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1. STATEMENT OF THE PROBLEM AND MAIN DEFINITIONS

Consider the optimal control problem

K0(p) +

t2∫

t1

f0(x, u, t) dt → min, ẋ = f(x, u, t), t ∈ [t1, t2], t1 < t2,

G(x, t) = 0, K1(p) ≤ 0, K2(p) = 0, p = (x1, x2, t1, t2), u(t) ∈ U.

(1)

The given vector functions G and Ki take values in arithmetic spaces of dimensions d(G) and d(Ki),
respectively, K0 and f0 are scalar functions, U ⊆ R

m is a given closed set, ẋ = dx/dt, t ∈ [t1, t2]
is the time (the time instants t1 and t2 are not assumed to be fixed), x is a state variable taking
values in the n-dimensional arithmetic space R

n, and u ∈ R
m is a control parameter. The vector

p ∈ R
n×R

n×R
1×R

1 is said to be terminal. For the class of admissible controls we take measurable
essentially bounded functions u(·) ranging in the set U (see [1, p. 86; 2]).

Let u(t), t ∈ [t1, t2], be an admissible control, let x(t), t ∈ [t1, t2], be the corresponding trajectory,
and let p be the corresponding terminal vector. The triple (p, x, u) is referred to as an admissible
process if it satisfies the terminal constraints K1(p) = 0 and K2(p) ≤ 0 and the state constraints
G(x(t), t) = 0 ∀t ∈ [t1, t2].

In what follows, we assume that all functions occurring in the statement of the problem are
continuously differentiable and the function G is twice continuously differentiable. Let us introduce
notions needed below.

In the following, we assume that the state constraints are regular, i.e., that the matrix
∂G

∂x
(x, t)

has full rank for all (x, t) : G(x, t) = 0.
We say that the terminal constraints are regular at a point p = (x1, x2, t1, t2) : K1(p) ≤ 0,

K2(p) = 0 if

rank
∂K2

∂p
(p) = d(K2)

and there exists a d ∈ ker
∂K2

∂p
(p) such that

〈
∂Kj

1

∂p
(p), d

〉
> 0 for all j such that Kj

1(p) = 0.

(Here and throughout the following, superscripts stand for the coordinates of a vector or a vector
function.)

33



34 ARUTYUNOV, KARAMZIN

We say that the state constraints at a point p∗ are coordinated with the terminal constraints if
there exists a number ε > 0 such that{

p ∈ R
2n+2 : |p∗ − p| ≤ ε, K1(p) = 0, K2(p) ≤ 0

}
⊆ {p : G(x1, t1) = 0, G(x2, t2) = 0} .

Let us introduce the notion of regularity of a trajectory. Let (p∗, x∗, u∗) be an admissible process
in problem (1). Here p∗ = (x∗

1, x
∗
2, t

∗
1, t

∗
2). Set

Γ(x, u, t) =
∂G

∂x
(x, t)f(x, u, t) +

∂G

∂t
(x, t),

U(x, t) := {u ∈ U : Γ(x, u, t) = 0}, T = [t∗1, t
∗
2].

Definition 1. A trajectory x∗(·) is said to be regular if the relations

rank
∂Γ
∂u

(x∗(t), u, t) = d(G), im
∂Γ∗

∂u
(x∗(t), u, t) ∩ NU (u) = {0}

hold for all t ∈ T and u ∈ U(x∗(t), t).

Here NU(u) is the limit normal cone of the set U at the point u in the Mordukhovich sense
(see [3, p. 4]). For u ∈ U , this cone is defined by the relation

NU(u) := Lsy→u cone(y − ΠU (y)).

Here ΠU (y) is the projection of a vector y into the set U ; i.e.,

ΠU(y) = {u ∈ U : |y − u| = dist(y, U)},
where dist(y, U) = infu∈U |y − u| is the distance of a point to a set, cone is the conical hull of a set,
and Ls is the upper topological limit of a family of sets. [It consists of all possible limit points of
sequences of vectors in cone(yk − ΠU (yk)) as yk → u.]

2. MAXIMUM PRINCIPLE

Consider the extended Hamilton–Pontryagin function

H̄(x, u, t, ψ, μ, λ0) = 〈ψ, f(x, u, t)〉 − 〈μ,Γ(x, u, t)〉 − λ0f0(x, u, t)

and the small Lagrangian

l(p, λ) = λ0K0(p) + 〈λ1,K1(p)〉 + 〈λ2,K2(p)〉,
where λ = (λ0, λ1, λ2), λ0 ∈ R, λ1 ∈ R

d(K1), and λ2 ∈ R
d(K2).

Definition 2. We say that an admissible process (p∗, x∗, u∗) satisfies the Pontryagin maximum
principle if there exists a vector λ = (λ0, λ1, λ2), λ0 ≥ 0, λ1 ≥ 0, 〈λ1,K1(p∗)〉 = 0, an absolutely
continuous function ψ : T → R

n, and a measurable essentially bounded function μ : T → R
d(G)

such that

either λ0 > 0, or ψ(t) /∈ im
∂G∗

∂x
(t) ∀t ∈ T, (2)

ψ̇(t) = −∂H̄

∂x
(t) for a.a. t ∈ T, (3)

ψ(t∗s) = (−1)s+1 ∂l

∂xs

(p∗, λ), s = 1, 2, (4)

max
u∈U(t)

H̄(u, t) = H̄(t) for a.a. t ∈ T, (5)

ḣ(t) =
∂H̄

∂t
(t) for a.a. t ∈ T, (6)

h(t∗s) = (−1)s ∂l

∂ts

(p∗, λ), s = 1, 2, (7)

∂H̄

∂u
(t) ∈ conv NU (u∗(t)) for a.a. t ∈ T, (8)
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MAXIMUM PRINCIPLE IN AN OPTIMAL CONTROL PROBLEM 35

where h(t) := maxu∈U(t) H̄(u, t); moreover, the above-mentioned maximum over u ∈ U(t) is attained
at each point t ∈ T .

A process (p∗, x∗, u∗) satisfying the maximum principle is referred to as an extremal, and the
set (λ,ψ, μ, r) is referred to as the Lagrange multipliers corresponding to the process (p∗, x∗, u∗) in
view of the maximum principle.

Here and throughout the following, we use the following agreement on notation. First, if some
arguments of the mappings H̄, G, Γ, f , U , and so on and their derivatives are omitted, then they
are replaced by the optimal values x∗(t) and u∗(t) or the Lagrange multipliers ψ(t), μ(t), and λ0.
Second, all Lagrange multipliers are treated as row vectors, while the vector functions or vectors
f , x, and u are treated as column vectors. The gradients of functions are treated as rows, and the

entries of the Jacobi matrix of a mapping F (x) : R
n → R

k have the form
∂F i

∂xj

(x); i.e., its rows are

the gradients of the coordinate functions F i.

Theorem 1. Let a process (p∗, x∗, u∗) be optimal in problem (1). In addition, let x∗(t) be an
optimal trajectory , let the terminal constraints be regular and coordinated with the state constraints
at the point p∗, and let the sets U(t) be uniformly bounded for t ∈ T . Then the process (p∗, x∗, u∗)
satisfies the maximum principle.

Remark 1. By virtue of the formulas

d

dt

(
∂G

∂x
(t)

)
=

∂2G

∂x2
(t)f(t) +

∂2G

∂x∂t
(t) =

∂Γ
∂x

(t) − ∂G

∂x
(t)

∂f

∂x
(t),

d

dt

(
∂G

∂t
(t)

)
=

∂2G

∂x∂t
(t)f(t) +

∂2G

∂t2
(t) =

∂Γ
∂t

(t) − ∂G

∂x
(t)

∂f

∂t
(t), (9)

one can readily show that, in addition to the Lagrange multipliers (λ,ψ, μ, r), the set of Lagrange
multipliers

λ, ψ(t) + a
∂G

∂x
(t), μ(t) + a, r(t),

where a is an arbitrary vector in R
d(G), satisfies the assumptions of the maximum principle as well.

Indeed, under this transformation, the Hamiltonian h(t) is replaced by −a
∂G

∂t
(t), and the condition

of maximum is preserved, because, by definition,

∂G

∂x
(t)f(u, t) = −∂G

∂t
(t) ∀u ∈ U(t).

In this case, conditions (3) and (6) hold by virtue of (9).
Moreover, by virtue of the above argument, conditions (3)–(8) can always be satisfied trivially

by choosing the following set of Lagrange multipliers:

λ = 0, ψ(t) = a
∂G

∂x
(t), μ(t) = a, r = 0,

where a ∈ R
d(G) is an arbitrary vector. However, obviously, such a set of Lagrange multipliers does

not satisfy condition (2). This justifies the importance of condition (2) in the sense that it cannot
be weakened by the replacement by the ordinary condition of nontriviality of the set of Lagrange
multipliers.

The nontriviality condition (2) is also needed for a different reason. Let λ0 = 0. Then, by virtue

of condition (2), we have ψ(t) /∈ im
∂G∗

∂x
(t) ∀t ∈ T . This condition is important, because if
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36 ARUTYUNOV, KARAMZIN

ψ(t) ∈ im
∂G∗

∂x
(t) for some t, then the maximum condition (5) at the point t becomes less meaningful

since

H̄(u, t) = −
〈

a(t),
∂G

∂t
(t)

〉
∀u ∈ U(t),

where a(t) ∈ R
d(G) is chosen from the condition ψ(t) = a(t)

∂G

∂x
(t); therefore, H̄(u, t) treated as

a function of u is constant on U(t).

Remark 2. Consider the classical Hamilton–Pontryagin function [1, p. 11]

H(x, u, t, ψ, λ0) = 〈ψ, f(x, u, t)〉 − λ0f0(x, u, t).

Since Γ(x, u, t) = 0 ∀u ∈ U(x, t), it follows that the function H̄ in the maximum condition (5) can
be replaced by H.

Proof of Theorem 1. Without loss of generality, one can assume that f0 = 0. This can always
be achieved by the introduction of an additional state variable.

First, consider the auxiliary problem

ϕ(p) → min, ẋ = f(x, u, t), t ∈ T, G(x, t) = 0, p ∈ C, p = (x1, x2), u(t) ∈ U (10)

on a fixed time interval T = [t∗1, t∗2]; for this problem, we prove the maximum principle without
condition (6) and with condition (2) replaced by the condition

ψ(t∗1) ∈ ker
∂G

∂x
(t∗1). (11)

In the preceding, ϕ(p) := K0(p, t∗1, t
∗
2), and C is a given closed subset of R

2n. In problem (10), the
terminal constraints have a more general form than in problem (1). In this case, the coordination
of terminal constraints with the state constraints implies that C ⊆ G, where

G = {p = (x1, x2) : G(x1, t
∗
1) = 0, G(x2, t

∗
2) = 0}.

Let (p∗, x∗, u∗) be an optimal process in problem (10). For problem (10), we prove the existence
of Lagrange multipliers λ0, ψ, and μ that do not vanish simultaneously and satisfy conditions (3),
(5), (8), and (11) and the transversality condition

(ψ(t∗1),−ψ(t∗2)) ∈ λ0 ∂ϕ

∂p
(p∗) + NC(p∗). (12)

For θ > 0, set
C̃ = C̃(θ) :=

⋃
p∈C: |p−p∗|≤θ

(p + NG(p)).

By virtue of the regularity of the state constraints, the set G is a smooth manifold. Therefore, its
normal cone NG(p) is a subspace. However, by construction, p∗ + NG(p∗) ⊆ C̃, and hence NC̃(p∗)
lies in the orthogonal complement of NG(p∗). Therefore,

NC̃(p∗) ∩ NG(p∗) = {0}. (13)

By using the regularity of the state constraints, by performing the linearization of the mapping
that defines the smooth manifold G, and by taking into account the corresponding properties of
the limit normal cone under local diffeomorphisms (see [4, Th. 5.2, formula (5.2)]), we find that

NC(p∗) = NC̃(p∗) + NG(p∗) (14)
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MAXIMUM PRINCIPLE IN AN OPTIMAL CONTROL PROBLEM 37

and, for the point p∗ ∈ G, there exists a neighborhood O such that

O ∩ G ∩ (p + NG(p)) = p ∀p ∈ O ∩ G.

By using the last relation and the definition of the set C̃, we take a number θ > 0 small enough to
ensure that G ∩ C̃ ⊆ C; i.e.,

if p ∈ C̃ ∩ G, then p ∈ C. (15)

Take positive numbers c and δ such that |u| ≤ c for arbitrary u ∈ U(x, t) and x satisfying the
condition |x − x∗(t)| ≤ δ ∀t ∈ T . This is possible by virtue of the uniform boundedness of the sets
U(t) and the continuity of the mapping Γ.

Along with problem (10), consider the problem in which the state constraints are replaced by
the mixed constraints

ϕ(p) → min, ẋ = f(x, u, t),

G(x1, t
∗
1) = 0, p ∈ C̃, p = (x1, x2), u(t) ∈ U,

Γ(x, u, t) = 0 for a.a. t ∈ T.

(16)

By virtue of the obvious identity

G(x(t), t) = G(x1, t
∗
1) +

t∫

t∗1

Γ(x(s), u(s), s) ds ∀t ∈ T,

and condition (15), the sets of admissible processes in problems (10) and (16) coincide. Therefore,
the process (p∗, x∗, u∗) is also optimal in problem (16).

For convenience, we assume that ϕ(p∗) = 0. By M ⊆ R
2n × L

m
1 (T ) we denote the set of

pairs (p, u(·)), p = (x1, x2), such that G(x1, t
∗
1) = 0, u(t) ∈ U(x(t), t) for almost all t ∈ T ,

|x(t) − x∗(t)| ≤ δ ∀t ∈ T , and x2 = x(t∗2), where x(·) is the trajectory corresponding to the control
u(·) and the initial condition x(t∗1) = x1. The set M is nonempty, because it contains the element
(p∗, u∗(·)). Moreover, one can readily see that M is closed; consequently, it is a complete metric
space with metric induced by the norm |p| + ‖u‖L1 .

For a ∈ R, set a+ = max{a, 0}. For each positive integer i, set εi = i−1 and ϕi(p) = (ϕ(p)+εi)+.
On the set M, we introduce the functional

Fi(p, u(·)) = ((ϕi(p))2 + (dist(p, C̃))2)1/2.

The functional Fi is continuous and positive on M. [The terms in the radicand do not vanish
simultaneously, because ϕ(p∗) = 0.]

For fixed i, consider the problem

Fi(p, u(·)) → min, (p, u(·)) ∈ M.

Obviously, Fi(p∗, u∗(·)) = εi. Let us apply the Ekeland variational principle [5] to this problem.
Then, for each i, there exists an element (pi, ui(·)) ∈ M, pi = (x1,i, x2,i), such that

Fi(pi, ui(·)) ≤ Fi(p∗, u∗(·)) = εi, (17)

|pi − p∗| +
t∗2∫

t∗1

|ui(t) − u∗(t)| dt ≤ √
εi , (18)

and the pair (pi, ui(·)) is a solution of the problem

((ϕi(p))2 + (dist(p, C̃))2)1/2 +
√

εi

(
|p − pi| +

t∗2∫

t∗1

|u − ui(t)| dt

)
→ min, ẋ = f(x, u, t),

G(x1, t
∗
1) = 0, u(t) ∈ U(x(t), t) for a.a. t, |x(t) − x∗(t)| ≤ δ ∀t ∈ T.

(19)
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38 ARUTYUNOV, KARAMZIN

We denote the optimal trajectory in this problem by xi(t).
It follows from inequality (18) that, after passage to a subsequence pi → p∗, we have ui(t) → u∗(t)

for almost all t, and hence xi(t) ⇒ x∗(t) uniformly on T ; therefore, in the derivation of optimality
conditions in problem (19) for large values i, one can omit the constraint |x(t)− x∗(t)| ≤ δ ∀t ∈ T .
Therefore, problem (19) contains only terminal constraints at the left endpoint of the trajectory
and mixed constraints u ∈ U(x, t), which are regular for large i (see Definition 3 and Lemma 1 in
Section 4) by virtue of the regularity of the optimal trajectory (see Definition 1).

To this problem, we apply the maximum principle for a problem without terminal constraints,
which is to be proved in the appendix (Theorem 3 and Remarks 3 and 4); in this connection,
we set λ0 = 1. By virtue of this maximum principle, for each i, there exists a vector ξi ∈ R

d(G),
an absolutely continuous function ψi, a measurable bounded function μi, and a number κ > 0
independent of i such that

ψ̇i(t) = −∂H̄i

∂x
(t) for a.a. t ∈ T, (20)

ψi(t∗1) ∈ λ0
i

∂ϕi

∂x1

(pi) + 
i∂x1 dist(pi, C̃) + ξi

∂Gi

∂x
(t∗1) +

√
εi BRn ,

ψi(t∗2) ∈ −λ0
i

∂ϕi

∂x2

(pi) − 
i∂x2 dist(pi, C̃) +
√

εi BRn ,

(21)

max
u∈Ui(t)

(H̄i(u, t) −√
εi |u − ui(t)|) = H̄i(t) for a.a. t ∈ T, (22)

∂H̄i

∂u
(t) ∈ conv NU (ui(t)) +

√
εi BRm for a.a. t ∈ T, (23)

|μi(t)| ≤ κ(1 + |ψi(t)|) for a.a. t ∈ T. (24)

Here

λ0
i =

ϕi(p)
((ϕi(p))2 + (dist(pi, C̃))2)1/2

, 
i =
dist(pi, C̃)

((ϕi(p))2 + (dist(pi, C̃))2)1/2
;

the subscript i at H̄, G, and U implies that the variables x, u, ψ, and μ are replaced by their values
xi(t), ui(t), ψi(t), and μi(t); BX is the closed unit ball in the space X, and ∂xs

h(p̄) is the limit
subdifferential of the Lipschitz function h(p) at the point p̄ with respect to the variable xs, s = 1, 2
(see [3, p. 82]). In condition (22), we have taken into account Remark 2.

The vector ψi(t∗1) can be represented in the form ψi(t∗1) = ai + bi, where ai ∈ im
∂G∗

i

∂x
(t∗1) and

bi ∈ ker
∂Gi

∂x
(t∗1). By virtue of Remark 1, not only the Lagrange multipliers ψi and μi but also the

functions ψ̄i and μ̄i satisfy conditions (20)–(23), where

ψ̄i(t) := ψi(t) − ai

∂Gi

∂x
(t), μ̄i(t) := μi(t) − ai.

Therefore, the inclusion

ψ̄i(t∗1) ∈ ker
∂Gi

∂x
(t∗1) (25)

holds for all i. It follows from conditions (20)–(23) that

˙̄ψi(t) = −∂H̄i

∂x
(ψ̄i(t), μ̄i(t), t), t ∈ T, (26)

ψ̄i(t∗1) ∈ λ0
i

∂ϕi

∂x1

(pi) + 
i∂x1 dist(pi, C̃) + (ξi − ai)
∂Gi

∂x
(t∗1) +

√
εi BRn ,

ψ̄i(t∗2) ∈ −λ0
i

∂ϕi

∂x2

(pi) − 
i∂x2 dist(pi, C̃) − ai

∂Gi

∂x
(t∗2) +

√
εi BRn ,

(27)
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MAXIMUM PRINCIPLE IN AN OPTIMAL CONTROL PROBLEM 39

max
u∈Ui(t)

(H̄i(u, ψ̄i(t), μ̄i(t), t) −
√

εi |u − ui(t)|) = H̄i(ψ̄i(t), μ̄i(t), t) for a.a. t ∈ T, (28)

∂H̄i

∂u
(ψ̄i(t), μ̄i(t), t) ∈ conv NU (ui(t)) +

√
εi BRm for a.a. t ∈ T. (29)

Note that
(λ0

i )
2 + (
i)2 = 1 ∀i. (30)

Hence, by taking into account relations (21) and (24), by following the standard argument, and
by using the Gronwall inequality, from (20) we find that the family of functions ψi(t) is uniformly
bounded. Since the ψi(t) are uniformly bounded, it follows that the sequence of vectors ai is
bounded. Then the functions ψ̄i(t) are uniformly bounded as well. In addition, by virtue of (24),
|μ̄i(t)| ≤ const for almost all t ∈ T and for all i, where const is independent of i and t. This implies

the uniform boundedness of the derivatives
dψ̄i

dt
(t).

By using the above argument, by taking into account the compactness of the unit ball in the
Euclidean space, the Arzelá–Ascoli theorem, and the weak sequential compactness of a unit ball
in L2, and by passing to a subsequence, we obtain λ0

i → λ0, 
i → 
, ψ̄i(t) ⇒ ψ(t), and μ̄i → μ
weakly in L2(T ).

By passing to the limit in conditions (26)–(29) in a standard way (see [6, Subsec. 2.5]), we obtain
relations (3), (5), (8), (12), and (11). Here, to derive the transversality conditions (12) from (27),
one can use the properties of the subdifferential of the distance function (see [3, item 1.3.3, Ths. 1.97
and 1.105]), the upper semicontinuity of the limit normal cone, and formula (14). The inclusion (11)
follows from (25).

It remains to note that λ0, ψ, and μ cannot vanish simultaneously. Indeed, otherwise, by virtue
of relation (30), we have


i → 1, λ0
i → 0, ψ̄i(t∗1) → 0, ψ̄i(t∗2) → 0.

Since 
i → 1, it follows that pi /∈ C̃ for large i. But, by Theorem 1.105 in [3], we have |h| = 1 and
h ∈ ∂ dist(p, C̃) for all p /∈ C̃. Therefore, the transversality condition (27) with large i contradicts
relation (13). Consequently, λ0, ψ, and μ do not vanish simultaneously.

The maximum principle with conditions (3), (5), (8), (11), and (12) is thereby proved for the
auxiliary problem (10) on a fixed time interval.

By using the approach suggested in [6, Subsec. 2.11] and by considering the so-called v-problem,
we prove the existence of Lagrange multipliers λ0, ψ, and μ that do not vanish simultaneously and
satisfy conditions (3)–(8) and the condition

∂G

∂x
(t∗1)ψ(t∗1) = h(t∗1)

∂G

∂t
(t∗1) (31)

(for details, see [6]). In this case, the transversality conditions (4) and (7) are consequences of
condition (12) and the regularity of the terminal conditions, and condition (31) follows from the
inclusion (11).

It remains to prove the nontriviality condition (2). Suppose that condition (2) fails. Then
λ0 = 0, and there exists a point τ ∈ T and a vector a ∈ R

d(G), a �= 0, such that

ψ(τ) = a
∂G

∂x
(τ).

By Remark 1, not only the Lagrange multipliers λ = (0, λ1, λ2), ψ, and μ but also the triple λ,

ψ̄(t), and μ̄(t), where ψ̄(t) = ψ(t)−a
∂G

∂x
(t) and μ̄(t) = μ(t)−a, satisfy conditions (3)–(8) and (12).

Obviously, ψ̄(τ) = 0. On the other hand, it follows from the inclusion (8) and the regularity of
the optimal trajectory x∗(t) that |μ̄(t)| ≤ const × |ψ̄(t)| for almost all t ∈ T , where the constant
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40 ARUTYUNOV, KARAMZIN

is independent of t. Hence, by using the Gronwall inequality and the fact that the function ψ̄ is
absolutely continuous and satisfies Eq. (3), we obtain the relations ψ̄(t) = 0 ∀t ∈ T , and μ̄(t) = 0

for almost all t ∈ T . Consequently, ψ(t) ≡ a
∂G

∂x
(t) and μ(t) ≡ a. Therefore, by the definition of Γ,

from condition (5), we have h(t) ≡ −
〈

a,
∂G

∂t
(t)

〉
. Thus,

ψ(t∗1) = a
∂G

∂x
(t∗1), h(t∗1) = −

〈
a,

∂G

∂t
(t∗1)

〉
.

Now, by using condition (31), we obtain(
∂G

∂x
(t∗1)

∂G∗

∂x
(t∗1) +

∂G

∂t
(t∗1)

∂G∗

∂t
(t∗1)

)
a = 0,

and consequently, a = 0, because the parenthesized expression is the sum of two symmetric positive
definite matrices. If a = 0, then ψ = 0 and μ = 0. Therefore, the Lagrange multipliers λ0, ψ, and μ
are zero simultaneously, which contradicts the above-proved assertions. Consequently, condition (2)
is satisfied. The proof of the theorem is complete.

Note that, among all sets of Lagrange multipliers corresponding to a given optimal process,
there does not necessarily exist a set for which μ is a function of bounded variation, and in general
μ is a measurable essentially bounded function. As an example, we present the two-dimensional
problem

1∫

0

u1u2 dt → min, ẋ = u, u = (u1, u2) ∈ R
2, x1 = 0, x(0) = 0,

whose solution is given by the control u(t) = (0, u2(t)), where u2(t) = cos(1/t).
The problem with inequality state constraints was studied in [7]. A maximum principle in which

the function H̄ in the maximum condition is maximized on the entire set U rather than its subset
U(x∗(t), t) (like in Theorem 1), was obtained for it. In this connection, we encounter the problem
as to whether it is possible to obtain a similar result for a problem with equality state constraints,
i.e., replace the set U(t) in the maximum condition (5) by a larger set U . However, the above-
considered example gives the negative answer to this question. Indeed, by the maximum condition,
max(u1,u2)∈R2(〈ψ, u〉 − u1μ − λ0u1u2) = 0, which implies that λ0 = 0 and ψ = (μ, 0). However, this
contradicts the nontriviality condition (2) (and even the weaker nontriviality condition in [7]).

3. THE CASE OF UNBOUNDED SET U

Let us generalize the obtained maximum principle to the case in which the sets U(t) are not
bounded. This generalization is required to study a problem of variational calculus. In what follows,
we additionally suppose that the set U can be represented in the form

U = {u ∈ R
m : q(u) ≤ 0},

where q : R
m → R

d(q) is a given smooth mapping.
Set I(u) = {i : qi(u) = 0}. We assume that the following regularity condition is satisfied.

Assumption R. The vectors
∂qi

∂u
(u) and

∂Γj

∂u
(x∗(t), u, t) are linearly independent for i ∈ I(u),

j = 1, . . . , d(G), for all t ∈ T , and for all u ∈ U(x∗(t), t).
Obviously, this condition is stronger that the regularity of the trajectory x∗(t) from Definition 1.

Theorem 2. Let a process (p∗, x∗, u∗) be optimal in problem (1). In addition, let the mappings q
and Γ be (n+m+1) continuously differentiable, let Assumption R be satisfied , and let the terminal
constraints be regular and be coordinated with the state constraints at the point p∗. Then the process
(p∗, x∗, u∗) satisfies the maximum principle.
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Proof. Let S ⊆ {1, . . . , d(q)} be some (possibly empty) set of indices. Consider the sets

MS = {(x, u, t) ∈ R
n × R

m × R
1 : Γ(x, u, t) = 0, qi(u) = 0 ∀i ∈ S, qi(u) < 0 ∀i /∈ S}.

The set of various subsets of indices S is finite; therefore, the number of such sets MS is also finite.
Take an arbitrary c > ess sup

t∈T

|u∗(t)|+1. By using Assumption R, we take a number ε = ε(c) > 0

such that each of the sets

M∗
S = MS ∩ {(x, u, t) : |x − x∗(t)| < ε, |u| < c, t ∈ (t∗1 − ε, t∗2 + ε)}

is a smooth manifold.
Fix an arbitrary S. By ξS we denote the restriction of the function |u|2 to the manifold M∗

S.
By virtue of the smoothness class of the functions q and Γ and by the Morse–Sard theorem [8, p. 95
of the Russian translation], there exists a number δ ∈ (0, 1) such that the number c− δ is a regular
value of the function ξS for all index sets S. Hence it follows that, at all points (x, u, t) of the
manifold M∗

S at which |u|2 = c − δ, the vector u does not belong to the linear span of the vectors
∂qi

∂u
(u) and

∂Γj

∂u
(x, u, t), where i ∈ S and j = 1, . . . , d(G).

Therefore, in problem (1) with the additional constraints

|u|2 ≤ c − δ, |x − x∗(t)| < ε, |p − p∗| < ε,

the optimal trajectory x∗(t) is regular in the sense of Definition 1. Taking into account the fact
that the mapping U(x, t) is already bounded in the new problem, we apply Theorem 1 to it.
By passing in the resulting conditions of the maximum principle to the limit as c → ∞ in a standard
way and by using Assumption R, we complete the proof of the theorem.

From Theorem 2, we obtain the Euler–Lagrange equation and the Legendre condition for the
problem of variational calculus on the smooth regular surface M = {x ∈ R

n : G(x) = 0}.
In particular, they imply the equation of geodesics on the surface M .

4. APPENDIX

On a fixed time interval T = [t∗1, t∗2], consider the problem

ϕ(p) +

t∗2∫

t∗1

f0(x, u, t) dt → min, ẋ = f(x, u, t), t ∈ T, R(x, u, t) ∈ C. (32)

It is a problem without terminal constraints but with so-called constrains of mixed type
R(x, u, t) ∈ C, where C is a given closed subset of R

d(R). We assume that ϕ is a Lipschitz function.
Suppose that the process (p∗, x∗, u∗) is a solution of problem (32).
Consider the multimapping U(x, t) := {u ∈ R

m : R(x, u, t) ∈ C}.
Definition 3. The mixed constraints in problem (32) are said to be regular if

NC(R(u, t)) ∩ ker
∂R∗

∂u
(u, t) = {0}

for all u ∈ U(t) and t.

The regularity of mixed constraints implies that the Robinson condition [3, p. 418] is satisfied
at each admissible point (x∗(t), u, t).

The simplest example of regular mixed constraints is given by geometric constraints u ∈ C or,

more generally, by the case in which the matrix
∂R

∂u
(x, u, t) has full rank for all u ∈ U(x, t) and

for all x and t.
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Theorem 3 (the maximum principle for problem without terminal constraints). Let (p∗, x∗, u∗)
be the optimal process in problem (32). In addition, let the mixed constraints be regular , and let
the sets U(t) be bounded uniformly with respect to t ∈ T . Then there exist a number λ0 > 0,
an absolutely continuous function ψ : T → R

n, and a measurable essentially bounded vector
function r : T → R

d(R) such that

r(t) ∈ conv NC(R(t)) for a.a. t, (33)

ψ̇(t) = −∂H

∂x
(t) + r(t)

∂R

∂x
(t) for a.a. t, (34)

(ψ(t∗1),−ψ(t∗2)) ∈ λ0∂ϕ(p∗), (35)
max

u∈U(t)
H(u, t) = H(t) for a.a. t, (36)

∂H

∂u
(t) − r(t)

∂R

∂u
(t) = 0 for a.a. t. (37)

In addition, there exists a constant κ > 0 such that

|r(t)| ≤ κ(λ0 + |ψ(t)|) for a.a. t. (38)

Proof. Without loss of generality, we assume that f0 = 0 and ϕ(p∗) = 0. Take positive numbers
c and δ such that the inequality |u| ≤ c holds for arbitrary u ∈ U(x, t) and x satisfying the condition
|x − x∗(t)| ≤ δ ∀t ∈ T . This is possible by virtue of the uniform boundedness of the sets U(t) and
the continuity of the mapping R.

By M ⊆ R
2n × L

m
1 (T ) we denote the set of pairs (p, u(·)), p = (x1, x2), such that |u(t)| ≤ c + 1

and |x(t)−x∗(t)| ≤ δ for almost all t ∈ T , and x(t∗2) = x2, where x(·) is the trajectory corresponding
to the control u(·) and the initial condition x(t∗1) = x1. The set M is nonempty because it contains
(p∗, u∗(·)). Moreover, M is closed and hence is a complete metric space with the metric induced
by the norm |p| + ‖u‖L1 .

Take a positive integer i > 1 and set εi = i−1 and ϕi(p) = (ϕ(p)+εi)+. For nonnegative numbers
α ≥ 0 and β ≥ 0, set

Δ(α, β) =

⎧⎨
⎩

αβ−2 for β > 0,
1 for α > 0, β = 0,
0 for α = β = 0.

Note that the function Δ is lower semicontinuous on the set α ≥ 0, β ≥ 0. On the space M,
consider the functional

Fi(p, u(·)) = ϕi(p) + Δ

(∫

T

(dist(R(x, u, t), C))2dt, ϕi(p)

)
.

By construction, the functional Fi is continuous and positive on M. [Both of its terms do not
vanish simultaneously, because ϕ(p∗) = 0.]

Consider the problem
Fi(p, u(·)) → min, (p, u(·)) ∈ M.

To this problem, we apply the Ekeland variational principle [5]. One can readily see that

Fi(p∗, u∗(·)) = εi.

Therefore, there exists an element (pi, ui(·)) ∈ M, pi = (x1,i, x2,i), satisfying conditions (17)
and (18), and the pair (pi, ui(·)) is a solution of the problem

Fi(p, u(·)) +
√

εi

(
|p − pi| +

t∗2∫

t∗1

|u − ui(t)| dt

)
→ min, (p, u(·)) ∈ M.
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Note that if ϕi(pi) = 0, then the mixed constraints fail, and by the definition of Δ, we have
Fi(pi, ui(·)) = 1, which contradicts condition (17). Therefore, ϕi(pi) > 0, and hence the pair
(pi, ui(·)) is a solution of the problem

ϕi(p) +

t∗2∫

t∗1

y−2(dist(R(x, u, t), C))2 dt +
√

εi

(
|p − pi| +

t∗2∫

t∗1

|u − ui(t)| dt

)
→ min,

ẋ = f(x, u, t), ẏ = 0, y(t∗1) = ϕi(p), G(x1, t
∗
1) = 0,

|u(t)| ≤ c + 1 for a.a. t, |x(t) − x∗(t)| ≤ δ, y(t) > 0 ∀t ∈ T.

(39)

The optimal trajectory in this problem is denoted by xi, yi.
It follows from inequality (18) that ui(t) → u∗(t) for almost all t after the passage to a subse-

quence pi → p∗, and then xi(t) ⇒ x∗(t) uniformly on T . Therefore, in the derivation of necessary
optimality conditions, the state constraints in problem (39) for large i can be omitted. Therefore,
problem (39) contains only terminal constraints at the left endpoint.

To this problem, we apply the maximum principle in [3, Th.1 6.27]. For each i, there exists
a number λ0

i > 0, absolutely continuous functions ψi(t) and σi(t), and a measurable function ηi(t)
ranging in the set conv ∂ dist(Ri(t), C) for almost all t such that

ψ̇i(t) = −∂Hi

∂x
(t) + 2λ0

i

dist(Ri(t), C)
y2

i

ηi(t)
∂Ri

∂x
(t) for a.a. t ∈ T,

σi(t) = σi(t∗1) − 2λ0
i

t∫

t∗1

[dist(Ri(ς), C)]2

y3
i

dς, σi(t∗2) = 0,
(40)

(ψi(t∗1),−ψi(t∗2)) ∈ (λ0
i − σi(t∗1))∂ϕi(pi) + λ0

i

√
εiBR2n , (41)

max
u: |u|≤c+1

(Hi(u, t) − λ0
i y

−2
i (dist(Ri(u, t), C))2 − λ0

i

√
εi|u − ui(t)|)

= Hi(t) − λ0
i y

−2
i (dist(Ri(t), C))2 for a.a. t ∈ T, (42)

∂Hi

∂u
(t) ∈ 2λ0

i

dist(Ri(t), C)
y2

i

ηi(t)
∂Ri

∂u
(t)

+ λ0
i

√
εiBRm for a.a. t ∈ T, such that |ui(t)| < c + 1, (43)

λ0
i + max

t∈T
|ψi(t)| = 1. (44)

Set ri(t) = 2λ0
i y

−2
i dist(Ri(t), C)ηi(t). Then conditions (40) and (43) acquire the form

ψ̇i(t) = −∂Hi

∂x
(t) + ri(t)

∂Ri

∂x
(t) for a.a. t ∈ T, (45)

∂Hi

∂u
(t) ∈ ri(t)

∂Ri

∂u
(t) + λ0

i

√
εiBRm for a.a. t ∈ T such that |ui(t)| < c + 1. (46)

Suppose firstly that λ0
i y

−2
i → ∞ as i → ∞.

Let us show that there exists a constant κ > 0 such that

|ri(t)| ≤ κ(λ0
i + |ψi(t)|) for a.a. t ∈ T ∀i. (47)

The regularity of the mixed constraints and Theorem 4.37 in [3] imply the following property.
There exists a γ > 0 such that, for any t ∈ T and for each sequence of vectors ξi → x̄, where
1 Theorem 6.27 was proved under quite general assumptions and for differential inclusions. The below-represented

conditions are derived from that theorem in a standard way. The existence of a measurable function ηi follows from
the theorem on a measurable selector of a measurable multimapping.
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ξi, x̄ ∈ x∗(t) + γBRn, and each vector ū ∈ U(x̄, t), there exists a vector sequence vi ∈ U(ξi, t),
vi → ū.

Since xi(t) ⇒ x∗(t), it follows from the above-mentioned property that, starting from some
sufficiently large index i, for each t ∈ T , there exists a vector ũi(t) such that R(xi(t), ũi(t), t) ∈ C.

By substituting the value u = ũi(t) into the left-hand side of the maximum condition (42) for
almost all t and by taking into account relation (44), we obtain

λ0
i y

−2
i (dist(Ri(t), C))2 ≤ const × (λ0

i + |ψi(t)|) ≤ const.

Since λ0
i y

−2
i → ∞, it follows that dist(Ri(t), C) → 0 for almost all t ∈ T uniformly with respect

to t ∈ T . Therefore, |ui(t)| < c + 1 for almost all t ∈ T by virtue of the choice of the constant c
for all large i.

Using this fact, we apply the Lagrange principle (see Theorem 5.5 in [3]) to the nonsmooth
maximization problem

Hi(u, t) − λ0
i y

−2
i (dist(Ri(u, t), C))2 − λ0

i

√
εi |u − ui(t)| → max, |u| ≤ c + 1,

for a given t ∈ T . By virtue of the maximum condition (42), the point u = ui(t) is a solution of
this problem; therefore,

∂Hi

∂u
(t) ∈ 2λ0

i y
−2
i dist(Ri(t), C)∂ dist(Ri(t), C)

∂Ri

∂u
(t) + λ0

i

√
εi BRm .

This, together with the theorem on the existence of a measurable selector of a measurable mul-
timapping, implies in a standard way that

∂Hi

∂u
(t) ∈ ωi(t)

∂Ri

∂u
(t) + λ0

i

√
εi BRm for a.a. t ∈ T, (48)

where ωi(t) = 2λ0
i y

−2
i dist(Ri(t), C)ni(t), and ni(t) is some measurable mapping such that ni(t) ∈

∂ dist(Ri(t), C) for almost all t ∈ T . From the properties of the subdifferential of the distance
function, we have |ni(t)| ≤ 1 for almost all t ∈ T ; moreover, by Theorem 1.105 in [3], |ni(t)| = 1
for almost all t such that Ri(t) /∈ C.

It follows from the definition of the function ωi(t) that ωi(t) = ri(t) = 0 for almost all t such
that Ri(t) ∈ C. In addition, it is known that |ηi(t)| ≤ 1 for almost all t ∈ T . This, together with
the above-performed considerations, implies that |ri(t)| ≤ |ωi(t)| for almost all t ∈ T .

It follows from the regularity of mixed constraints, the upper semicontinuity of the normal cone
NC(y) with respect to y, and the compactness that there exist positive numbers ε and θ such that

∣∣∣∣∂R∗

∂u
(x, u, t)y

∣∣∣∣ ≥ ε|y| ∀y ∈ NC(ξ) ∀ ξ ∈ ΠC(R(x, u, t)), (49)

and ∀(x, u, t) such that |x − x∗(t)| ≤ δ, |u| ≤ c + 1, dist(R(x, u, t), C) ≤ θ.

The estimate (49) can readily be proved by contradiction.
By Theorem 1.105 in [3], we have

ni(t) ∈
⋃

y∈ΠC(Ri(t))

NC(y) for a.a. t ∈ T such that Ri(t) /∈ C. (50)

By taking into account the definition of ωi and the fact that dist(Ri(t), C) → 0 for almost
all t ∈ T uniformly with respect to t and by using the inequality |ri(t)| ≤ |ωi(t)| for almost all
t ∈ T , one can derive the estimate (47) and the existence of the desired number κ directly from
conditions (48)–(50).

It follows from (47) and (44) that the functions ri(t) are uniformly bounded. Let us show
that σi(t∗1) → 0. To this end, by virtue of (40), it suffices to show that the function sequence
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λ0
i y

−3
i (dist(Ri(t), C))2 converges to zero in the norm of the space L1(T ). It follows from the defini-

tion of ri(t) that

t∗2∫

t∗1

2λ0
i y

−3
i (dist(Ri(t), C))2 dt =

t∗2∫

t∗1

y−1
i dist(Ri(t), C)|ri(t)| dt.

Therefore, since ‖ri‖L∞ ≤ const, it suffices to show that dist(Ri(t), C)y−1
i → 0 in the norm

of L1(T ). However, this sequence is convergent even in L2(T ) by virtue of condition (17). Thus,
σi(t∗1) → 0.

Relations (40) and (44), together with the estimate ‖ri‖L∞ ≤ const, imply that the function
sequence {ψi} is equicontinuous and uniformly bounded. Then, by using the Arzelá–Ascoli theorem
and the weak sequential compactness of the unit ball in L2 and by passing to a subsequence, we find
that there exist λ0, ψ, and r such that λ0

i → λ0, ψi ⇒ ψ, and ri → r weakly in L
d(R)
2 (T ).

The inclusion (33) follows from the weak convergence, the definition of ri, the upper semiconti-
nuity of the limit subdifferential, and Theorem 1.97 in [3].

By passing in relation (45) to the limit as i → ∞, we obtain condition (34).
By passing in (41) to the limit and by taking into account the convergence σi(t∗1) → 0, we obtain

condition (35).
Let us prove condition (36). It was mentioned above that the function sequence dist(Ri(t), C)y−1

i

converges to zero in the norm of L1(T ). By passing to a subsequence, we find that

dist(Ri(t), C)y−1
i → 0

for almost all t ∈ T . Take a point t at which the above-mentioned convergence takes place, the
maximum condition (42) is satisfied for all i, and ui(t) → u∗(t). Take ū ∈ U(t). Consider a sequence
vi ∈ Ui(t) such that vi → ū. By substituting the value u = vi into the maximum condition (42) and
by passing to the limit, we obtain the inequality H(ū, t) ≤ H(t), which, in view of the arbitrary
choice of the vector ū, holds for all ū ∈ U(t). This completes the proof of relation (36).

Condition (37) is obtained by the integration of the inclusion (46) over the closed interval [t∗1, t]
and the subsequent passage to the limit as i → ∞ (see [6, Subsec. 2.5]). The estimate (38) follows
from inequality (47).

Consider the second case. Assume that the numerical sequence {λ0
i y

−2
i } does not tend to infinity.

In this case, since the function sequence dist(Ri(t), C) converges to zero in L1, by passing to
a subsequence and by taking into account the definition of the function ri(t), we find that the
sequence ri(t) is uniformly bounded on T and ri(t) → 0 for almost all t ∈ T . Since ‖ri‖L∞ ≤ const,
just as above, we show that σi(t∗1) → 0. By passing to the limit as i → ∞ just as above, we obtain
all conditions of the maximum principle. In this case, the estimate (47) holds for each κ > 0
because r = 0.

Let us show that λ0 > 0. Indeed, if λ0 = 0, then, by (38), (34) and by taking into account
the relation ψ(t∗1) = 0 valid by virtue of (35) and by using the Gronwall inequality, we obtain the
relation ψ = 0. However, this contradicts the fact that λ0 and ψ do not vanish simultaneously.
Therefore, λ0 > 0. The proof of the theorem is complete.

Remark 3. It follows from the proof of Theorem 3 that the constant κ in the estimate (38)
can be chosen to depend only on R, C, c, and δ. This follows from the fact that the number ε in
condition (49) depends only on R, C, c, and δ.

Remark 4. Theorem 3 can be generalized to the case in which the function f0 only satisfies
the Lipschitz condition with respect to u. Then condition (37) acquires the form

0 ∈ conv ∂uH(t) − r(t)
∂R

∂u
(t) for a.a. t.

Lemma 1. Let the function R and the set C be defined in the form R(x, u, t) = (Γ(x, u, t), u)
and C = {0} × U, where Γ and U are introduced in Section 1. Then the notions of regularity of
mixed constraints and regularity of the trajectory x∗(t) in Definitions 1 and 3 coincide.
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Proof. The proof is by a straightforward verification of the fact that the relations

ker
∂R∗

∂u
(u, t) =

{
ξ = (ξ1, ξ2) ∈ R

d(G) × R
m : ξ1

∂Γ
∂u

(u, t) = ξ2

}
,

NC(y) = {ξ = (ξ1, ξ2) ∈ R
d(G) × R

m : ξ2 ∈ NU(u)}

hold for y = (0, u).
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