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Abstract—We consider the Sturm–Liouville operator L(y) = −d2y/dx2 + q(x)y in the space
L2[0, π], where the potential q(x) is a complex-valued distribution of the first order of singularity;
namely, q(x) = u′(x), where u ∈ L2[0, π]. (The derivative is understood in the sense of distri-
butions.) We study the uniform equiconvergence on the entire interval [0, π] of the expansions
of a function f ∈ L2 in the system of eigenfunctions and associated functions of the operator L
with the Fourier trigonometric series expansion. We also estimate the equiconvergence rate.
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In the present paper, we study the Sturm–Liouville operator generated in the space L2[0, π]
by the differential expression

l(y) = −y′′ + q(x)y (1)

and the boundary conditions presented below. We assume that the potential q(x) is a complex-
valued distribution of the first order of singularity; namely, q(x) = u′(x), where u ∈ L2[0, π], where
the derivative is understood in the sense of distributions. (The definition and properties of such
operators are described in detail in [1–3].) We study the uniform equiconvergence on [0, π] of the
expansions of a function f ∈ L2 in the system of eigenfunctions and associated functions of L with
the Fourier trigonometric series expansion.

The uniform equiconvergence was proved in [4] for the case of the Dirichlet boundary conditions
y(0) = 0 and y(π) = 0. In the present paper, we study the remaining types of separated boundary
conditions. We not only solve the equiconvergence problem but also estimate the equiconvergence
rate. A detailed history of this problem can be found in [5].

Consider all types of separated boundary conditions starting from the case of the Dirichlet–
Neumann boundary conditions y(0) = 0, y[1](π) = 0, where

y[1](x) = y′(x) − u(x)y(x)

is the first quasiderivative (see [2, Sec. 1]). Here we need the asymptotics of the eigenfunctions of L,
which was obtained in Theorem 1 in [6]. We rearrange the terms in this asymptotics as follows:

yn(x) =
√

2/π sin(mx)+φn(x), wn(x) =
√

2/π sin(mx)+ψn(x), m = n−1/2, n ≥ Nu; (2)

here φn(x) and ψn(x) are functions such that

sup
0≤x≤π

‖{φn(x)}‖l2 ≤ Cu, sup
0≤x≤π

‖{ψn(x)}‖l2 ≤ Cu. (3)

In addition, the sequences {‖φn(x)‖L2} = {Φn} and {‖ψn(x)‖L2} = {Ψn} belong to the space l2,
and one has the inequalities

‖Φn‖l2 ≤ Cu, ‖Ψn‖l2 ≤ Cu. (4)
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By αn we denote the following sum of two integrals:

αn =

√
2
π

1
π

π∫

0

(π − t)(uR(t) + 2iuI(t)) cos(2mt) dt

+

√
2
π

1
2mπ

π∫

0

(π − t)(u2
R(t) − u2

I(t) + 4iuR(t)uI(t)) sin(2mt) dt.

Then one can represent the function ψn(x) in the form

ψn(x) = ψn,0 + ψn,1 + ψn,2,

where

ψn,0 = αn sin(mx) −
√

2
π

x∫

0

u(t) sin(m(x − 2t)) dt,

ψn,1(x) =

√
2
π

sin(mx)

(

− 1
2m

x∫

0

u2(t) sin(2mt) dt

)

+

√
2
π

cos(mx)

(

−x

π

π∫

0

u(t) sin(2mt) dt

+
x

2mπ

π∫

0

u2(t)(cos(2mt) − 1) dt − 2x
π

π∫

0

t∫

0

u(t)u(s) cos(2mt) sin(2ms) ds dt

+
1

2m

x∫

0

u2(t)(1 − cos(2mt)) dt + 2

x∫

0

t∫

0

u(t)u(s) cos(2mt) sin(2ms) ds dt

)

, (5)

sup
0≤x≤π

‖{ψn,2(x)}‖l2 ≤ Cu, {‖ψn,2(x)‖L2} = {Ψn,2} ∈ l2, ‖Ψn,2‖l2 ≤ Cu.

Theorem 1. Let the operator L be generated by the differential expression −y′′ + q(x)y, where
q(x) = u′(x) in the sense of distributions and the complex-valued function u(x) belongs to L2[0, π],
and by the Dirichlet–Neumann boundary conditions y(0) = 0, y[1](π) = 0. Next , let {yn(x)}∞n=1 be
a system of eigenfunctions and associated functions of L with ‖yn(x)‖L2 = 1, and let {wn(x)}∞n=1

be the biorthogonal system. Then the uniform equiconvergence of the expansion of a function f in the
system {yn(x)}∞n=1 and in the sine system holds on the entire interval [0, π], and the equiconvergence
rate can be characterized as follows :

∥
∥∥
∥∥

l∑

n=1

cnyn(x) −
l∑

n=1

√
2
π

cn,0 sin((n − 1/2)x)

∥
∥∥
∥∥

C

≤ Cu

(
∑

n≥l1/2−ε

|cn,0|2
)1/2

+ ‖f‖L2(vu([l1/2−ε]) + Cul−ε), (6)

where cn = (f(x), wn(x)), cn,0 =
√

2/π(f(x), sin((n − 1/2)x)), ε ∈ (0, 1/2) is an arbitrary small
positive number , l1/2−ε > Nu, and

vu(k) = Cu

((
∑

n≥k

‖ψn(x)‖2
L2

)1/2

+

(
∑

n≥k

‖φn(x)‖2
L2

)1/2 )

, k ≥ Nu. (7)
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Proof. Consider the operators Bl,N : L2[0, π] → C[0, π] acting on functions f ∈ L2[0, π] by the
following rule:

(Bl,N)f(x) =
l∑

n=N

cnyn(x) −
l∑

n=N

√
2
π

cn,0 sin((n − 1/2)x), N = Nu, l ≥ N. (8)

Set m = n− 1/2, n = 1, 2, . . . Then, by Theorem 2 in [6], every function f ∈ L2[0, π] admits the
representation

(Bl,N)f(x) =
l∑

n=N

√
2
π

(f(t), ψn,0(t)) sin(mx) +
l∑

n=N

√
2
π

(f(t), ψn,1(t)) sin(mx)

+
l∑

n=N

√
2
π

(f(t), ψn,2(t)) sin(mx) +
l∑

n=N

√
2
π

(f(t), sin(mx))φn(x)

+
l∑

n=N

√
2
π

(f(t), ψn(t))φn(x). (9)

Let us estimate the norm of the operator Bl,N . To simplify the notation, for N = 1, we set
Bl,1 = Bl.

Let us successively consider the terms on the right-hand side in relation (9). The most compli-
cated thing is to estimate the first term. We have the inequality

∥
∥
∥∥
∥

l∑

n=N

√
2
π

αn(f(t), sin(mx)) sin(mx)

∥
∥
∥∥
∥

C

≤ Cu‖f‖L2 .

Now one should estimate the expression

l∑

n=N

π∫

0

f(t)

t∫

0

u(s) sin(m(t − 2s)) ds dt sin(mx). (10)

To this end, we transform the product of sines,

sin(m(t − 2s)) sin(mx) = (1/2)(cos(m(t − 2s − x)) − cos(m(t − 2s + x))),

and substitute the result into the expression (10),

l∑

n=N

π∫

0

f(t)

t∫

0

u(s) sin(m(t − 2s)) ds dt sin(mx)

=
1
2

l∑

n=N

π∫

0

f(t)

t∫

0

u(s) cos(m(t − 2s − x)) ds dt

− 1
2

l∑

n=N

π∫

0

f(t)

t∫

0

u(s) cos(m(t − 2s + x)) ds dt ≡ S1 + S2. (11)

Consider the first term on the right-hand side in relation (11) in detail (the second one can be
considered in a similar way) :

S1 =
1
2

l∑

n=N

π∫

0

f(t)

t∫

0

u(s) cos(n(t − 2s − x)) cos
(

t

2
− s − x

2

)
ds dt

+
1
2

l∑

n=N

π∫

0

f(t)

t∫

0

u(s) sin(n(t − 2s − x)) sin
(

t

2
− s − x

2

)
ds dt ≡ S11 + S12. (12)
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Then

S11 =

π∫

0

f(t)

t∫

0

u(s)Dl(t − x − 2s) cos
(

t

2
− s − x

2

)
ds dt

−
π∫

0

f(t)

t∫

0

u(s)DN−1(t − x − 2s) cos
(

t

2
− s − x

2

)
ds dt ≡ S(1)

11 + S(2)
11 . (13)

Here Dl(ξ) = 1/2 +
∑l

n=1 cos(nξ) is the Dirichlet kernel. Since t and s belong to the interval [0, π],
it follows that the second term on the right-hand side in relation (13) can be estimated as

S
(2)
11 ≤ Cu‖f‖L2 .

Now let us estimate the term S
(1)
11 in (13). To this end, we define an operator Al,−x on the space

L2[0, π] by the rule

(Al,−xu)(t) =

t∫

0

u(s)Dl(t − 2s − x) ds.

It was shown in [4] that ‖Al,−x‖L2 ≤ Cu, which implies an estimate for the term S11 in (12).
Since the term S12 is bounded by Cu‖f‖L2 as well, we have the estimate

∥
∥∥
∥
∥

l∑

n=N

√
2/π (f(t), ψn,0(t)) sin(mx)

∥
∥∥
∥
∥
≤ Cu‖f‖L2 .

We return to the main relation (9). Let us verify that
∥∥
∥
∥∥

√
2
π

l∑

n=N

(f(t), ψn,1(t)) sin(mx)

∥∥
∥
∥∥

L2

≤ Cu‖f‖L2 .

Let us use the asymptotic formulas obtained above for the function ψn,1(x). We have

(f(t), ψn,1(t)) = − 1
2m

π∫

0

f(t) sin(mt)

t∫

0

u2(s) sin(2ms) ds dt

−
π∫

0

f(t) cos(mt)
t

π

π∫

0

u(s) sin(2ms) ds dt +

π∫

0

f(t) cos(mt)
t

2mπ

π∫

0

u2(s)(cos(2ms) − 1) ds dt

−
π∫

0

f(t) cos(mt)
2t
π

π∫

0

s∫

0

u(s)u(τ) cos(2ms) sin(2mτ) dτ ds dt

+
1

2m

π∫

0

f(t) cos(mt)

t∫

0

u2(s)(1 − cos(2ms)) ds dt

−
π∫

0

2tf(t)
π

cos(mt)

π∫

0

s∫

0

u(s)u(τ) cos(2ms) sin(2mτ) dτ ds dt

+ 2

π∫

0

f(t) cos(mt)

t∫

0

s∫

0

u(s)u(τ) cos(2ms) sin(2mτ) dτ ds dt ≡
7∑

i=1

Ji. (14)
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Let us successively estimate all terms in relation (14). For the first term, we have

∣∣
∣∣
∣

l∑

n=N

sin(mx)J1

∣∣
∣∣
∣
≤

π∫

0

|u(s)|2
∣∣
∣∣
∣

l∑

n=N

sin(mx)
2m

sin(mx)

π∫

0

f(t) sin(mt) dt

∣∣
∣∣
∣
ds

≤
π∫

0

|u(s)|2
l∑

n=N

1
2m

∣∣
∣∣
∣

π∫

0

f(t) sin(mt) dt

∣∣
∣∣
∣
ds ≤ Cu‖f‖L2 , (15)

where the last inequality holds because {
∫ π

0
f(t) sin(mt) dt}∞n=N belongs to l2 and ‖Hsf‖L2 ≤ ‖f‖L2 ,

where Hs is the cutoff operator in the space L2[0, π].
For the second term in (14), we have

∣
∣∣
∣∣

l∑

n=N

J2 sin(mx)

∣
∣∣
∣∣

≤ 1
π

(
l∑

n=N

∣∣
∣∣
∣

π∫

0

tf(t) cos(mt) dt

∣∣
∣∣
∣

2)1/2( l∑

n=N

∣∣
∣∣
∣

π∫

0

u(s) sin(2ms) ds

∣∣
∣∣
∣

2)1/2

≤ Cu‖f‖L2 . (16)

The third term in (14) can be estimated as

∣∣
∣
∣∣

l∑

n=N

J3 sin(mx)

∣∣
∣
∣∣
≤ Cu

(
l∑

n=N

1
m2

)1/2( l∑

n=N

∣∣
∣
∣∣

π∫

0

tf(t) cos(mt) dt

∣∣
∣
∣∣

2)1/2

≤ Cu‖f‖L2 . (17)

The fourth term can be estimated by analogy with the first one.
To estimate the fifth term, we set U(t) =

∫ t

0
u2(s) dt (this function is absolutely continuous) and

integrate u2(s). We have

∣
∣∣
∣∣

l∑

n=N

sin(mx)
2m

π∫

0

f(t) cos(mt)

t∫

0

u2(s) ds dt

∣
∣∣
∣∣
≤

l∑

n=N

1
2m

∣
∣∣
∣∣

π∫

0

f(t)U(t) cos(mt) dt

∣
∣∣
∣∣

≤ C

(
l∑

n=N

∣
∣∣
∣
∣

π∫

0

f(t)U(t) cos(mt) dt

∣
∣∣
∣
∣

2)1/2

≤ C‖f(t)U(t)‖L2 ≤ Cu‖f‖L2 . (18)

To estimate the sixth term, we introduce a function ξ(s, τ) such that ξ(s, τ) = 1 if τ ≤ s and
ξ(s, τ) = 0 otherwise. Then u(s)u(τ)ξ(s, τ) ∈ L2[0, π][0, π]. We find that the following inequality
holds for x ∈ [0, π] :

∣∣
∣∣
∣

l∑

n=N

J6 sin(mx)

∣∣
∣∣
∣

≤ 2
π

(
l∑

n=N

∣∣
∣
∣∣

π∫

0

tf(t) cos(mt) dt

∣∣
∣
∣∣

2)1/2( l∑

n=N

∣∣
∣
∣∣

π∫

0

s∫

0

u(s)u(τ) cos(2ms) sin(2mτ) dτ ds

∣∣
∣
∣∣

2)1/2

≤ C‖f‖L2

(
l∑

n=N

∣
∣∣
∣∣

π∫

0

π∫

0

u(s)u(τ)ξ(s, τ) cos(2ms) sin(2mτ) dτ ds

∣
∣∣
∣∣

2)1/2

≤ Cu‖f‖L2 . (19)
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Let us proceed to the last term in relation (14). By H̃s we denote the cutoff operator H̃sf(t) =
ξ[s,π]f(t). Then for each x ∈ [0, π], we have

∣
∣∣
∣∣

l∑

n=N

1
2
J7 sin(mx)

∣
∣∣
∣∣
=

∣
∣∣
∣∣

π∫

0

u(s)
l∑

n=N

cos(2ms) sin(mx)(H̃sf(t), cos(mt))(Hsu(τ), sin(2mτ)) ds

∣
∣∣
∣∣

≤
π∫

0

|u(s)|
∣
∣∣
∣∣

l∑

n=N

(H̃sf(t), cos(mt))(Hsu(τ), sin(2mτ))

∣
∣∣
∣∣
ds

≤ C

π∫

0

|u(s)| ‖H̃sf(t)‖L2 ‖Hsu‖L2 ≤ Cu‖f‖L2 . (20)

By taking into account the estimates (15)–(20), we obtain the inequality
∥∥
∥∥
∥

√
2
π

l∑

n=N

(f(t), ψn,1(t)) sin(mx)

∥∥
∥∥
∥

L2

≤ Cu‖f‖L2 . (21)

Let us continue to estimate terms in the main relation (9).
An estimate for the third term can be obtained with regard to relation (5) in a rather simple

way,

sup
0≤x≤π

∣
∣∣
∣∣

l∑

n=N

√
2
π

(f(t), ψn,2(t)) sin(mx)

∣
∣∣
∣∣
≤

√
2
π

l∑

n=N

∣
∣∣
∣∣

π∫

0

f(t)ψn,2(t) dt

∣
∣∣
∣∣

≤
√

2
π

l∑

n=1

‖f‖L2

π∫

0

|ψn,2(t)|2 dt ≤ Cu‖f‖L2 . (22)

By virtue of the estimate (4), the fourth term in (9) satisfies the inequality
∥∥
∥
∥∥

l∑

n=N

√
2
π

(f(t), sin(mt))φn(x)

∥∥
∥
∥∥

C

≤
√

2
π

sup
0≤x≤π

l∑

n=N

(|(f(t), sin(mt))| |φn(x)|) ≤ Cu‖f‖L2 . (23)

By virtue of the estimate (3), for the last term in (9), we have
∥
∥∥
∥∥

l∑

n=N

√
2
π

(f(t), ψn(t))φn(x)

∥
∥∥
∥∥

C

≤ sup
0≤x≤π

∣
∣∣
∣∣

l∑

n=N

√
2
π
‖f(t)‖L2 ‖ψn(t)‖L2 φn(x)

∣
∣∣
∣∣

≤
√

2
π
‖f‖L2 sup

0≤x≤π

∣∣
∣∣
∣

l∑

n=N

‖ψn(t)‖L2φn(x)

∣∣
∣∣
∣
≤ Cu‖f‖L2 . (24)

As a result, we have obtained an estimate for the left-hand side of the main relation (9). The op-
erator Bl can be represented as the sum Bl = BN−1 + Bl,N , and since ‖BN−1‖L2→C ≤ Cu (a sum
of finitely many terms), we have ‖Bl‖L2→C ≤ Cu.

We have thereby proved the uniform boundedness of the operators Bl for each function u ∈
L2[0, π].

The operator Bl acts on the eigenfunctions and associated functions of the operator L as follows:

(Blyk)(x) =
l∑

n=1

(yk(x), wn(x))yn(x) − 2
π

l∑

n=1

(yk(x), sin(mx)) sin(mx). (25)
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The first term in (25) is zero for m < k and is equal to yk(x) for m ≥ k. The second term
is a partial sum of the Fourier series of the function yk. Since yk ∈ W 1

2 [0, π], it follows that the
Fourier series of yk uniformly converges to yk on the interval [0, π], and we obtain

lim
l→∞

‖Blyk‖C = 0. (26)

In what follows, we use the auxiliary Theorem 2.7 in [1].

Let u ∈ L2[0, π]. Then the system {yn(x)}∞n=1 of eigenfunctions and associated functions of L is
a Riesz basis in L2[0, π].

Hence it follows that each function f(x) can be approximated by linear combinations of functions
of the system {yk(x)} and

lim
l→∞

‖Blf‖C = 0. (27)

We have thereby proved the equiconvergence of expansions in the system of eigenfunctions and
associated functions of L and in the sine system. Let us estimate the equiconvergence rate.

Set gk(x) =
∑k

n=1 cnyn(x) for each k ≥ Nu [where cn = (f(x), wn(x))]. Then the inequality

‖Blf‖C ≤ ‖Bl(f − gk)‖C + ‖Blgk‖C (28)

holds for any function f ∈ L2[0, π] and any positive integer l.
Let us estimate the norm of the first term on the right-hand side in this inequality in the

space C[0, π] :

‖Bl(f − gk)‖C ≤ Cu

( ∞∑

n=k+1

|cn,0|2
)1/2

+ ‖f‖L2vu(k + 1), (29)

where cn,0 =
√

2/π(f(x), sin(mx)) and the vu(k) are the numbers defined in (7).
By taking into account the asymptotic formulas (2), we obtain

‖f(x) − gk(x)‖L2 ≤
∥∥
∥∥
∥

∞∑

n=k+1

2
π

(f(x), sin(mx)) sin(mx)

∥∥
∥∥
∥

L2

+

∥∥
∥∥
∥

∞∑

n=k+1

2
π

(f(x), ψn(x)) sin(mx)

∥∥
∥∥
∥

L2

+

∥∥
∥∥
∥

∞∑

n=k+1

2
π

(f(x), sin(mx))φn(x)

∥∥
∥∥
∥

L2

+

∥∥
∥∥
∥

∞∑

n=k+1

2
π

(f(x), ψn(x))φn(x)

∥∥
∥∥
∥

L2

≤ Cu

(
∞∑

n=k+1

|cn,0|2
)1/2

+ ‖f‖L2

((
∞∑

n=k+1

‖ψn‖2
L2

)1/2

+

(
∞∑

n=k+1

‖φn‖2
L2

)1/2

+
∞∑

n=k+1

‖ψn‖L2 ‖φn‖L2

)

= Cu

( ∞∑

n=k+1

|cn,0|2
)1/2

+ vu(k + 1)‖f‖L2 .

Since the norm of the operator Bl does not exceed the constant Cu, it follows that inequality (29)
holds.

Let us now proceed to estimating the second term in (28). Let l > k. By Sl we denote the
operator mapping the space W 1

2 [0, π] into the space C[0, π] by the rule

Slh(x) = (2/π)
∞∑

n=l+1

(h(t), sin(mt)) sin(mx).
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All eigenfunctions and associated functions of the operator L belong to the space W 1
2 [0, π]; therefore,

the action of the operator Sl on them is well defined, and consequently,

Blgk(x) = gk(x) − 2
π

l∑

n=1

(gk(t), sin(mt)) sin(mx) = Slgk(x).

Hence it follows that
‖Blgk‖C ≤ ‖Sl(gk − gN )‖C + ‖SlgN‖C . (30)

Let m > k ≥ Nu. Then

‖Sl(gk − gN )‖C =

∥
∥∥
∥∥

k∑

n=N+1

cnSlyn(x)

∥
∥∥
∥∥

C

=

∥
∥∥
∥∥

k∑

n=N+1

cnSlφn(x)

∥
∥∥
∥∥

C

,

because yn(x) =
√

2/π sin(mx) + φn(x) [see (2)]. In what follows, we use the relation

k∑

n=N+1

|cn|2 ≤
∞∑

n=N+1

|cn|2 ≤ 2

(
2
π

∞∑

n=N+1

|(f(x), sin(mx))|2 +
∞∑

n=N+1

|(f(x), ψn(x))|2
)

≤ Cu‖f‖2
L2

.

Therefore,
∥
∥∥
∥∥

k∑

n=N+1

cnSlφn(x)

∥
∥∥
∥∥

C

≤
(

k∑

n=N+1

|cn|2
)1/2 (

k∑

n=N+1

‖Slφn(x)‖2
C

)1/2

≤ Cu‖f‖L2

(
k∑

n=N+1

‖Slφn(x)‖2
C

)1/2

.

Let us estimate the norm ‖Slφn(x)‖C with regard of the relation φn(0) = 0,

‖Slφn(x)‖C ≤ 2
π

∞∑

j=l+1

|(φn(x), sin((j + 1/2)x))| =
2
π

∞∑

j=l+1

|(φn(x)′, cos((j + 1/2)x))|
j + 1/2

≤ 2
π

(
∞∑

j=l+1

1
(j + 1/2)2

)1/2 (
∞∑

j=l+1

|(φn(x)′, cos((j + 1/2)x))|2
)1/2

≤ Cul−1/2‖φn(x)‖W 1
2
. (31)

It follows from [2, Sec. 2] that φn(x)′ = nηn(x) + u(x)yn(x) and ‖φn(x)‖W 1
2
≤ Cunηn, where

‖{ηn}‖l2 ≤ Cu. Hence we obtain the estimate

‖Slφn(x)‖C ≤ Cul−1/2nηn.

As a result, the first term on the right-hand side in inequality (30) can be estimated as follows:

‖Sl(gk − gN )‖C ≤ Cu‖f‖L2

(
k∑

n=1

l−1n2η2
n

)1/2

≤ Cu‖f‖L2l
−1/2k.

Since the action of the operator Sl on the function gN can be estimated just as in (31), we have

‖SlgN(x)‖C ≤ Cul−1/2‖gN(x)‖W 1
2
.

The number N is fixed and depends only on an antiderivative of the potential u; therefore,

‖gN (x)‖W 1
2
≤ Cu‖f‖L2 , ‖SlgN‖C ≤ Cul−1/2‖f‖L2 .

DIFFERENTIAL EQUATIONS Vol. 51 No. 2 2015



EQUICONVERGENCE THEOREMS FOR SINGULAR STURM–LIOUVILLE OPERATORS 185

As a result, we obtain
‖Blgk‖C ≤ ‖f‖L2Cukl−1/2. (32)

Now it suffices to take k = [l1/2−ε], where ε ∈ (0, 1/2) is arbitrary, and it readily follows from
relations (28), (29), and (32) that the desired inequality (6) holds. The proof of the theorem is
complete.

Let us proceed to the study of the remaining forms of separated boundary conditions. We need
the closed-form expression for the asymptotics of eigenfunctions and associated functions obtained
in Theorem 1 and Remark 2 in [7].

Theorem 2. Let the operator L be generated by the differential expression −y′′ + q(x)y and the
boundary conditions presented below , where q(x) = u′(x) in the sense of distributions and u(x) is
a complex-valued function in L2[0, π]. Next , let {yn(x)}∞n=1 be the system of eigenfunctions and
associated functions of the operator L with ‖yn(x)‖L2 = 1, and let {wn(x)}∞n=1 be the biorthogo-
nal system. Then the uniform equiconvergence of the expansions of the function f in the system
{yn(x)}∞n=1 and in the system {F (mx)} occurs on the entire interval [0, π], and the equiconvergence
rate can be estimated as follows :
∥∥
∥
∥∥

l∑

n=1

cnyn(x) −
l∑

n=1

√
2
π

cn,0F (mx)

∥∥
∥
∥∥

C

≤ Cu

(
∑

n≥l1/2−ε

|cn,0|2
)1/2

+ ‖f‖L2(vu([l1/2−ε])+Cul−ε), (33)

where cn = (f(x), wn(x)), cn,0 =
√

2/π(f(x), F (mx)), ε ∈ (0, 1/2) is an arbitrary small positive
number , l1/2−ε > Nu, and

vu(k) = Cu

((
∑

n≥k

‖ψn‖2
L2

)1/2

+

(
∑

n≥k

‖φn‖2
L2

)1/2)

, k ≥ Nu.

Here F (α) = sin(α) and m ∈ N in the case of the Dirichlet boundary conditions [y(0) = 0,
y(π) = 0]; F (α) = cos(α) and m ∈ N ∪ 0 for the Neumann boundary conditions [y[1](0) = 0,
y[1](π) = 0]; F (α) = sin(α) and m = n − 1/2, n ∈ N, for the Dirichlet–Neumann boundary
conditions [y(0) = 0, y[1](π) = 0]; and F (α) = cos(α) and m = n − 1/2, n ∈ N, for the Neumann–
Dirichlet boundary conditions [y[1](0) = 0, y(π) = 0].

Proof. In the case of the Neumann–Dirichlet and Neumann boundary conditions, the proof
is similar to the above-proved Theorem 1 with the replacement of sines by cosines. As a result,
in view of [4], the proof of Theorem 2 is complete.
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