following assertion is the main result of the present paper.

Theorem 1. Let M be an L-strict manifold, and let f ∈ K(Ω). Then for each function ϕ

continuous on ∂Ω such that ϕ
∂Ω∼ f, there exists a unique solution of the problem

Lu = 0 on Ω,

u(x)|∂Ω = ϕ, u
Ω∼ f.

Let us present a corollary of this theorem for cones of model manifolds. Let M̂ be a con-
nected noncompact Riemannian manifold without boundary that can be represented in the form
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M̂ = B̂ ∪ D̂, where B̂ is some compact set and D̂ is isometric to the direct product (r0,+∞) × S
with the metric

ds2 = dr2 + g2(r)dθ2,

where S is a compact Riemannian manifold without boundary, g(r) is a positive smooth function
on (r0,+∞), and dθ2 is a metric on S. Such a manifold M̂ is said to be model (e.g., see [4, 14]).

Next, let M∗ ⊂ M̂ be a cone of the model manifold M̂ , that is, a connected noncompact
Riemannian manifold with noncompact boundary ∂M∗ that can be represented in the form M∗ =
B∪D, where B ⊂ B̂ is some compact set and D ⊂ D̂ is isometric to the direct product (r0,+∞)×G
with the metric ds2 = dr2 + g2(r)dθ2. Here G is a simply connected domain in the compact set S
(∂G �= ∅) with smooth boundary ∂G, and dθ2 is a metric on S.

On M∗, consider the solutions of the stationary Schrödinger equation (1); throughout the fol-
lowing, we assume that c(x) ≡ c(r) �≡ 0 on D.

Let n = dim M∗. We introduce the notation

I =

∞∫

r0

1
gn−1(t)

( t∫

r0

c(z)gn−1(z) dz

)

dt, J =

∞∫

r0

1
gn−1(t)

( t∫

r0

gn−3(z) dz

)

dt.

We say that the Dirichlet problem with continuous boundary data is uniquely solvable on M∗

if, for any continuous function f(θ) on G and any continuous function ϕ(y) on ∂M∗ such that

lim
r→∞

sup
∂G

|ϕ(r, θ) − f(θ)| = 0,

there exists a unique solution of the problem

Lu = 0 in M∗,

u(y) = ϕ(y) for all y ∈ ∂M∗, lim
r→∞

sup
G

|u(r, θ) − f(θ)| = 0.

We say that the boundary value problem

Lu = 0 in M∗,

u(y) = ϕ(y) for all y ∈ ∂M∗, lim
r→∞

sup
G

|u(r, θ) − C| = 0 (2)

with continuous boundary data is uniquely solvable on M∗ if, for any constant C and any continuous
function ϕ(y) on ∂M∗ such that

lim
r→∞

sup
∂G

|ϕ(r, θ) − C| = 0,

there exists a unique solution of this problem.

Theorem 2. 1. If I < ∞ and J < ∞, then the Dirichlet problem with continuous boundary
data is uniquely solvable on M∗.

2. If I < ∞ and J = ∞, then the boundary value problem (2) with continuous boundary data is
uniquely solvable on M∗.

Note that, in the present paper, we consider the case in which c(x) �≡ 0. If c(x) ≡ 0, then the
stationary Schrödinger equation becomes the Beltrami–Laplace equation. Note that the case of
L-harmonic functions is somewhat different from the case of harmonic functions (i.e., solutions
of the Beltrami–Laplace equation). For example, the triviality of the space of bounded harmonic
functions on a manifold without boundary is equivalent to the triviality of the space of nonnegative
harmonic functions on such manifolds (e.g., see [14]). For L-harmonic functions, this property is
not true (e.g., see [12]). Results on the solvability of some boundary value problems for harmonic
functions in unbounded domains of Riemannian manifolds and on cones of model manifolds can be
found, e.g., in [15].
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2. PROOF OF THEOREM 1

In the proof, we need the following assertion.

Lemma 1. Let B be a compact set , and let u(x) be an L-harmonic function on Ω\B. Then
there exist a constant C and an L-harmonic function f on Ω such that

|f − u| ≤ CvM\B on Ω\B.

Proof. Let B′ ⊂ B; moreover, dist(∂B′, ∂B) �= 0 and B′ ∩Ω �= ∅. We extend the function u by
continuity by zero everywhere on Ω ∩ B′ so as to ensure that |u| < max∂B∩Ω |u| on ∂Ω ∩ (B\B′).

Let {Bk}∞k=1 be a smooth exhaustion of M such that Ω ∩ Bk �= ∅, ∂Ω and ∂Bk are transversal
for all k, and B ⊂ Bk for all k.

Set Ω(k) = ∂(Bk ∩ Ω) and Ω(0) = ∂ ∩ Ω. Consider the sequence of functions {ϕk}∞k=1 that are
the solutions of the problem

Lϕk = 0 on Bk ∩ Ω,

ϕk|Ω(k) = u|Ω(k).

First, let us show that this sequence is uniformly bounded on Ω(0). Suppose the contrary:
there exists a subsequence {kn} such that akn

= maxΩ(0) |ϕkn
| → ∞ as n → ∞. Set kn = k and

Φk = ϕk/ak on Bk ∩ Ω. Then

Φk = u/ak on ∂(Bk ∩ Ω)\B,

Φk = 0 on ∂Ω ∩ B′,

max
Ω(0)

|Φk| = 1, Φk = u/ak on ∂Ω ∩ (B\B′).

Then, by using the maximum principle for the function Φk − u/ak firstly on (Bk ∩ Ω)\B and then
on B ∩ Ω, we obtain

−1 − maxΩ(0) |u|
ak

+
u

ak

≤ Φk ≤ 1 +
maxΩ(0) |u|

ak

+
u

ak

on Bk ∩ Ω. (3)

Indeed, since maxΩ(0) |Φk| = 1, we have −1 ≤ Φk ≤ 1 on Ω(0). Hence it follows that

−1 − maxΩ(0) |u|
ak

≤ Φk −
u

ak

≤ 1 +
maxΩ(0) |u|

ak

on Ω(0).

Then, by taking into account the relations

Φk −
u

ak

=
ϕk

ak

− u

ak

=
u

ak

− u

ak

= 0 on (∂Ω\B) ∪ (∂Bk ∩ Ω),

we obtain

−1 − maxΩ(0) |u|
ak

≤ Φk −
u

ak

≤ 1 +
maxΩ(0) |u|

ak

on (Bk ∩ Ω)\B. (4)

On the other hand, Φk = u/ak on ∂Ω ∩ B. Since ak → ∞ as k → ∞, it follows that |Φk| < 1/2
on ∂Ω ∩ B for sufficiently large k. By taking into account the relation maxΩ(0) |Φk| = 1 and by
using the maximum principle, we obtain

−1 ≤ Φk ≤ 1 on B ∩ Ω (5)

for sufficiently large k.
By combining the estimates (4) and (5), we arrive at relations (3).
It follows from (3) that the sequence {Φk}∞k=1 is locally uniformly bounded in Ω. Therefore,

there exists a subsequence of {Φk} converged uniformly to some limit function Φ on any compact
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subset Ω; moreover, LΦ = 0 in Ω, |Φ||∂Ω∩B < 1/2, and −1 ≤ Φ ≤ 1 on Ω. Note also that,
by choosing an appropriate subsequence of {Φk}, one can assume that maxΩ(0) |Φ| = 1. We have
obtained a contradiction with the maximum principle.

Therefore, the assumption that akn
= maxΩ(0) ϕkn

→ ∞ as n → ∞ is invalid; thus, the sequence
ϕk is uniformly bounded on Ω(0). Hence we find that the sequence {ϕk − u}∞k=1 is uniformly
bounded on Ω, which implies that there exists a function f = limk→∞ ϕk, Lf = 0.

As was shown above, the supremum a = supk maxΩ(0) |ϕk| < ∞ exists. By virtue of the maximum
principle and the relation ϕk|Ω(k) = u|Ω(k), we have

u −
(

a + max
Ω(0)

|u|
)

vM\B ≤ ϕk ≤ u +
(

a + max
Ω(0)

|u|
)

vM\B on (Bk ∩ Ω)\B.

By passing to the limit as k → ∞ in the last estimate, we obtain the desired assertion. The proof
of Lemma 1 is complete.

Let us proceed to the proof of Theorem 1. We split the proof of Theorem 1 into two stages. At the
first stage, we prove Theorem 1 for the case in which f ≡ 0 and ϕ

∂Ω∼ 0 is a continuous bounded
function on ∂Ω. At the second stage, we prove Theorem 1 for arbitrary continuous functions f
and ϕ.

Stage I. Let f̂ be a continuous bounded continuation of the function ϕ from ∂Ω to the entire
manifold M such that f̂

M∼ f ≡ 0.
Let B′

k = Bk\Ω and Ωk = Bk ∩Ω. By [9], since M is an L-strict manifold, the following problem
is solvable in M\B′

k :
Lwk = 0 in M\B′

k,

wk = f̂ on ∂B′
k, wk

M\B′
k∼ f̂

M\B′
k∼ 0.

(6)

By the maximum principle for the function wk in M\B′
k, we have

|wk| ≤ max

{

sup
∂B′

k

|f̂ |, lim
n→∞

sup
M\Bn

|f̂ |
}

= const ≤ sup
M

|f̂ |,

and hence the sequence {wk}∞k=1 is uniformly bounded in Ω.
The uniform boundedness of the sequence {wk}∞k=1 in Ω implies that there exists a subsequence

{wlk}∞k=1 (which is also denoted by {wk}∞k=1 in what follows) converging uniformly on Ω to some
limit L-harmonic function w. Hence it follows that

lim
k→∞

sup
Ω

|wk − w| = 0, (7)

and consequently,

lim
k→∞

sup
Ω\Bk

|w| ≤ lim
k→∞

sup
Ω\Bk

|w − wk| + lim
k→∞

sup
Ω\Bk

|wk − wn| + lim
k→∞

sup
Ω\Bk

|wn|

for all n. This, together with condition (7), the inclusion M\Bk ⊃ Ω\Bk, and the equivalence

wn

M\B′
k∼ 0 for all n, implies the inequality

lim
k→∞

sup
Ω\Bk

|w| ≤ lim
k→∞

sup
Ω\Bk

|wk − wn|

for all n. By passing to the limit as n → ∞ and by taking into account the uniform convergence of
the sequence {wk}∞k=1 on Ω, we obtain limk→∞ supΩ\Bk

|w| = 0; i.e., w
Ω∼ 0.

Let us show that w(y) = ϕ(y) for all y ∈ ∂Ω. Let y ∈ ∂Ω. Then there exists an R such that
y ∈ B′

k for all k > R (since {Bk}∞k=1 is an exhaustion of M and B′
k = Bk\Ω). Then wk(y) = f̂(y)
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for all k > R by virtue of relations (6). It follows from the condition f̂ |∂Ω = ϕ and the inclusion
y ∈ ∂Ω that wk(y) = ϕ(y) for all k > R. By passing to the limit as k → ∞, we obtain the desired
relation w(y) = ϕ(y).

The uniqueness of the constructed function w follows from the maximum principle.
Stage II. Now let f and ϕ be arbitrary continuous functions on Ω and ∂Ω, respectively.
Since f ∈ K(Ω) and M is L-strict, it follows from Lemma 1 that on Ω there exists a function v

such that
Lv = 0 in Ω, v

Ω∼ f.

Then (ϕ− v) ∂Ω∼ 0, because v
∂Ω∼ f

∂Ω∼ ϕ. As was shown at Stage I of the proof, there exists a unique
function w that is a solution of the problem

Lw = 0 in Ω,

w|∂Ω = ϕ − v|∂Ω, w
Ω∼ 0.

Set u = w + v. Then Lu = 0, u
Ω∼ v

Ω∼ f , and u|∂Ω = w|∂Ω + v|∂Ω = ϕ− v|∂Ω + v|∂Ω = ϕ. The proof
of Theorem 1 is complete.

3. PROOF OF THEOREM 2

As was shown in [6], the condition I < ∞ implies the existence of a function v̂ on D̂ such that

Lv̂ = 0 on D̂, v̂ = 1 on ∂D̂, lim
r→∞

sup
S

|v̂(r, θ)| = 0.

By the maximum principle, the function v̂ is an L-potential of the manifold M̂ with respect to

the compact set B̂. Note that v̂
M̂\B̂∼ 0, which implies that M̂ is an L-strict manifold.

Let us prove the first assertion of Theorem 2. Let f(θ) be a continuous function on G, and let
ϕ(y) be a continuous function on ∂M∗ such that

lim
r→∞

sup
∂G

|ϕ(r, θ) − f(θ)| = 0. (8)

Let us continuously extend the function f from G to the manifold M̂ so as to ensure that the
resulting continuation f ∗ has the property

lim
r→∞

sup
G

|f ∗(r, θ) − f(θ)| = 0. (9)

It follows from [6] and the inequality J < ∞ that

f ∗ ∈ K(M̂). (10)

By taking into account condition (8), we obtain

ϕ
∂M∗

∼ f ∗. (11)

By using the fact that M̂ is an L-strict manifold, relations (10) and (11), and Theorem 1, we find
that on M∗ there exists a unique L-harmonic function u such that u|∂M∗ = ϕ and u

M∗

∼ f ∗. This,
together with condition (9), implies that limr→∞ supG |u(r, θ) − f(θ)| = 0. The proof of the first
part of Theorem 2 is complete.

Let us prove the second part of Theorem 2. Let C be an arbitrary constant, and let ϕ(y) be
a continuous function on ∂M∗ such that limr→∞ sup∂G |ϕ(r, θ) − C| = 0. Hence we readily obtain

ϕ
∂M∗

∼ C. (12)
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The conditions I < ∞ and J = ∞ and the results in [6] imply that the constant C is an
admissible function on M̂ . Then, since M̂ is an L-strict manifold, it follows from condition (12)
and Theorem 1 that there exists a unique L-harmonic function u on M∗ satisfying the relations
u|∂M∗ = ϕ and u

M∗

∼ C. Hence we obtain limr→∞ supG |u(r, θ)−C| = 0. The proof of Theorem 2 is
complete.
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