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Abstract—We consider a nonlinear singularly perturbed integro-differential system with an in-
tegral operator of Fredholm type. We develop and justify an algorithm of the regularization
method both in the nonresonance and resonance cases. We show that if the kernel of the in-
tegral operator contains a rapidly decaying factor, then the original integro-differential system
“is not on the spectrum;” i.e., it is uniquely solvable for any right-hand side (provided that the
nonlinear orthogonality conditions are globally solvable). We solve the initialization problem,
that is, the problem of describing the original data of the problem for which the convergence
holds on the entire time interval considered (including the boundary-layer zone).
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The linear singularly perturbed problem

ε
dy

dt
= A(t)y +

1∫

0

exp

(
1
ε

1∫

s

μ(θ) dθ

)
K(t, s)y(s, ε) ds + h(t), y(0, ε) = y0, t ∈ [0, 1], (1)

with a Fredholm integral operator was considered in [1]. The regularized asymptotics (see [2, p. 35])
of the solution of this problem was constructed under the assumption that the spectrum σ(A(t)) =
{λj(t)} of the matrix A(t) is stable and Reμ(t) < 0, t ∈ [0, 1]. The passage from the linear
problem (1) to the nonlinear problem

ε
dy

dt
= A(t)y +

1∫

0

exp

(
1
ε

1∫

s

μ(θ) dθ

)
K(t, s)y(s, ε) ds + εf(y, t) + h(t), y(0, ε) = y0, t ∈ [0, 1],

(2)
can hardly be trivial, at least because there arise resonance-related effects in the nonlinear case.
Even in the absence of the integral operator in (2), nonlinear resonances substantially change
the theory of solvability of iteration problems used in the algorithm of the regularization method
(e.g., see [2, Chap. 7]). Obviously, these difficulties become even more complicated in the presence
of the integral operator. This is justified by papers dealing with integro-differential equations of
Volterra type (see [3]). For Eqs. (1) of Fredholm type, it was shown that the spectral value μ(t)
of the integral operator does not occur in the regularization but affects the solvability of the original
problem. For μ(t) ≡ 0, problem (1) can be “on the spectrum.” (That is, the equivalent integral
system may have characteristic values of nonzero rank.) In this case, system (1) is not solvable for
some h(t) and A(t). If Re μ(t) < 0, t ∈ [0, 1], then system (1) is always solvable. One can ask
whether the same is true for the nonlinear problem (2). Apparently, the algorithm for constructing
regularized asymptotic solutions for problem (2), which we develop below, can help us to answer
this question as well as questions related to resonances.
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256 BOBODZHANOV, SAFONOV

NOTATION

Throughout the paper, we use the following notation. We use parentheses for a row vector,
b = (b1, . . . , br), and braces for a column vector, a = {a1, . . . , ar}. [Thus, aT = (a1, . . . , ar).]
The asterisk stands for transposition and complex conjugation: b∗ = (bT ). We introduce two
types of multi-indices, multi-indices k = (k1, . . . , kn) of dimension |k| = k1 + · · · + kn and multi-
indices m = (m1, . . . ,mn, 0) of dimension |m| = m1 + · · · + mn. By λ(t) we denote the row vector
λ(t) = (λ1(t), . . . , λn(t), λn+1(t)); moreover, λn+1(t) ≡ μ(t), and by ej we denote the jth unit vector
in the space C

n+1 of complex-valued (n + 1)-dimensional rows; i.e., ej = (0, . . . , 0, 1
(j)

, 0, . . . , 0).

The expression (m,λ(t)) stands for m1λ1(t) + · · · + mnλn(t) (the last component of the vector
m is zero), and the expression (m + mn+1en+1, λ(t)) stands for

∑n+1

j=1 mjλj(t). We also use the
following notation: if y = (y1, . . . , yn) and k = (k1, . . . , kn) is a multi-index, then yk = yk1

1 · · · ykn
n

(in contrast to y(k) = {y(k1,...,kn)
1 , . . . , y(k1,...,kn)

n }). Here the number n of components of the row
vector y = (y1, . . . , yn) can be arbitrary. For example, zr ≡ (z1, . . . , zq)(r1,...,rq) = zr1

1 · · · zrq
q . By σ

we denote the row vector

σ = (σ1, . . . , σn+1) =

(
exp

{
ε−1

1∫

0

λ1(θ) dθ

}
, . . . , exp

{
ε−1

1∫

0

λn+1(θ) dθ

})
.

The inner product of the complex space C
n of n-dimensional column vectors (or row vectors)

is introduced in the usual way: by definition, we set (y, z)Cn =
∑n

j=1 yj z̄j for arbitrary vectors
y = {y1, . . . , yn} and z = {z1, . . . , zn} in the space C

n. Sometimes (if no misunderstanding is
likely) the subscript C

n on the inner product is omitted. Finally, by ϕj(t) we denote the “λj(t)”-
eigenvector of the matrix A(t) [A(t)ϕj(t) ≡ λj(t)ϕj(t)], and by χi(t) we denote the ith column
of the matrix [Φ∗(t)]−1, where Φ(t) ≡ (ϕ1(t), . . . , ϕn(t)). Then χi(t) is the “λ̄i(t)”-eigenvector of
the matrix A∗(t); moreover, (ϕj(t), χi(t))Cn = δji, where δji is the Kronecker delta, i, j = 1, . . . , n.
Note that, to simplify the calculations, we consider problem (2) on the interval [0, 1]. Nevertheless,
all results obtained below remain valid on any finite interval [0, T ].

Now let us proceed to the development of an algorithm for constructing regularized solutions of
problem (2).

1. REGULARIZATION OF PROBLEM (2)

We assume that the following conditions are satisfied.
1. h(t) ∈ C∞([0, 1], Cn) and A(t) ∈ C∞([0, 1], Cn2

).
2. The spectrum σ(A(t)) of the matrix A(t) and the spectral value μ(t) ≡ λn+1(t) of the integral

operator satisfy the following requirements:
(a) λi(t) �= λj(t) for i �= j and λj(t) �= 0, i, j = 1, . . . , n + 1, t ∈ [0, 1];
(b) Re λj(t) ≤ 0, j = 1, . . . , n, and Reλn+1(t) < 0, t ∈ [0, 1].
3. The function f(y, t) = {f1(y, t), . . . , fn(y, t)} is a polynomial1 in y = (y1, . . . , yn); i.e.,

f(y, t) =
∑

0≤|k|≤N0

f (k)(t)yk, f (k)(t) ∈ C∞([0, 1], Cn), 0 ≤ |k| ≤ N0 < ∞.

4. The relations (m,λ(t)) ≡
∑n

i=1 miλi(t) = λj(t) (for |m| ≥ 2 and j ∈ {1, 2, . . . , n + 1}) are
either satisfied for no t ∈ [0, 1] or hold identically for all t ∈ [0, 1].

1 Here the function f(y, t) is chosen in the form of a polynomial to simplify the calculations. All results can readily
be generalized to the case of a function f(y, t) analytic in y (see [2, Chap. 7]).
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REGULARIZATION METHOD FOR NONLINEAR INTEGRO-DIFFERENTIAL SYSTEMS 257

It was noted in [1] that the spectral value λn+1(t) ≡ μ(t) is not used in the regularization of
problem (1); therefore, we perform the regularization of problem (2) with the use of the functions

τj =
1
ε

t∫

0

λj(θ) dθ ≡ ψ(t)
ε

, j = 1, . . . , n. (3)

For the “extension” ỹ(t, τ, ε), we obtain the problem

ε
∂ỹ

∂t
+

n∑
j=1

λj(t)
∂ỹ

∂τj

− A(t)ỹ

−
1∫

0

exp

(
1
ε

1∫

s

λn+1(θ) dθ

)
K(t, s)ỹ

(
s,

ψ(s)
ε

, ε

)
ds − εf(ỹ, t) = h(t), (4)

ỹ(t, τ, ε)|t=0, τ=0 = y0,

where2 ψ(t) = (ψ1(t), . . . , ψn(t), 0) and τ = (τ1, . . . , τn, 0). Although the function ỹ = ỹ(t, τ, ε)
satisfies the necessary regularization condition ỹ(t, ψ(t)/ε, ε) ≡ y(t, ε) [where y(t, ε) is the exact
solution of system (2)], problem (3) cannot be viewed as completely regularized, because the regu-
larization of the integral term

Jỹ(t, τ, ε) ≡
1∫

0

exp

{
1
ε

1∫

s

λn+1(θ) dθ

}
K(t, s)ỹ

(
s,

ψ(s)
ε

, ε

)
ds (5)

has not been carried out.
It is well known that, for its regularization, one should introduce the class Mε asymptotically

invariant with respect to the operator J (see [2, Chap. 2]).

Definition 1. We say that a vector function y(t, τ) = {y1, . . . , yn} belongs to the space U if it
is a sum of the form

y(t, τ) ≡ y(t, τ, σ) =
∗∑

0≤|m|≤N

y(m)(t, σ)e(m,τ), N = Ny < ∞, (6)

with coefficients

y(m)(t, σ) =
∑

0≤|p|≤Nm

y(m)
p (t)σp, y(m)

p (t) ≡ y
(m1,...,mn,0)

(p1,...,pn+1)
(t) ∈ C∞([0, 1], Cn),

Nm ≡ N(m1,...,mn,0) < ∞.

The asterisk over the sign of the sum in (6) is used to indicate that the sum does not contain
resonance exponentials (see [2, p. 234]), that is, exponentials e(m,τ) of dimension |m| ≥ 2 such that
the identity (m,λ(t)) ≡ λj(t) holds for some j ∈ {1, 2, . . . , n + 1} and t ∈ [0, 1].

By substituting the function (6) for ỹ into relation (5) and by setting k(m)(t, s) ≡ K(t, s)y(m)(s)
(we omit the dependence on σ), we obtain

Jy(t, τ, σ) =
∗∑

0≤|m|≤N

1∫

0

k(m)(t, s) exp

{
1
ε

1∫

s

λn+1(θ) dθ +
1
ε

s∫

0

(m,λ(θ)) dθ

}
ds

=
∗∑

0≤|m|≤N

σn+1

1∫

0

k(m)(t, s) exp

{
1
ε

s∫

0

(m − en+1, λ(θ)) dθ

}
ds.

2 One could use the notation ψ = (ψ1, . . . , ψn) and τ = (τ1, . . . , τn), but for forthcoming calculations, it is convenient
to introduce the (n + 1)-dimensional vectors ψ and τ .
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258 BOBODZHANOV, SAFONOV

By setting J (m)(t, ε) ≡ σn+1

∫ 1

0
k(m)(t, s) exp{ε−1

∫ s

0
(m−en+1, λ(θ)) dθ} ds and by integrating by

parts, we obtain the chain of relations

J (m)(t, ε) ≡ εσn+1

1∫

0

k(m)(t, s)
(m − en+1, λ(s))

d exp

{
1
ε

s∫

0

(m − en+1, λ(θ)) dθ

}
ds

= εσn+1

[
k(m)(t, s)

(m − en+1, λ(s))
exp

{
1
ε

s∫

0

(m − en+1, λ(θ)) dθ

}∣∣∣∣∣
s=1

s=0

− ε

1∫

0

∂

∂s

(
k(m)(t, s)

(m − en+1, λ(s))

)
exp

{
1
ε

s∫

0

(m − en+1, λ(θ)) dθ

}

= εσn+1

[
k(m)(t, 1)

(m − en+1, λ(1))
exp

{
1
ε

1∫

0

(m − en+1, λ(θ)) dθ

}
− k(m)(t, 0)

(m − en+1, λ(0))

]

− εσn+1

1∫

0

∂

∂s

(
k(m)(t, s)

(m − en+1, λ(s))

)
exp

{
1
ε

s∫

0

(m − en+1, λ(θ)) dθ

}
ds

= ε

[
k(m)(t, 1)

(m − en+1, λ(1))
exp

{
1
ε

1∫

0

(m,λ(θ)) dθ

}
− k(m)(t, 0)

(m − en+1, λ(0))
σn+1

]

− εσn+1

1∫

0

∂

∂s

(
k(m)(t, s)

(m − en+1, λ(s))

)
exp

{
1
ε

s∫

0

(m − en+1, λ(θ)) dθ

}
ds.

By continuing this process, we obtain the asymptotic expansion

J (m)(t, ε) =
∞∑

ν=0

(−1)νεν+1[(Iν
m(k(t, s)))s=1σ

m − (Iν
m(k(t, s)))s=0σn+1], (7)

where we have introduced the operators

I0
m =

1
(m − en+1, λ(s))

, Iν
m =

1
(m − en+1, λ(s))

∂

∂s
Iν−1

m , ν ≥ 1. (8)

Consequently,

Jy(t, τ, σ) =
∗∑

0≤|m|≤N

∞∑
ν=0

(−1)νεν+1[(Iν
m(k(t, s)))s=1σ

m − (Iν
m(k(t, s)))s=0σn+1]; (9)

moreover, this series converges asymptotically (uniformly with respect to t ∈ [0, 1]) to Jy(t, τ, σ)
as ε → +0 (see [3]). It follows that the class Mε = U |τ=ψ(t)/ε is invariant with respect to the integral
operator J .

Now assume that the series

ỹ(t, τ, σ, ε) =
∞∑

q=0

εqyq(t, τ, σ) ≡
∞∑

q=0

εq

∗∑
0≤|m|≤Nq

y(m)
q (t, σ)e(m,τ) (10)

converges asymptotically as ε → +0 and uniformly with respect to (t, τ) ∈ [0, 1] × {Re τj ≤ 0,
j = 1, . . . , n}. Then, obviously, Jỹ(t, τ, σ, ε) is represented by an asymptotic series uniformly
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REGULARIZATION METHOD FOR NONLINEAR INTEGRO-DIFFERENTIAL SYSTEMS 259

convergent as ε → +0 as well. This permits obtaining the definitive extension of the integral
operator J as follows.

For an arbitrary element (6) of the space U , one can write out the relation

Jy(t, τ, σ) = R0y(t, τ, σ) +
∞∑

ν=1

Rνy(t, τ, σ),

where the operators Rν : U → U (operators of order with respect to ε) are given by the formulas

R0y(t, τ, σ) ≡ 0,

Rν+1y(t, τ, σ) = (−1)ν

∗∑
0≤|m|≤N

[(Iν
m(k(t, s)))s=1σ

m − (Iν
m(k(t, s)))s=0σn+1],

ν ≥ 0, τ = ε−1ψ(t).

(11)

In view of these formulas, the result of substitution of the series (10) into the integral Jỹ can be
represented in the form

Jỹ =
∞∑

r=0

εr

r∑
s=0

Rr−sys(t, τ, σ)|τ=ψ(t)/ε.

The extension J̃ of the integral operator J has the following natural definition.

Definition 2. The formal extension of the operator J is defined as the operator J̃ acting on
any function ỹ(t, τ, σ, ε) of the form (10) continuous in (t, τ) ∈ [0, 1]×{Re τj ≤ 0, j = 1, . . . , n} by
the rule

J̃ ỹ ≡ J̃

(
∞∑

q=0

εkyq(t, τ, σ)

)
=

∞∑
r=0

εr

r∑
s=0

Rr−sys(t, τ, σ).

Now one can readily write out the problem completely regularized with respect to the original
problem (2),

ε
∂ỹ

∂t
+

n∑
j=1

λj(t)
∂ỹ

∂τj

− A(t)ỹ − J̃ ỹ − εf(ỹ, t) = h(t), ỹ(0, 0, ε) = y0. (12)

2. SOLVABILITY OF THE ITERATION PROBLEMS

By substituting the function (10) into Eq. (12) and by matching the coefficients of like powers
of ε, we obtain the iteration problems

L0y0 ≡
n∑

j=1

λj(t)
∂y0

∂τj

− A(t)y0 = h(t), y0(0, 0) = y0, (120)

L0y1 = −∂y0

∂t
+ R1y0 + f̂(y0, t), y1(0, 0) = 0, (121)

L0y2 = −∂y1

∂t
+

(
∂f(y0, t)

∂y
y1

)∧

+ R1y1 + R2y0, y2(0, 0) = 0, . . . , (122)

L0yk = −∂yk−1

∂t
+ R1yk−1 + R2yk−2 + · · · + Rky0 + P̂k(y0, . . . , yk−1), yk(0, 0) = 0. (12k)

Here Pk(y0, . . . , yk−1) is some polynomial in y1, . . . , yk−1 with coefficients depending on the partial
derivatives of the function f(y, t) at the point y = y0(t, τ, σ); moreover, Pk(y0, . . . , yk−1) is linear
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260 BOBODZHANOV, SAFONOV

with respect to yk−1; the symbol ∧ over f, . . . , Pk indicates the embedding of the corresponding
vector function in the space U in which resonance exponentials are absent. (This operation acts
as follows: if a resonance exponential e(m,τ) [|m| ≥ 2, (m,λ(t)) ≡ λj(t)] occurs in the polynomial
g(t, eτ1 , . . . , eτn , σ) in exponentials, then the operation ∧ replaces it by the corresponding exponen-
tial eτj of the first dimension; for details, see [2, p. 234].)

Each of the iteration problems (12k) has the form of the system

L0y(t, τ) ≡
n∑

j=1

λj(t)
∂y

∂τj

− A(t)y = H(t, τ, σ), (13)

where H(t, τ, σ) =
∑∗

0≤|m|≤NH
H(m)(t, σ)e(m,τ) ∈ U is the corresponding right-hand side. The space

U can be represented as the direct sum of the subspaces

U (s) =

{
y(t, τ, σ) : y(t, τ, σ) =

∗∑
|m|=s

y(m)(t, σ)e(m,τ)

}
, s = 0, . . . , N ;

i.e., U =
∑N

s=0 ⊕U (s). We introduce the following notation: if y(t, τ, σ) is an element (6) of the
space U , then by y(s)(t, τ, σ) we denote the sum

∑∗
|m|=s y(m)(t, σ)e(m,τ) ∈ U (s). In particular,

y(1)(t, τ, σ) =
∑
|m|=1

y(m)(t, σ)e(m,τ) ≡
n∑

j=1

yej (t, σ)eτj ∈ U (1),

H(1)(t, τ, σ) =
∑
|m|=1

H(m)(t, σ)e(m,τ) ≡
n∑

j=1

Hej (t, σ)eτj ∈ U (1).

We need an inner product (for each t ∈ [0, 1] and each σ) in the space U (1). It is introduced as
follows:

〈y(t, τ, σ), z(t, τ, σ)〉 ≡
〈

n∑
j=1

yej(t, σ)eτj ,
n∑

j=1

ze1(t, σ)eτj

〉
def=

n∑
j=1

(yej (t, σ), zej (t, σ)),

where ( , ) is the ordinary inner product in Cn. One can readily see that the vector functions
νj(t, τ, σ) ≡ χj(t)eτj [where χj(t) is the eigenvector of the matrix A∗(t) corresponding to the

eigenvalue λ̄j(t) (j = 1, . . . , n)] form a basis in the kernel of the operator L∗
0 =

∑n

j=1 λ̄j(t)
∂

∂τj

,

which is the adjoint in U (1) of the operator L0. Let us prove the following assertion.

Theorem 1. Let H(t, τ, σ) ∈ U, and let conditions 1 and 2 (a) be satisfied. Equation (13) is
solvable in the space U if and only if

〈H(1)(t, τ, σ), νj(t, τ)〉 ≡ 0 (j = 1, . . . , n, t ∈ [0, 1]). (14)

Proof. We seek a solution of system (13) in the form of the element

y(t, τ, σ) =
∗∑

0≤|m|≤Ny

y(m)(t, σ)e(m,τ) (15)

of the space U , where Ny ≥ NH . By substituting this element into Eq. (13), we obtain (we omit
the dependence on σ)

∗∑
0≤|m|≤Ny

[(m,λ(t))I − A(t)]y(m)(t)e(m,τ) =
∗∑

0≤|m|≤NH

H(m)(t)e(m,τ).
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REGULARIZATION METHOD FOR NONLINEAR INTEGRO-DIFFERENTIAL SYSTEMS 261

By matching the free terms and the coefficients of like exponentials, we obtain the systems of
equations

[λj(t)I − A(t)]yej = Hej , j = 1, . . . , n, −A(t)y(0)(t) = H(0)(t),

[(m,λ(t))I − A(t)]y(m)(t) = H(m)(t), 2 ≤ |m| ≤ NH ,

[(m,λ(t))I − A(t)]y(m)(t) = 0, NH < |m| ≤ Ny.

(16)

Since detA(t) �= 0, t ∈ [0, 1], and U does not contain resonant exponents [(m,λ(t)) /∈ σ(A(t))],
it follows that all systems (16) except for the first one are uniquely solvable in the space
Cn([0, 1], Cn). Their solutions have the form

y(0)(t) = −A−1(t)H(0)(t),

y(m)(t) = [(m,λ(t))I − A(t)]−1H(m)(t) (0 ≤ |m| ≤ NH),

y(m)(t) ≡ 0 (|m| > NH).

(17)

The first system in (16) is solvable if and only if conditions (14) are satisfied (see [2, p. 237]).
If these conditions are satisfied, then the solutions of this system can be represented in the form
yej (t) = αej (t)ϕj(t), where ϕj(t) is the “λj(t)”-eigenvector of the matrix A(t) and the αej (t) ∈
C∞([0, 1], C1) are arbitrary scalar functions. The proof of the theorem is complete.

We do not state the theorem on the unique solvability of system (13) (under some additional
constraints). We only note that if Theorem 1 is applied to two successive iteration problems (12l)
and (12l+1), then we obtain conditions for the unique solvability of system (12l) in the space U
(e.g., see [2, p. 239]).

3. CONSTRUCTION OF SOLUTIONS OF ITERATION PROBLEMS

Consider system (120). Since the inhomogeneity H(t, τ, σ) ≡ h(t) is independent of the expo-
nentials eτj , it follows that the orthogonality conditions (14) are necessarily satisfied for it auto-
matically; therefore, system (120) has a solution in U , which can be represented in the form

y0(t, τ) =
n∑

j=1

α
(0)
j (t)ϕj(t)eτj + y

(0)
0 (t), (18)

where y
(0)
0 (t) = −A−1(t)h(t) and the α

(0)
j (t) ∈ C∞([0, 1], C1) are arbitrary scalar functions. By sub-

jecting the function (18) to the initial condition y0(0, 0) = y0, we obtain
n∑

j=1

α
(0)
j (0)ϕj(0) + y

(0)
0 (0) = y0,

which is equivalent to the relations

α(0)
j (0) = (y0 + A−1(0)h(0), χj(0)), j = 1, . . . , n.

Now let us proceed to the iteration problem (121). By substituting the function (18) into
Eq. (121), we obtain the system

L0y1 = −
n∑

j=1

(α(0)
j (t)ϕj(t))eτj − ẏ

(0)
0 (t) − K(t, 1)y(0)

0 (1)
λn+1(1)

+
K(t, 0)y(0)

0 (0)
λn+1(0)

σn+1

−
n∑

j=1

[
K(t, 1)ϕj(1)

λj(1) − λn+1(1)
α

(0)
j (1)σj −

K(t, 0)ϕj(0)
λj(0) − λn+1(0)

α
(0)
j (0)σn+1

]

+ f̂

(
n∑

j=1

α
(0)
j (t)ϕj(t)eτj + y

(0)
0 (t), t

)
. (19)
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By computing

f̂

(
n∑

j=1

α
(0)
j ϕj(t)eτj + y

(0)
0 (t), t

)

= f0(t) +
n∑

j=1

f ej(α(0)
1 , . . . , α(0)

n , t)eτj +
∗∑

2≤|m|≤N1

f (m)(α(0)
1 , . . . , α(0)

n , t)e(m,τ)

and by subjecting the right-hand side of system (19) to the orthogonality conditions (14), we obtain
the system of ordinary differential equations

α̇
(0)
j = −(ϕ̇j(t), χj(t))α

(0)
j + (f ej(α(0)

1 , . . . , α(0)
n , t), χj(t)),

α(0)
j (0) = (y0 + A−1(0)h(0), χj(0)), j = 1, . . . , n.

(20)

System (20) in the resonance case is a nonlinear system of differential equations for α
(0)
j (t);

therefore, its solvability on the interval [0, 1] is not guaranteed. If, say, the spectrum {λj(t)} of the
matrix A(t) at a given point t ∈ [0, 1] lies on one side of some line π passing through the origin of
the complex λ-plane and there are no points λj(t) on π, then the system is triangular. In this case,
Eqs. (20) can be integrated successively, and hence their solvability on the interval [0, 1] becomes
obvious. System (20) fails to be triangular in other cases of arrangement of the spectrum λj(t)
with respect to the imaginary axis. However, in any case, there exists some birational change of
variables that permits one to diminish the order of the system and to reduce the study of the global
solvability to the case of a simpler system of differential equations.

We do not discuss this problem here. We require that system (20) has a solution in the class
C∞([0, 1], Cn). Then the functions α

(0)
j (t) occurring in the solution (18) of system (120) can be

completely computed, and system (120) itself has the unique solution in the space U . In this case,
we find a solution of system (121) (to within elements of the kernel of the operator L0 in U (1)).
The construction of functions α

(1)
j (t) occurring in the above-mentioned kernel is performed by the

same scheme as for the functions α
(0)
j (t). For α

(1)
j (t), we obtain a linear system of differential

equations, whose solvability on the interval [0, 1] is guaranteed by the smoothness of its coefficients.
Let us state the corresponding result.

Theorem 2. Let conditions 1–4 be satisfied , and let problem (20) be solvable on the inter-
val [0, 1]. Then all iteration problems (12k) (k = 0, 1, 2, . . .) are uniquely solvable in the class U
(if one solves them successively).

4. ASYMPTOTIC CONVERGENCE OF FORMAL SOLUTIONS

Having constructed solutions y0(t, τ, σ), . . . , yl(t, τ, σ) of problems (120), . . . , (12l) in the space U ,
we write out the partial sum

Sl(t, τ, σ, ε) =
l∑

k=0

εkyk(t, τ, σ).

We denote the restriction of this sum to τ = ψ(t)/ε by yεl(t). The proof of the following assertion
can be carried out by analogy with [3].

Lemma 1. Let the assumptions of Theorem 2 be satisfied. Then the function yεl(t) satisfies
system (2) modulo terms containing εl+1; i.e.,

ε
dyεl(t)

dt
= A(t)yεl(t) +

1∫

0

exp

(
1
ε

1∫

s

μ(θ) dθ

)
K(t, s)yεl(s) ds

+ εf(yεl(t), t) + h(t) + εl+1F (t, ε), yεl(0) = y0, (21)
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where ‖F (t, ε)‖C[0,1] ≤ F̄ , and F̄ > 0 is a constant independent of ε ∈ (0, ε0]. (Here ε0 > 0 is
sufficiently small.)

To prove the asymptotic convergence of the formal solution yεl(t) to the exact solution y(t, ε),
we use the following assertion (see [4]) on the solvability of the operator equation

Pε(u) = 0. (22)

Theorem 3. Let an operator Pε act from a Banach space B1 to a Banach space B2 and have
two continuous derivatives in some ball {‖u − u0‖ ≤ r} ⊂ B1. In addition, assume that the
operator Γε ≡ [P ′

ε(u0)]−1 exists and the following conditions are satisfied : (1′) ‖Γε‖ ≤ c1ε
−k;

(2′) ‖Pε(u0)‖ ≤ c2ε
m (m > 2k); (3′) ‖P ′′

ε (u)‖ ≤ c3. Then, for sufficiently small ε ∈ (0, ε0], Eq. (22)
has a solution u∗ ∈ B1 satisfying the inequality ‖u∗ − u0‖B1 ≤ cεm−k.

To use this theorem, we need some auxiliary assertions.

Lemma 2. Let conditions 1 and 2 be satisfied. Then the normalized fundamental solution ma-
trix Y (t, s, ε) of the homogeneous system

ε
dY (t, s, ε)

dt
= (A(t) + εD(t, ε))Y (t, s, ε), Y (s, s, ε) = I, 0 ≤ s ≤ t ≤ T, (23)

where D(t, ε) ∈ C([0, T ], Cn2
) is a matrix such that ‖D(t, ε)‖C[0,T ] ≤ D̄ (D̄ > 0 is a constant

independent of ε ∈ (0, ε0], where ε0 > 0 is sufficiently small), is uniformly bounded ; i.e.,

‖Y (t, s, ε)‖ ≤ c0 = const, 0 ≤ s ≤ t ≤ T, ε > 0.

Proof. In system (23), we make the change of variables Y (t, s, ε) = Φ(t)Z(t, s, ε). Then for the
matrix function Z(t, s, ε), we obtain the problem

ε
dZ(t, s, ε)

dt
= Λ(t)Z(t, s, ε) + εΦ−1(t)(D(t, ε)Φ(t) − Φ′(t))Z(t, s, ε), Z(s, s, ε) = Φ−1(s),

where Λ(t) = diag(λ1(t), . . . , λn(t)). This problem is equivalent to the integral system

Z(t, s, ε) = exp

{
1
ε

t∫

s

Λ(θ) dθ

}
Φ−1(s)

+

t∫

s

exp

{
1
ε

t∫

ς

Λ(θ) dθ

}
Φ−1(ς)(D(ς, ε)Φ(ς) − Φ′(ς))Z(ς, s, ε) dς;

by passing in it to the norms and by taking into account the boundedness of the matrices

exp

{
1
ε

t∫

ς

Λ(θ) dθ

}
, Φ(t), Φ−1(t), Φ′(t), A1(t),

we obtain

‖Z(t, s, ε)‖ ≤ c1 + c2

t∫

s

‖Z(ς, s, ε)‖ dς (0 ≤ s ≤ t ≤ T, ε > 0).

This, together with the Gronwall–Bellman inequality (e.g., see [5, Chap. 3]), implies that

‖Z(t, s, ε)‖ ≤ c1e
c2(t−s) ≤ const, 0 ≤ s ≤ t ≤ T, ε > 0,

and hence the matrix Y (t, s, ε) = Φ(t)Z(t, s, ε) is uniformly bounded for 0 ≤ s ≤ t ≤ T and ε > 0.
The proof of the lemma is complete.

DIFFERENTIAL EQUATIONS Vol. 51 No. 2 2015



264 BOBODZHANOV, SAFONOV

Lemma 3. Let conditions 1 and 2 be satisfied. Then the integro-differential system

ε
dv

dt
− (A(t) + D(t, ε))v − ε

1∫

0

exp

(
1
ε

1∫

s

μ(θ) dθ

)
K(t, s)v(s, ε) ds = g(t, ε), v(0, ε) = 0, (24)

where the matrix D(t, ε) satisfies the assumptions of Lemma 2, is uniquely solvable in the space
C1([0, 1], Cn) for any right-hand side g(t, ε) ∈ C([0, 1], Cn), and its solution v(t, ε) satisfies the
estimate

‖v(t, ε)‖C[0,1] ≤
c̄0

ε
‖g(t, ε)‖C[0,1]. (25)

Proof. By using the normalized fundamental solution matrix Y (t, s, ε), we construct the integral
system

v(t, ε) =
1
ε

t∫

0

Y (t, x, ε)

( 1∫

0

exp

(
1
ε

1∫

s

μ(θ) dθ

)
K(x, s)v(s, ε) ds

)
dx +

1
ε

t∫

0

Y (t, x, ε)g(x, ε) dx,

which is equivalent to system (24). By changing the order of integration in the repeated integral,
we obtain

v(t, ε) =

1∫

0

exp

(
1
ε

1∫

s

μ(θ) dθ

)
G(t, s, ε)v(s, ε) ds +

1
ε

t∫

0

Y (t, x, ε)g(x, ε) dx (26)

with the kernel G(t, s, ε) = ε−1
∫ t

0
Y (t, x, ε)K(x, s) dx. Following [3], one can show that the matrix

G(t, s, ε) is uniformly bounded for 0 ≤ s, t ≤ 1 and ε ∈ (0, ε0], and then (since Re μ(t) < 0,
t ∈ [0, 1]) one finds that the resolvent R(t, s, ε) of the kernel

K̃(t, s, ε) =

1∫

0

exp

(
1
ε

1∫

s

μ(θ) dθ

)
G(t, s, ε)z(s, ε) ds

of the integral system (26) is uniformly bounded; i.e., ‖R(t, s, ε)‖ ≤ M0 for 0 ≤ s, t ≤ 1 and
0 < ε ≤ ε0, where ε0 > 0 is sufficiently small (see [3]). Hence it follows that the integral system (26)
has the unique solution

v(t, ε) =
1
ε

t∫

0

Y (t, x, ε)g(x, ε) dx +
1
ε

1∫

0

R(t, s, ε)

( s∫

0

Y (s, x, ε)g(x, ε) dx

)
ds,

which belongs to the space C([0, 1], Cn) for any right-hand side ε−1
∫ t

0
Y (t, x, ε)g(x, ε) dx (g(t, ε) ∈

C([0, 1], Cn)). Therefore, the integro-differential system (24) is uniquely solvable in the space
C1([0, 1], Cn), and the estimate (25) holds. The proof of the lemma is complete.

Now let us proceed to the proof of the main assertion.

Theorem 4. Let conditions 1–4 be satisfied , and let problem (20) be solvable on the inter-
val [0, 1]. Then system (2) with ε ∈ (0, ε0] (where ε0 > 0 is sufficiently small) has a unique solution
y(t, ε) ∈ C1([0, T ], Cn), and the following estimate holds :

‖y(t, ε) − yεl(t)‖C[0,T ] ≤ Clε
l+1 (l = 0, 1, . . .), (27)

where Cl > 0 is a constant independent of ε ∈ (0, ε0].
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Proof. In Theorem 3, for the operator Pε(u) we take the operator

Pε(u) ≡ ε
du

dt
− A(t)u − ε

1∫

0

exp

{
1
ε

1∫

s

μ(θ) dθ

}
K(t, s)u(s, ε) ds − εf(u + y0, t)

− A(t)y0 −
1∫

0

exp

{
1
ε

1∫

s

μ(θ) dθ

}
K(t, s)y0 ds.

This operator acts from the Banach space

B1 = Ċ1([0, T ], Cn) = {v(t) ∈ C1([0, T ], Cn), v(0) = 0}

to the Banach space B2 = C[0, 1] with norms

‖v(t)‖B2 = max
0≤t≤1

|v(t)|, ‖v(t)‖B1 = ‖v(t)‖B2 + ‖v̇(t)‖B2 .

For the initial approximation, we take the function u0 = yεl(t) − y0. By (21), we have Pε(u0) =
εl+1Fl(t, ε), ‖Fl(t, ε)‖C[0,1] ≤ F̄l. Therefore, assumption (2′) in Theorem 3 holds for m = N + 1.
Since f(y, t) is a polynomial in y with smooth coefficients on [0, 1], it follows that assumption (3′)
in Theorem 3 is satisfied as well. It remains to verify assumption (1′). The operator P ′

ε(u0) has the
form

P ′
ε(u0)v ≡ ε

dv

dt
− A(t)v − ε

1∫

0

exp

{
1
ε

1∫

s

μ(θ) dθ

}
K(t, s)v(s, ε) ds − ε

∂f(yεl(t), t)
∂y

v;

therefore, to estimate the norm ‖Γε‖ ≡ ‖(P ′
ε(u0)−1)‖, one should estimate the norm of the solution

of the equation
P ′

ε(u0)v = g(t, ε), v(0, ε) = 0, (28)

for an arbitrary element g(t, ε) ∈ C[0, 1] for each ε > 0. By Lemma 3, where D(t, ε) ≡ ∂f(yεl(t), t)
∂y

,

system (28) is uniquely solvable in the space B1, and the following estimate holds:

‖v(t, ε)‖C[0,1] ≤
c̄0

ε
‖g(t, ε)‖C[0,1]. (29)

By using Eq. (28), we obtain

ε

∥∥∥∥dv

dt

∥∥∥∥
C[0,1]

≤ ‖A(t)‖C[0,1]‖v‖C[0,1] + εk0‖v‖C[0,1] + ε

∥∥∥∥∂f(yεl(t), t)
∂y

∥∥∥∥
C[0,1]

‖v‖C[0,1],

whence it follows that the inequality

‖v̇(t, ε)‖C[0,T ] ≤
k1

ε
‖v(t, ε)‖C[0,T ] ≤

v̂

ε2
k1‖g(t, ε)‖C[0,T ]

holds for sufficiently small ε > 0. Then

‖Γεg‖Ċ[0,1] ≡ ‖v(t, ε)‖Ċ [0,1] = ‖v(t, ε)‖C[0,1] + ‖v̇(t, ε)‖C[0,1] ≤
c2

ε2
‖g(t, ε)‖C[0,1],

and it follows that ‖Γε‖ ≡ ‖(P ′
ε(u0)−1)‖ ≤ c2/ε

2; therefore, assumption (1′) in Theorem 3 is
satisfied for k = 2. Consequently, Eq. (22) has a unique solution u∗(t, ε) ∈ B1, and it satisfies the
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estimate ‖u∗−u0‖B1 ≤ cN−1ε
N−1 (N > 3); therefore, the original problem (2) has a unique solution

y(t, ε) = u∗(t, ε) + y0 ∈ C1([0, T ], Cn) such that

‖y(t, ε) − yεl(t)‖C[0,1] ≤ Cl−1ε
l−1 (l = 4, 5, . . .).

By writing out this inequality for the partial sum yε,l+2(t) and by using the inequality ‖a − b‖ ≥
‖a‖ − ‖b‖ and the uniform boundedness of the coefficients of this partial sum, we obtain the
estimate (27). The proof of the theorem is complete.

5. PASSAGE TO THE LIMIT IN PROBLEM (2).
SOLUTION OF THE INITIALIZATION PROBLEM

If the assumptions of Theorem 4 are satisfied, then the exact solution of problem (2) can be
represented in the form

y(t, ε) = yε0(t) + εF0(t, ε), (30)

where ‖F0(t, ε)‖C[0,1] ≤ F̄0, F̄0 is a constant independent of ε for ε ∈ (0, ε0], ε0 > 0 is sufficiently
small, yε0(t) has the form [see relations (18) and (20)]

y0(t, τ) =
n∑

j=1

α
(0)
j (t)ϕj(t) exp

{
1
ε

t∫

0

λj(θ) dθ

}
+ y

(0)
0 (t), y

(0)
0 (t) = −A−1(t)h(t), (31)

and the functions α
(0)
j (t) satisfy problem (20). It follows from the representation (30) that if the

spectrum σ(A(t)) of the matrix A(t) lies to the left of the imaginary axis (Re λj(t) < 0, t ∈ [0, 1],
j = 1, . . . , n), then one has the uniform convergence

‖y(t, ε) − y
(0)
0 (t)‖C[δ,1] → 0 (ε → +0). (32)

[Here δ is an arbitrary constant in the interval (0, 1).] But if the spectrum σ(A(t)) contains pure
imaginary numbers, then the passage to the limit (32) in the strong sense cannot be carried out in
the general case. Therefore, in this case, one usually considers the following initialization problem:
single out a class Σ = {y0, h(t),K(t, s)} of original data of problem (2) for which the uniform
convergence (as ε → +0) of the exact solution y(t, ε) of the considered problem to some limit
function ¯̄y (t) on the entire interval [0, 1] is guaranteed. Let us study this problem.

It follows from relation (31) that the uniform convergence y(t, ε) → y(0)
0 (t) (ε → +0) on the

entire interval [0, 1] is guaranteed if the functions α
(0)
j (t) satisfying problem (20) are identically

zero. Since the vector function f ej(α(0)
1 , . . . , α(0)

n , t) has the form (see [2, pp. 242–243])

f ej(α(0)
1 , . . . , α(0)

n , t) = f̃ ej(t)αj +
∑

|mj |≥2

(mj,λ(t))≡λj(t)

f̃mj

(t)(α(0)
1 )mj

1 · · · (α(0)
n )mj

n ,

where mj = (mj
1, . . . ,m

j
n, 0) is a multi-index, it follows that problem (20) has the zero solution if

and only if
(y0 + A−1(0)h(0), χj(0)) = 0, j = 1, . . . , n. (33)

We have thereby proved the following assertion.

Theorem 5. Let conditions 1–4 be satisfied. Then the convergence

‖y(t, ε) − ¯̄y (t)‖C[0,1] → 0 (ε → +0) (34)

takes place if and only if relations (33) are satisfied. In this case, ¯̄y (t) ≡ y
(0)
0 (t).
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Remark. Relations (33) imply that the initialization class Σ = {y0, h(t),K(t, s)} is independent
of the kernel K(t, s), and the initial vector y0 coincides with the limit solution ¯̄y (t) = −A−1(t)h(t)
at the initial time t = 0. Finally, note that a survey of the main results on integro-differential
equations can be found in [6, pp. 402–410].
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