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Abstract—We prove theorems on the solvability of the inverse Sturm–Liouville problem with
nonseparated conditions by two spectra and one eigenvalue and theorems on the unique solv-
ability by two spectra and three eigenvalues. We find exact and approximate solutions of the
inverse problems. Related examples and counterexample are given.
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1. INTRODUCTION

The inverse Sturm–Liouville problem was considered in numerous papers (for details, see [1–25]).
The analysis of the inverse nonself-adjoint problem Sturm–Liouville with nonseparated boundary
conditions was initiated in [5]. It was shown there that three spectra and two sets of weight numbers
and residues of certain functions are sufficient for the unique reconstruction of a nonself-adjoint
Sturm–Liouville problem with nonseparated boundary conditions. Moreover, these spectral data
were used essentially [6]. Later, there were attempts to choose the problem to be reconstructed
or auxiliary problems so as to use less spectral data for the reconstruction [7–11]. In particular,
in [8, 9] a nonself-adjoint problem was replaced by a self-adjoint one, and it was shown that, for its
unique reconstruction, as spectral data it suffices to use three spectra, some sequence of signs,
and some real number. In [10], an auxiliary problem was chosen so as to reduce the number of
spectral data required for the reconstruction of a self-adjoint problem by one spectrum; i.e., only
two spectra, some sequence of signs, and some real number were used as spectral data. In the
present paper, we consider a nonself-adjoint Sturm–Liouville problem with nonseparated boundary
conditions. We show that, for its unique reconstruction, one can use even less spectral data as
compared with the reconstruction of a self-adjoint problem in [8–10]; more precisely, we need two
spectra and, in addition, three eigenvalues. Moreover, we show that the result obtained in the
present paper generalizes the Levitan–Gasymov criterion [12].

2. STATEMENT OF THE PROBLEM

By L0 we denote the following Sturm–Liouville spectral problem.
Problem L0:

ly = −y′′ + q(x)y = λy = s2y, (1)
U1(y) = y′(0) + a11y(0) + a12y(π) = 0, (2)
U2(y) = y′(π) + a21y(0) + a22y(π) = 0 (3)

(x ∈ [0, π], y = y(x) ∈ C2[0, π], q(x) is an integrable function, and the aij, i, j = 1, 2, are real
constants).
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Along with problem L0, we consider the following two problems with separated boundary con-
ditions.

Problem L1:
ly = −y′′ + q(x)y = λy,

U1,1(y) = y′(0) + a11y(0) = 0,
U2,1(y) = y′(π) + (a21 + a22)y(π) = 0.

Problem L2:
ly = −y′′ + q(x)y = λy,

U1,2(y) = y′(0) + ay(0) = 0,
U2,2(y) = y′(π) + (a21 + a22)y(π) = 0,

where a is some number different from a11.

For problem L0, we pose the inverse problem.

Inverse problem. Let the potential function q(x) and the coefficients in the boundary condi-
tions of problems Lj (j = 0, 1, 2) be unknown. The spectra of problems Lj (j = 0, 1, 2) are known.
Find a function q(x) and boundary conditions of problems Lj (j = 0, 1, 2) on the basis of their
spectra.

In the following, we denote a problem of the type of Lj with different coefficients in the equation
and different parameters in the boundary forms by ˜Lj. We assume that if some symbol stands
for an object related to problem Lj, then the same symbol with tilde stands for the corresponding
object related to problem ˜Lj.

The uniqueness of the solution of this inverse problem was justified in [18]; more precisely,
the following assertion was proved.

Theorem 1. Let a11 �= a and ã11 �= ã. If the eigenvalues of problems Lj and ˜Lj coincide for
j = 0, 1, 2 with regard to their algebraic multiplicities, then the coefficients in the equations and the
constants in the boundary conditions of problems Lj and ˜Lj (j = 0, 1, 2) coincide as well ; i.e.,

q(x) = q̃(x), a = ã, aij = ãij, i, j = 1, 2.

The Borg uniqueness theorem is a special case of Theorem 1. Indeed, in the case of separated
conditions (a12 = a21 = 0 and ã12 = ã21 = 0), problem L0 coincides with problem L1, and
problem ˜L0 coincides with problem ˜L1. Therefore, only two spectra (the spectra of problems L0 =
L1 and L2) are used for the unique reconstruction of problems L0 = L1 and L2. A separate
condition concerning the coincidence of the spectra of problems L0 and ˜L0 (in the assumptions of
Theorem 1) is unnecessary in this case because the coincidence follows from that of the eigenvalues
of problems L1 and ˜L1.

Next, we study the following problem.

Unique solvability of the inverse problem. Given three sequences of real numbers λk, μk,
and νk, do there exist an absolutely continuous function q(x) and numbers a and aij , i, j = 1, 2,
such that {λk} is the spectrum of problem L0, {μk} is the spectrum of problem L1, and {νk} is the
spectrum of problem L2?

In the present paper, we show that if the sequences λk, μk, and νk satisfy certain conditions,
then there exists an absolutely continuous function q(x) and numbers a and aij, i, j = 1, 2, with
these properties. Moreover, we show that, for such an identification, from the whole sequence
of numbers {λk}, it suffices to choose three numbers; i.e., knowledge of the whole sequence of
numbers {λk} for the identification of an absolutely continuous function q(x) and numbers a and
aij , i, j = 1, 2 is a superfluous requirement.
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3. SOLVABILITY OF THE INVERSE PROBLEM
WITH RESPECT TO TWO SPECTRA AND ONE EIGENVALUE

Before proving the unique solvability of the inverse problem with respect to two spectra and
three eigenvalues, we pose the problem on the (not necessarily unique) solvability with respect to
two spectra and one eigenvalue.

Solvability of the inverse problem. Given a real number λ1 and two sequences of real
numbers μk and νk, do there exist an absolutely continuous function q(x) and numbers a and aij ,
i, j = 1, 2, such that {μk} is the spectrum of problem L1, {νk} is the spectrum of problem L2, and
λ1 is an eigenvalue of problem L0?

Suppose that the sequences μk and νk of real numbers satisfy the following two conditions.
Condition 1. The numbers μk and νk alternate; i.e., μ0 < ν0 < μ1 < ν1 < μ2 < ν2 < · · ·

(or ν0 < μ0 < ν1 < μ1 < ν2 < μ2 < · · ·).
Condition 2. The following asymptotic relations hold:

μk = k2 + b0 + o(1), νk = k2 + b′0 + o(1), b′0 �= b0.

By applying the Levitan solvability theorem [20, pp. 64–65] to problems L1 and L2, we obtain
the following assertion.

Lemma 1. If two sequences μk and νk of real numbers satisfy Conditions 1 and 2, then there
exists an absolutely continuous function q(x) and numbers a, a11, and b = a21 + a22 such that {μk}
is the spectrum of problem L1 and {νk} is the spectrum of problem L2.

If Condition 2 contains k exact terms of the asymptotics (except for the first one), then the
function q(x) is continuously differentiable k−2 times. In particular, there exists an infinite classical
asymptotics for the numbers μk and νk if and only if the function q(x) is infinitely differentiable.

Lemma 1 contains only sufficient conditions for the solvability. To state a solvability criterion,
we need one more condition.

Condition 3. The function

Φ(x) =
2
π

∞
∑

k=1

(

νk − μk

b′0 − b0

cos
√

μk − cos kx

)

has an integrable derivative.
By applying Theorem 3.4.2 in [12, p. 58] to problems L1 and L2, we obtain a solvability criterion.

Lemma 2. Two sequences μk and νk of real numbers are the eigenvalues of problems L1 and
L2 if and only if Conditions 1–3 are satisfied.

For the solvability of the posed inverse problem, it remains to prove the existence of the coeffi-
cients a12 and a22 (a21 = b − a22). Let us prove this fact.

Since the possibility to find the function q(x) has been already proved, one can deal with
solutions of Eq. (1). Let y1(x, λ) and y2(x, λ) be linearly independent solutions of Eq. (1) satisfying
the conditions

y1(0, λ) = 1, y′
1(0, λ) = 0, y2(0, λ) = 0, y′

2(0, λ) = 1. (4)

The eigenvalues of problem L0 are the zeros of the characteristic function

Δ(λ) = a12(1 − by2(π, λ)) + a22(a11y2(π, λ) − y1(π, λ) + 1)
+ a12a22(y2(π, λ)) − (b + y′

1(π, λ) − a11y
′
2(π, λ)) (5)

(where b = a21 + a22); moreover, the algebraic multiplicity of an eigenvalue coincides with the
multiplicity of the corresponding zero of the function Δ(λ).
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Note that for λ = λ1 the functions (1 − by2(π, λ)) and (y2(π, λ)) do not vanish simultaneously.
Therefore, the equation Δ(λ1) = 0 is always solvable for the unknown coefficients a12 and a22.

By using Lemmas 1 and 2, we obtain the following two theorems (a theorem and a solvability
criterion for the inverse problem).

Theorem 2. Let λ1 and μk, νk be a real number and two sequences of real numbers, respec-
tively , satisfying Conditions 1 and 2. Under these conditions, there exists an absolutely continuous
function q(x) and numbers a and aij, i, j = 1, 2, such that {μk} is the spectrum of problem L1, {νk}
is the spectrum of problem L2, and the number λ1 is an eigenvalue of problem L0.

Theorem 3. A number λ1 is an eigenvalue of problem L0 with a function q(x) integrable on
the interval (0, π), and two sequences of real numbers μk and νk are eigenvalues of problems L1 and
L2, respectively , if and only if Conditions 1–3 are satisfied.

Remark 1. If problem L0 is a spectral problem with separated boundary conditions (a12 =
a21 = 0), then it coincides with problem L1. By taking the value μ1 for λ1, we find that the Levitan
solvability theorem [12, pp. 64–65] is a special case of Theorem 2. Theorem 3 generalizes the
criterion proved by Levitan and Gasymov in [12, Th. 3.4.2, p. 58]. Indeed, in the special case where
a12 = a21 = 0 (L0 = L1), the number λ1 coincides with some term of the numerical sequence μk;
therefore, for a12 = a21 = 0 Theorem 3 coincides with the criterion by Levitan and Gasymov.

4. UNIQUE SOLVABILITY OF THE INVERSE PROBLEM

If λ1 is a simple root of Eq. (5), then a12 and a22 are nonuniquely determined. The number λ1

alone is insufficient to determine the coefficients a12 and a22. One needs either more eigenvalues or
a higher multiplicity of the “eigenvalue” λ1 uniquely.

Let λi (i = 1, 2, 3) be roots of the equation Δ(λi) = 0. Here and in the following, the function
Δ(λ) is understood as the entire function defined by relation (5).

The following condition is a key requirement for the solvability of the posed inverse problem.
Condition 4. Two or three equations in the finite set of equations

Δ(λi) = 0,
[

dk

dλk
Δ(λ)

]

λ=λi

= 0, k = 1, . . . , pi, i = 1, 2, 3,

are uniquely solvable for the unknowns a12 and a22.
By using Lemmas 1 and 2, we obtain the following assertion on the unique solvability of the

inverse problem.

Theorem 4. Let λ1, λ2, λ3 and μk, νk be three numbers and two sequences of real numbers,
respectively , satisfying Conditions 1, 2, and 4. Under these conditions, there exist an absolutely
continuous function q(x) and numbers a and aij, i, j = 1, 2, such that {μk} is the spectrum of
problem L1, {νk} is the spectrum of problem L2, and the numbers λ1, λ2, and λ3 are the eigenvalues
of the unique problem L0.

By using Theorems 1 and 4 and by arguing by contradiction, one can prove the following
assertion.

Lemma 3. There exist three numbers λ1, λ2, and λ3 satisfying Condition 4.

In what follows, we present a procedure for the identification of problems L0, L1, and L2.

5. PROCEDURE OF IDENTIFICATION OF PROBLEMS L0, L1, AND L2

On the basis of the proof of Theorem 4, one can construct an algorithm for the unique identifi-
cation of problems L0, L1, and L2.
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1. On the basis of two sequences of real numbers μk and νk satisfying Conditions 1 and 2, we find
an absolutely continuous function q(x) and numbers a and a11, b = a21 + a22; i.e., we construct
problems L1 and L2. They are found with the use of well-known methods of identification of
a Sturm–Liouville problem with separated boundary conditions [3, pp. 38–92].

2. For the found function q(x), we find linearly independent solutions y1(x, λ) and y2(x, λ) of
Eq. (1) with condition (4).

3. For one, two, or three numbers λi satisfying Condition 4, we find the unknown coefficients
a12 and a22 of problem L0.

4. For the found coefficients b and a22, from the relation b = a21+a22, we find the coefficient a21.
We thereby completely reconstruct problem L0.

6. EXAMPLES OF THE SOLUTION OF THE INVERSE PROBLEM

In all examples, we assume that the μk are the roots of the equation
√

μ sin
√

μ π − cos
√

μπ = 0

and the νk are the roots of the equation

(
√

ν + 1/
√

ν) sin
√

ν π − 2 cos
√

ν π = 0.

In this case, we have q(x) ≡ 0, a11 = 0, a = −1, and a21 + a22 = b = 1. Below, for simplicity,
we assume that these values have already been found at step 1 for the identification of problems L1

and L2 (see Section 5). In addition, we assume that linearly independent solutions y1(x, λ) and
y2(x, λ) of Eq. (1) with condition (4) have been found. Then, in this case, we have

Δ(λ) = −1 +
√

λ sin
√

λπ + a12

(

1 − sin
√

λπ√
λ

)

+ a22(1 − cos
√

λπ) + a12a22

(

sin
√

λπ√
λ

)

.

Example 1. If λ1 = 4, then Δ(λ1) = 0 and
[

d

dλ
Δ(λi)

]

λ=λ1

= 0. Hence we obtain the relations

Δ(λ1) = −1 + a12 = 0 and
[

d

dλ
Δ(λi)

]

λ=λ1

=
π

2
+

π

8
(a22 − 1) = 0. Consequently, we obtain the

unique solution a12 = 1, a22 = −3 (a21 = 4). Here problem L0 has been uniquely reconstructed on
the basis of a single (multiple) eigenvalue.

Example 2. If λ1 = 4 and λ2 = 9, then the system of equations Δ(λ1) = 0 and Δ(λ2) = 0 has
the unique solution a12 = 1, a22 = 0 (a21 = 1). Here problem L0 is uniquely reconstructed on the
basis of two distinct eigenvalues.

Note that if, as the reconstruction data, we supplement the numbers λ1 = 4 and λ2 = 9
with λ3 = 1/4, then the uniqueness of the solution is preserved, and we obtain the same solution
a12 = 1, a22 = 0; i.e., the use of three numbers does not violate the uniqueness of the reconstruction
of problem L0.

In the general case, let us show that if three numbers λ1, λ2, and λ3 satisfy certain conditions,
then they are eigenvalues of problem L0 and permit one to determine the coefficients a12 and a22

uniquely.
We introduce the notation

zi1 := 1 − by2(π, λi), zi2 := a11y2(π, λi) − y1(π, λi) + 1,
zi3 := y2(π, λi), vi := b + y′

1(π, λi) − a11y
′
2(π, λi), i = 1, 2, 3;

D :=

∣

∣

∣

∣

∣

∣

∣

z11 z12 z13

z21 z22 z23

z31 z32 z33

∣

∣

∣

∣

∣

∣

∣

, D1 :=

∣

∣

∣

∣

∣

∣

∣

v1 z12 z13

v2 z22 z23

v3 z32 z33

∣

∣

∣

∣

∣

∣

∣

, D2 :=

∣

∣

∣

∣

∣

∣

∣

z11 v1 z13

z21 v2 z23

z31 v3 z33

∣

∣

∣

∣

∣

∣

∣

, D3 :=

∣

∣

∣

∣

∣

∣

∣

z11 z12 v1

z21 z22 v2

z31 z32 v3

∣

∣

∣

∣

∣

∣

∣

.
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One can readily show that if the numbers λ1, λ2, and λ3 satisfy the following conditions:
(i) D �= 0 and (ii) D1D2 = DD3, then they are eigenvalues of problem L0. For these eigenval-
ues, the coefficients a12 = D1/D and a22 = D2/D are the only possible for problem L0.

Let us return to Example 2. We have λ1 = 4, λ2 = 9, and λ3 = 1/4. By substituting these
values into the expressions for D, D1, and D2, we obtain

D =

∣

∣

∣

∣

∣

∣

∣

1 0 0

1 2 0

−1 1 2

∣

∣

∣

∣

∣

∣

∣

= 4, D1 =

∣

∣

∣

∣

∣

∣

∣

1 0 0

1 2 0

1/2 1 2

∣

∣

∣

∣

∣

∣

∣

= 4, D2 =

∣

∣

∣

∣

∣

∣

∣

1 1 0

1 1 0

−1 1/2 2

∣

∣

∣

∣

∣

∣

∣

= 0.

Hence it follows that a12 = 1 and a22 = 0.
Here the same problem L0 has been reconstructed on the basis of three distinct eigenvalues.
In the next example, we consider the case in which the use of the third eigenvalue is essential

for the unique reconstruction of problem L0.

Example 3. If λ1 = 1/4 and λ2 = 9, then the system Δ(λ1) = 0, Δ(λ2) = 0 has two solutions:
the first solution a12 = 0, a22 = 1/2 (a21 = 1/2) and the second one a12 = −1/2, a22 = 3/4
(a21 = 1/4). If, as the reconstruction data, we supplement the eigenvalues λ1 = 1/4 and λ2 = 9
with the eigenvalue λ3 ≈ 4.6042174, then we obtain the unique problem L0. For it, we have a12 = 0
and a22 = 1/2. But if, as the reconstruction data, we supplement the eigenvalues λ1 = 1/4 and
λ2 = 9 with the eigenvalue λ3 ≈ 4.8573191, then we obtain a different unique problem L0 with the
same two eigenvalues. For this problem, we obtain a12 = −1/2 and a22 = 3/4.

Indeed, let λ1 = 1/4, λ2 = 9, and λ3 ≈ 4.6042174. By substituting these values into the
expressions for D, D1, and D2, we obtain

D ≈

∣

∣

∣

∣

∣

∣

∣

−1 1 2

1 2 0

0.7939936 0.1030032 0.2060064

∣

∣

∣

∣

∣

∣

∣

≈ −3.5879871 �= 0,

D1 ≈

∣

∣

∣

∣

∣

∣

∣

1/2 1 2

1 2 0

0.05150160 0.1030032 0.2060064

∣

∣

∣

∣

∣

∣

∣

≈ 1.92 × 10−8,

D2 ≈

∣

∣

∣

∣

∣

∣

∣

−1 1/2 2

1 1 0

0.7939936 0.05150160 0.2060064

∣

∣

∣

∣

∣

∣

∣

≈ −1.7939936.

Hence it follows that

a12 ≈ −0.53 × 10−8 ≈ 0, a22 ≈ 0.50000000 = 1/2.

Let λ1 = 1/4, λ2 = 9, and λ3 ≈ 4.8573191. By substituting these values into the expressions for
D, D1, and D2, we obtain

D ≈

∣

∣

∣

∣

∣

∣

∣

−1 1 2

1 2 0

0.728787 0.1983065 0.271213

∣

∣

∣

∣

∣

∣

∣

≈ −3.3321739 �= 0,

D1 ≈

∣

∣

∣

∣

∣

∣

∣

1/2 1 2

1 2 0

−0.317368 0.1983065 0.27121308

∣

∣

∣

∣

∣

∣

∣

≈ 1.6660870,
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D2 ≈

∣

∣

∣

∣

∣

∣

∣

−1 1/2 2

1 1 0

0.728787 −0.317368 0.271213

∣

∣

∣

∣

∣

∣

∣

≈ −2.499130.

Hence it follows that

a12 ≈ −0.50000000420 ≈ −1
2
, a22 ≈ 0.75000000210 ≈ 3

4
.

Thus, problem L0 has been uniquely reconstructed on the basis of three distinct eigenvalues.
Moreover, the use of the third eigenvalue is important for the unique reconstruction of problem L0.

Counterexample

Condition 4 in Theorem 4 is important. Problem L0 cannot in general be reconstructed uniquely
on the basis of three arbitrary numbers. Indeed, if λ1 = 4, λ2 = 16, and λ3 = 36, then the system
of equations Δ(λi) = 0, i = 1, 2, 3, has infinitely many solutions a12 = 1, a22 = C (a21 = 1 − C),
where C is an arbitrary real number.

7. APPROXIMATE SOLUTION OF THE INVERSE PROBLEM

By using asymptotic formulas for the eigenvalues and a representation of the characteristic
determinant (5), one can obtain approximate formulas for the unknown coefficients a12 and a22.
Indeed, let

√

λi = Ni + O
(

1
Ni

)

, (6)

where i = 1, 2, N1 is a sufficiently large odd positive integer, and N2 is a sufficiently large even
positive integer.

The following asymptotic formulas hold:

y1(x, λ) = cos sx +
1
s

u(x) sin sx + O
(

1
s2

)

, y2(x, λ) =
1
s

sin sx − 1
s2

u(x) cos sx + O
(

1
s3

)

,

y′
1(x, λ) = −s sin sx + u(x) cos sx + O

(

1
s

)

, y′
2(x, λ) = cos sx +

1
s

u(x) sin sx + O
(

1
s2

)

,

(7)
where u(x) = 2−1

∫ x

0
q(t) dt, for a sufficiently large λ = s2 ∈ R.

By substituting the expressions (6) and (7) into the relations Δ(λ1) = 0 and Δ(λ2) = 0, we obtain

a12 + 2a22 = a11 + b + y′
1(π, λ1) + O

(

1
N1

)

, a12 = −a11 + b + y′
1(π, λ2) + O

(

1
N2

)

.

Consequently, if the numbers λ1 and λ2 satisfy condition (6), then we obtain the approximate
formulas

a12 ≈ −a11 + b + y′
1(π, λN2), a22 ≈ a11 +

1
2
(y′

1(π, λN1) − y′
1(π, λN2)). (8)

Note that the larger the indices N1 and N2, the more accurate the approximate formulas are.
Let us present numerical examples justifying this conclusion.

These examples were considered in the following cases: (i) N1 = 11, N2 = 12; (ii) N1 = 101,
N2 = 102; (iii) N1 = 1001, N2 = 1002.

We have the following assertions.
(i) If λN1 = 121 (N1 = 11) and λN2 ≈ 144.635553635613 (N2 = 12), then from (8), we obtain

a12 ≈ 0.0017256937 ≈ 0, a22 ≈ 0.4991371532 ≈ 1
2
.
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(ii) If λN1 = 10201 (N1 = 101) and λN2 ≈ 10404.6366049357 (N2 = 102), then from (8),
we obtain

a12 ≈ 0.0000240272 ≈ 0, a22 ≈ 0.4999879864 ≈ 1
2
.

(iii) If λN1 = 1002001 (N1 = 1001) and λN2 ≈ 1004004.63661962 (N2 = 1002), then relation (8)
implies

a12 ≈ 2.54612226 × 10−7 ≈ 0, a22 ≈ 0.499999872 ≈ 1
2
.

Therefore, we obtain accuracy up to two significant digits after the decimal point in the first
case, up to four significant digits after the decimal point in the second case, and up to six significant
digits after the decimal point in the third case. Consequently, the higher the indices N1 and N2,
the more accurate the approximate formulas are.
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