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Abstract— In nonlinear dynamical systems, attractors can be regarded as self-excited and
hidden attractors. Self-excited attractors can be localized numerically by a standard computa-
tional procedure, in which after a transient process a trajectory starting from a point of unstable
manifold in a neighborhood of equilibrium reaches a state of oscillation, and therefore one can
readily identify it. In contrast, for a hidden attractor, the basin of attraction does not intersect
with small neighborhoods of equilibria. While classical attractors are self-excited, attractors can
therefore be obtained numerically by the standard computational procedure. For localization
of hidden attractors, it is necessary to develop special procedures, since there are no similar
transient processes leading to such attractors.

In this paper, we propose a new efficient analytical–numerical method for the study of hidden
oscillations in multidimensional dynamical systems.
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1. INTRODUCTION

The theory of nonlinear oscillations of dynamical systems created in the 1930s was originally
clear enough to permit generations of researchers to use it for the solution of problems in various
fields of science. In these applications, most of the problems to be studied had a structure such
that the existence of oscillatory modes was unquestionable; thus the main effort of researchers
was focused on the analysis of properties and the form of such oscillations. In the 1970s the
situation changed fundamentally. It became clear that, in addition to orbitally stable cycles and
tori, which have a common nature, strange attractors of complicated topological structure can exist
in dynamical systems. In the next years, numerous mathematicians were concentrated on the study
of the structure of strange attractors, their dimension, conditions for their appearance as a result of
a cascade of bifurcations [43–46, 33].

Note that most particular mathematical models of dynamical systems do not admit “qualitative
integration” with the use of a pure mathematical analysis. Therefore, numerous results dealing
with mechanisms of the generation of attractors, their localization in the phase space, and the
evaluation of their characteristics were obtained with the use of computer modeling [46]. The mat-
ter is that the attractors of classical Lorenz [24], Rössler [25], and Chua [23] systems as well as
the attractors of models of classical automated control systems contain arbitrarily small neighbor-
hoods of unstable equilibria in their attraction domains. Such attractors are self-excited in the
sense that a computational procedure “issuing” from an arbitrary point of an unstable manifold
in a neighborhood of an equilibrium “achieves” an attractor and computes it. Unlike self-excited
attractors, hidden attractors do not contain equilibria in their attraction domains. The existence of
such attractors (embedded orbitally asymptotically stable cycles) is a well-known fact in the case
of two-dimensional systems in which they can easily be detected. Other well-known examples of the
existence of hidden attractors in multidimensional models of automated control systems are given
by counterexamples to the Aizerman and Kalman conjectures [35, 31], where the unique stable-
in-small equilibrium co-exists with an orbitally stable cycle [37, 38]. Effectively verified conditions
for the existence of hidden orbitally stable cycles in some class of multidimensional systems were
obtained in [26, 28].
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In 2010, Leonov suggested a new method for finding hidden oscillations in multidimensional
dynamical systems, which is based on the use of the method of harmonic linearization, the method
of a small parameter, and the method of describing functions in combination with the applied
theory of bifurcations [8]. The further development of that method [9–22] permitted one to detect
a chaotic hidden attractor in the Chua contour for the first time. The above-mentioned papers
excited interest in the study of multidimensional dynamical systems, which either have no equilib-
rium or have stable-in-small equilibria and simultaneously have orbitally stable cycles, or strange
attractors [1–7].

The main idea of finding hidden oscillations of a dynamical system ẋ = f(x) used in [9–22] is
based on homotopy and implies the following. One considers the one-parameter family of systems

ẋ = ϕ(x, ε), ε ∈ [0, 1], (1)

such that ϕ(x, 1) = f(x), and, for small values of ε > 0, system (1) has a ready-to-detect self-
excited orbitally asymptotically stable cycle. The evolution of that cycle as ε grows up to 1 is
traced. The following alternative is possible: either a bifurcation of the attractor destruction takes
place for some ε ∈ (0, 1), or a hidden attractor of the considered dynamical system is detected
for ε = 1.

Obviously, the construction of the function ϕ = (x, ε) with the above-mentioned properties is
a key point in the represented algorithm. A class of systems for which the desired function can be
constructed was studied in [9–22], and an algorithm for its construction was suggested.

In the present paper, for the same class of systems, we suggest a similar procedure of finding
hidden attractors. In numerous cases, the below-suggested procedure proves to be “less expensive”
at the stage of the preparation of the numerical implementation of the algorithm for finding a hidden
attractor and, at the same time, permits one, for example, to detect hidden attractors in the classical
and generalized Chua systems [23–30], construct a counterexample to the well-known Kalman
conjecture [31], and detect hidden oscillations in control systems for aircraft [21, 22, 41, 42].

2. EXISTING CONDITIONS FOR SELF-EXCITING CYCLES
IN MULTIDIMENSIONAL SYSTEMS

Consider a system of the form

dx

dt
= Ax + Bξ, ξ = ϕ(σ), σ = C∗x, (2)

where A, B, and C are real constant matrices of the sizes n × n, n × m, and n × m, respectively,
m ≤ n, and x ∈ Rn. The sign (∗) stands for transposition and below, in the complex case,
for Hermitian conjugation. Throughout the following, we assume that ξj = ϕj(σj), j = 1, 2, . . . ,m,
where the ϕj(σj) are continuous functions differentiable for σj = 0.

Below, for the statement of assertions, it is convenient to use the m × m transfer matrix
W (p) = C∗(A − pIn)−1B of system (2), where p is a complex variable. Throughout the following,
we assume that the ranks of the matrices ‖B,AB, . . . , An−1B‖ and ‖C,A∗B, . . . , (A∗)n−1B‖ are
equal to n. In this case, in accordance with [32], we say that system (2) is controllable and observ-
able. By Theorem 1.2.4 in [32], the controllability and observability of system (2) are equivalent to
the nonsingularity of the matrix W (p). The latter implies that, for any root p0 of the polynomial
δ(p) = det(pIn − A), there exists a minor ν(p) of the matrix W (p) such that limp→p0 δ(p)ν(p) = 0.

Let the functions ϕj(σj) satisfy the conditions

0 ≤ ϕj(σj2) − ϕj(σj1)
σj2 − σj1

≤ μj for all σj ∈ (−∞,∞), σj1 �= σj2, ϕj(0) = 0, j = 1, 2, . . . ,m.

(3)
Obviously, assumptions (3) imply that system (2) has a solution (a point of equilibrium) x = 0.

If x0 is some point of equilibrium of system (2), then it satisfies the relation

C∗x0 + C∗A−1Bϕ(C∗x0) = 0,

DIFFERENTIAL EQUATIONS Vol. 50 No. 13 2014



ANALYTICAL-NUMERICAL METHODS OF FINDING HIDDEN OSCILLATIONS 1697

which can be represented in the form

σ0 + W (0)ϕ(σ0) = 0, where σ0 = col(σ0
1 , . . . , σ

0
m), ϕ(σ0) = col(ϕ1(σ0

1), . . . , ϕm(σ0
m)). (4)

All criteria stated below for the existence of cycles of system (2) are based on the assumption
that x = 0 is the unique point of equilibrium of the system. For this, it is necessary and sufficient
that system (4) has only the trivial solution σ0 = 0. We set W (0) = (wij)m×m.

Lemma 1. Suppose that all entries in some row with index j in the matrix W (0) except for the
element wjj are zero. Let the inequality wij > −μ−1

j be true. Then σj = 0.

Lemma 2. Let all entries wkl in rows with indices i and j for which at least one of the indices
k and l does not coincide with i or j, respectively , be zero. If the conditions

wii > μ−1
i , wjj > −μ−1

j , wijwji ≤ 0 (5)

are satisfied , then system (4) has only the trivial solution.

Let us present the proof of Lemma 2. Lemma 1 can be proved in a similar way.
Proof. To be definite, suppose that i = 1 and j = 2. Then the first two equations in system (4)

have the form
σ1 + w11ϕ1(σ1) + w12ϕ2(σ2) = 0,
σ2 + w21ϕ1(σ1) + w22ϕ2(σ2) = 0.

(6)

If w > −μ−1, then the line σ +wξ = 0 does not meet the sector 0 < ξ/σ < μ on the plane (σ, ξ).
It follows from conditions (3) that 0 ≤ ϕk(σk)/σk ≤ μk, k = 1, 2. Therefore, by assuming that
system (6) has a solution σ �= 0, σ2 = 0 and by using the condition w11 > −μ−1

1 , we readily obtain
a contradiction with the first equation in the system. In a similar way, by assuming that σ1 = 0,
from the second equation of the system and the condition w22 > −μ−1

2 , we obtain σ2 = 0. Now,
by assuming that system (6) has a solution σ1 �= 0, σ2 = 0, we obtain

(
σ1

ϕ1(σ1)
+ w11

)(
σ2

ϕ2(σ2)
+ w22

)
= w12w21.

By (5), both factors on the left-hand side in the last relation are strictly positive, and its right-hand
side is nonpositive. This contradiction completes the proof of the lemma.

We say that the matrix W (0) “admits reduction by version 1” if all entries in the ith row of
this matrix except for the entry wii are zero. We say that the matrix W (0) “admits reduction by
version 2” if all entries in some rows of this matrix with indices i and j except for the entries wii,
wjj , wij, and wji are zero. The reduction of a matrix by the version 1 is defined as the matrix
in which all entries in the row and column with index i are replaced by zeros. The reduction of
a matrix by version 2 is defined as the matrix in which all entries in the columns with the indices
i and j are replaced by zeros.

Lemma 3. Let the matrix W (0) admit successive reduction by versions 1 and 2 until it becomes
the zero m × m matrix. If the condition wii > −μ−1

i is always satisfied for the reduction by
version 1 and conditions (5) are satisfied for reduction by version 2, then system (4) has only the
trivial solution σ0

1 = σ0
2 = · · · = σ0

m = 0 [system (2) has the unique equilibrium x = 0].

The validity of the assertion of Lemma 3 follows from Lemmas 1 and 2.
Remark 1. If the functions ϕj(σj) satisfy the relations

μ1
j ≤ ϕj(σj2) − ϕj(σj1)

σj2 − σj1

≤ μ2
j for all σj ∈ (−∞,∞), σj1 �= σj2, ϕj(0) = 0, j = 1, 2, . . . ,m,

(3′)
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then system (2) has the unique equilibrium x = 0 provided that the assumptions of Lemma 3 are
satisfied for the matrix W (0)[Im + μW (0)]−1, where μ = diag(μ2

1 − μ1
1, μ

2
2 − μ1

2, . . . , μ
2
m − μ1

m). It is
well known that, in the scalar case (m = 1), the condition for the existence of only the trivial
equilibrium x = 0 of system (2) can be reduced to the requirement of the existence of the unique
point σ = 0 of the intersection of the graph of the nonlinearity ϕ(σ) with the “characteristic line”
σ + W (0)ϕ = 0.

Theorem 1. Let the nonlinearities ϕj(σj) in system (2) satisfy relations (3′). Suppose that
there exists a number λ > 0 such that the following conditions are satisfied.

1. The matrix A + Bϕ′(0)C∗, where ϕ′(0) = diag(ϕ′
1(0), . . . , ϕ′

m(0)) has exactly two eigenvalues
with positive real parts and does not have them in the strip −λ ≤ Re p ≤ 0.

2. The matrix A + BhC∗, where h = diag(h1, h2, . . . , hm), is a Hurwitz matrix , and
|ϕ(σ) − hC∗x| < γ < ∞.

3. The inequality

det Re
[
Im + μ1W (iω − λ)∗

][
Im + μ2W (iω − λ)

]
�= 0, μk = diag(μk

1 , μ
k
2 , . . . , μ

k
m), k = 1, 2,

(7)
holds for all ω ∈ [0,∞).

Then system (2) has at least one orbitally stable cycle whose attraction domain contains almost
all points of a neighborhood of the equilibrium x = 0.

Proof. Let C∗ = col(c∗1, c∗2, . . . , c∗m), where c∗j is a row vector, and let x1(t) and x2(t) be two
solutions of system (2). Set z(t) = x1(t) − x2(t). Obviously, z(t) is a solution of the system

dz

dt
= Az + Bψ(t, σ), σ = C∗z, (8)

where ψ(t, σ) = R(t)σ, R(t) = diag(r1(t), . . . , rm(t)), rj(t) =
[ϕj(σj2(t)) − ϕj(σj1(t))]c∗kz(t)

|c∗jz(t)| for

c∗jz(t) �= 0, and rj(t) = 0 for c∗jz(t) = 0. By taking into account (3′) for the function ψ(t, σ) = R(t)σ,
we obtain

μ1
jσ

2
j ≤ ψj(t, σj)σj ≤ μ2

jσ
2
j , j = 1, 2, . . . ,m. (9)

We introduce the function ν(z) = z∗Hz. We choose the matrix H = H∗ so as to ensure that
the inequality

ν̇(z) + 2λν(z) ≤ −ε|z|2 (10)

holds with some ε > 0, where the derivative of the function ν(z) is computed according to sys-
tem (8).

For the validity of relation (10), it is sufficient that the inequality

2z∗H[(A + λIn)z + Bψ] +
m∑

j=1

(
μ2

jσj − ψj

) (
ψj − μ1

jσj

)
≤ −ε(|z|2 + |ψ|2) (11)

be valid for arbitrary z ∈ Rn and for arbitrary ψ ∈ Rm satisfying relation (9). By the frequency
theorem 1.2.7 in [32], there exists a matrix H = H∗ satisfying inequality (11) if and only if
Re [Im + μ1W (iω − λ)]∗[Im + μ2W (iω − λ)] < 0 for all ω ∈ [0,∞). The last inequality is equivalent
to condition (7).

By setting ψj = ϕ′
j(0)σj in (11) and by taking into account relation (9), we obtain the matrix

inequality
H[A + Bϕ′(0)C∗ + λIn] + [A + Bϕ′(0)C∗ + λIn]∗H ≤ −εIn. (12)

This inequality, together with assumption 1 of the theorem and Lemma 1.2.4 from [32], implies
that H is a nonsingular matrix and has exactly 2 negative eigenvalues and n − 2 positive ones.
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It follows from the above argument that the relation

V̇ [x1(t) − x2(t)] + 2λV [x1(t) − x2(t)] ≤ −ε|x1(t) − x2(t)|2 (13)

holds for the function V (x) = x∗Hx with the found matrix H and for two arbitrary solutions x1(t)
and x2(t) of system (2). By setting x2(t) ≡ 0 in (13), we obtain the inequality

V̇ [x(t)] + 2λV [x(t)] ≤ −ε|x(t)|2,

which holds for an arbitrary solution x(t) of system (2). This inequality, together with Theorem 2.9
in [33], implies that Ω = {x : x∗Hx ≤ 0} is a positively invariant set for the trajectories of
system (2) and its boundary ∂Ω = {x : x∗Hx = 0} is intersected inwards by all trajectories of this
system that meet it.

We set P = A + Bϕ′(0)C∗, f(x) = B[ϕ(C∗x) − ϕ′(0)C∗x] and rewrite system (2) in the form

ẋ = Px + f(x). (14)

By virtue of assumption 1 of the theorem, there exists a nonsingular transformation x = Qy
reducing system (14) to the form

ẏ1 = −P11y1 + g1(y),
ẏ2 = P22y2 + g2(y),

(15)

where P11 and P12 are anti-Hurwitz matrices of dimensions (n−2)× (n−2) and 2×2, respectively;
moreover, P22 + P ∗

22 is a positive definite matrix, and gi(y) = o(|y|), i = 1, 2. Let N = Q∗HQ and
P1 = Q−1PQ. Let us show that y∗Ny < 0 for y1 = 0 and y2 �= 0 and y∗Ny > 0 for y1 �= 0 and
y2 = 0. To this end, we represent the matrices N and P1 in the form

N =

(
N11 L

L∗ N22

)
, P =

(
−P11 0

0 P22

)
,

where N11 = N∗
11 is an (n−2)× (n−2) matrix and N22 = N∗

22 is a 2×2 matrix. From relation (12)
for the quadratic form y∗Hy with y1 = 0 and y2 �= 0, we have

2y∗
2N22(P22 + λI2)y2 ≤ −ε|Qy|2 ≤ − ε

|Q−1|2 |y2|2.

Since P22+λIn−2 is an anti-Hurwitz matrix, it follows from this inequality that N22 < 0. In a similar
way, by using the fact that −P11 +λIn−2 is a Hurwitz matrix, one can show that y∗Ny > 0 if y1 �= 0
and y2 = 0.

Let k be the minimum eigenvalue of the positive definite matrix P22 + P ∗
22. Then

d

dt
(|y2|2) = y∗

2(P22 + P ∗
22)y2 + 2y∗

2g2(y) ≥ k|y2|2 + 2y∗
2g2(y). (16)

Note that the relation |y1| ≤ ϑ|y2| with some ϑ > 0 holds for an arbitrary y = col(y1, y2) in
the set Ω = {y : y∗Q∗HQy ≤ 0}. Therefore, g2(y) = o(|y2|). Set Fy = col(0, y2). It follows
from the property of g2(y) and relation (16) that, for a sufficiently small ϑ > 0, the surface
∂G1 = {x : |FQ−1x| = θ, x∗Hx ≤ 0} is contact-free for the trajectories of system (2) and is
intersected outwards by all trajectories of this system that meet it.

Let a matrix R be a solution of the Lyapunov equation

R(A + BhC∗) + (A + BhC∗)∗R = −In.

By assumption 2 of the theorem, R is a positive definite matrix. Consider the function
U(x) = x∗Rx. For the derivative of the function U(x) according to system (2), we have

U̇ = x∗[(A + BhC∗)∗R + R(A + BhC∗)]x + 2x∗R(ϕ(σ) − hC∗x) ≤ −|x|2 + ‖R‖γ|x|. (17)
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By q we denote the maximum eigenvalue of the matrix R and take an arbitrary number
ρ > 4‖R‖2γ2q. Then it follows from (17) that the surface of the ellipsoid ∂G2 = {x : x∗Rx = ρ} is
contact-free for the trajectories of system (2) and is intersected inwards by all trajectories of this
system that meet it.

By D we denote the domain bounded by the surfaces ∂Ω, ∂G2, and ∂G2. This domain is closed
and bounded, does not contain the equilibrium x = 0 of system (2), and is intersected inwards
by all trajectories of that system. This, together with relation (13) and the boundedness of the
function |ϕ(σ)′ − hC∗x|, implies that the assumptions of Theorem 8.4 in [33] are satisfied; this
theorem implies that the ω-limit set of the trajectory of any solution x(t) of system (2) such that
x(0) ∈ D contains at least one orbitally stable cycle of that system.

It follows from above-performed constructions and relation (13) that if |x(0)| is sufficiently
small and x(0) does not belong to the stable manifold of the equilibrium x = 0 of system (2), then
x(τ) ∈ D for some τ > 0.

The proof of Theorem 1 is complete.

Theorem 2. Let assumption (3′) be satisfied , and let the assumptions 1 and 3 of Theorem 1 be
satisfied. Let the matrix A+BM̃C∗ with some matrix M̃ = diag(μ̃1, μ̃2, . . . , μ̃m), where μ̃ ∈ (μ1

j , μ
2
j),

have no eigenvalue in the strip −λ ≤ Re ρ ≤ 0. Then all solutions x(t) of system (2) with
ϕ(σ) = M̃C∗x such that x(0) ∈ Ω = {x : x∗Hx ≤ 0} have the property |x(t)| → ∞ as t → ∞.

Proof. We denote P = A + BM̃C∗ and set ψ = M̃C∗x in (11). One can show that the matrix
P satisfies the inequality H(P + λIn) + (P + λIn)∗H ≤ −εIn. Since the matrix H has exactly 2
negative eigenvalues and n − 2 positive ones, it follows from Theorem 2.3 in [33] that the matrix
P + λIn has exactly two eigenvalues in the half-plane Re p > 0. By virtue of the assumptions
of the theorem, the matrix P also has exactly 2 eigenvalues in the half-plane Re p > 0 and no
one on the imaginary axis. The linear system obtained from system (2) for ϕ(σ) = M̃C∗x has
the form (14) with f(x) = 0. After the nonsingular transformation x = Qy, it acquires the form
ẏ1 = −P11y1, ẏ2 = P22y2, where y = col(y1, y2), with a Hurwitz (n − 2) × (n − 2) matrix (−P11)
and an anti-Hurwitz 2 × 2 matrix P22. If x(0) ∈ Ω, then, as was shown above, y2 �= 0. Therefore,
|y2(t)| → ∞ as t → ∞ and hence |x(t)| → ∞.

The proof of Theorem 2 is complete.

Remark 2. The assumption 2 of Theorem 1 can be replaced by any condition of Levinson
dissipativity of system (2) providing the existence of an open bounded set Λ containing the point
x = 0 such that its closure Λ is positively invariant for trajectories of system (2) and its boundary
∂Λ is intersected inwards by all trajectories of this system that meet it. For example, it was shown
in [27, 29] that system (2) with a nonlinearity satisfying condition (3′) is Levinson dissipative if
there exist numbers ν1

j , ν2
j ∈ (μ1

j , μ
2
j) and σ0

j > 0 such that ν1
j (σj)2 ≤ σjϕj(σj) ≤ ν2

j (σj)2 for
|σj | ≥ σ0

j , and the relation

det Re [Im + ν1W (iω)]∗[Im + ν2W (iω)] �= 0, νk = diag(νk
1 , νk

2 , . . . , νk
m), k = 1, 2,

is satisfied for all ω ∈ [0,∞).

3. ALGORITHM FOR FINDING HIDDEN ATTRACTORS

Consider some system that can be represented in the form (2). Let us perform a “linear analysis”
of that system. Suppose that there exist numbers μ1

j and μ2
j (j = 1, 2, . . . ,m) such that relation (7)

holds for some λ > 0 and, in addition, some matrix A + BMC∗, where M = diag(μ1, μ2, . . . , μm),
μj ∈ (μ1

j , μ
2
j), has exactly two eigenvalues with positive real parts and have no one in the strip

−λ ≤ Re p ≤ 0. Let A+BNC∗, N = diag(ν1, ν2, . . . , νm), be a Hurwitz matrix for all νj ∈ (μ2
1, μ

2
j).

Finally, let the assumptions of Lemma 3 and the conditions stated in Remark 1 be satisfied. Then,
by using Theorem 1, one can readily choose a nonlinearity ψ(σ) so as to ensure that system (2) with
such a nonlinearity has at least one orbitally asymptotically stable cycle whose attraction domain
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contains all points in a small neighborhood of the equilibrium x = 0 of the system. Let x0 �= 0 be
some (arbitrary) point in a neighborhood of the equilibrium x = 0. We numerically find a solution
x0(t) of system (2) with a nonlinearity ψ(σ) on the interval [0, T ], where T is sufficiently large, and
with the initial condition x0(0) = x0. The value x0(T ) is sufficiently close to the cycle. Now consider
a family of systems (2) with nonlinearities εjϕ(σ) + (1 − εj)ψ(σ), where εi = 0.1i, i = 0, 1, . . . , 10.
The solutions of these systems are denoted by xi(t). For the numerical integration of each of
systems of the family, as an initial condition xi(0), we take xi−1(T ). If, for the integration of all
systems of the family, we obtain an attractor, then for j = 10, we find an attractor of system (2)
with the nonlinearity ϕ(σ). But if the numerical integration does not detect an attractor for some
value εi, then this implies a bifurcation and the vanishing of the attractor.

Remark 3. If an attractor is not detected on some step of the implementation of the described
algorithm, then this could imply that a next attractor has a very small attraction domain. In this
case, it is reasonable to diminish the discretization increment with respect to ε and repeat the
search procedure with the smaller increment.

Let us consider several examples of artificially constructed systems for which we demonstrate
the operation of the algorithm of finding hidden attractors.

Example 1. Consider the system

ẋ1 = 1.241x1 + 8.45x2 − 1.4365
x4

1 + 0.2
0.34x4

1 + 0.2
tanh x1,

ẋ2 = x1 − x2 + x3 + 0.1x3
2,

ẋ3 = −12.1x2 − 0.005x3.

(18)

System (18) has the equilibria (0, 0, 0) and (±3.3862,±1.3987 × 10−3,∓3.3862). In this case,
the zero equilibrium is stable in the small, and two other equilibria are saddle-foci. That system
can be represented in the form (2) with

A =

⎛
⎜⎝

1.241 8.45 0

1 −1 1

0 −12.1 −0.005

⎞
⎟⎠, B =

⎛
⎜⎝

−8.45 0

0 0.1

0 0

⎞
⎟⎠, C =

⎛
⎜⎝

1 0

0 1

0 0

⎞
⎟⎠,

ϕ1(σ1) = 0.17
σ4

1 + 0.2
0.34σ4

1 + 0.2
tanh σ1, ϕ2(σ2) = σ3

2 .

By performing the “linear analysis” of system (18), we find that A + BMC∗, M = diag(μ1, μ2),
is a Hurwitz matrix for μ1 ∈ [0.148, 0.2] and μ2 ∈ [0, 0.8]. If μ1 ∈ [0.215, 0.9] and μ2 ∈ [0, 2], then
the matrix A + BMC∗, M = diag(μ1, μ2), has exactly 2 eigenvalues with positive real parts and
no one in the strip −1 ≤ Re p ≤ 0.

Fig. 1.
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Let Π(ω) = det Re [I2 + μ1W (iω − λ)]∗[I2 + μ2W (iω − λ)], where λ = 0.6, μ2 = diag(0.77, 1),
and μ1 = diag(0.17, 0). The graph of the function Π(ω) is shown in Fig. 1. Therefore, relations (7)
hold for the above-mentioned matrices μ1 and μ2. We replace the functions ϕ1(x1) and ϕ2(x2)
in system (18) by arbitrary continuous piecewise differentiable functions ψ1(x1) and ψ2(x2) such
that ψ′

1(0) ∈ [0.215, 0.77], ψ′
2(0) ∈ [0, 1], the conditions ψ′

1(x1) ∈ [0.17, 0.77] and ψ′
2(x2) ∈ [0, 1] are

satisfied on all differentiability intervals, and, for example, the relations

lim
|x1|→∞

ψ1(x1)
x1

= 0.18, lim
|x2|→∞

ψ2(x2)
x2

= 0.5 (19)

hold. By using Remark 1, one can readily show that, in this case, the system has the unique equilib-
rium (0, 0, 0). By Theorem 1, system (18) with the nonlinearities satisfying conditions (19) has at
least one orbitally stable cycle whose attraction domain contains almost all points of a neighborhood
of the equilibrium (0, 0, 0).

As ψ1(x1) and ψ2(x2) we take the functions

ψ1(x1) =

{ 0.18x1 − 0.11 for x ≤ −0.5,
0.4x1 for |x| ≤ 0.5,
0.18x1 + 0.11 for x ≥ 0.5,

ψ2(x2) = 0.5x2.

By “starting” from a system with such nonlinearities, we implement the above-described algorithm
of the search of hidden oscillations of system (18). Figure 2 represents a cycle of the “starting”
system with the initial conditions (0.1, 0.2, 0.3). Figures 3–5 represent the evolution of an attractor
of the system under changes of ε.

Note that a point with the coordinates (3.386, 1.3987×10−3 ,−3.386) lies in an attraction domain
of the found attractor, while trajectories issuing from the close point (3.386, 1.3987× 10−2 ,−3.386)
very rapidly go to infinity.

Example 2. Consider system (2) with a single nonlinearity, where

A =

⎛
⎜⎝

0 1 0

0 0 1

0 −10 −1

⎞
⎟⎠, B =

⎛
⎜⎝

0

0

1

⎞
⎟⎠, C =

⎛
⎜⎝

−18

−1

−1

⎞
⎟⎠, ϕ(σ) = (7 + 0.0567σ2) arctanh σ.

Here the matrix A(μ) = A + μBC∗ is a Hurwitz matrix for μ ∈ (0, 2) ∪ (5,∞). For μ = 2
and μ = 5, this matrix has exactly one negative eigenvalue and a pair of pure imaginary ones.

Fig. 2. Fig. 3.
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Fig. 4. Fig. 5.

Fig. 6. Fig. 7. Fig. 8.

If μ ∈ (2, 5), then the matrix A(μ) has a pair of eigenvalues in the right open half-plane and no
one in the strip −3 ≤ Re p ≤ 0. The unique equilibrium σ of the considered system is stable in
small. Figures 6–8 show that the graph of the odd nonlinearity ϕ(σ) “alternately visit” sectors of
the Hurwitz property and instability of degree 2. Such a behavior of the nonlinearity permits one
to claim that the considered system has hidden attractors.

For this system, the transfer function has the form W (p) =
p2 + p + 18

p3 + p2 + 10p
. One can readily see

that the relation
Re {[1 + 0.4W (iω − λ)][1 + 10W (iω − λ)]∗} > 0

holds for all ω ≥ 0 and λ = 0.6; this implies that assumption 3 of Theorem 1 is satisfied in the
scalar case.

Consider the auxiliary system with the nonlinearity ϕ(σ) replaced by the function

ψ1(σ) =

{
σ − 1.5 for σ ≤ −0.5,
4σ for |σ| ≤ 0.5,
σ + 1.5 for σ ≥ 0.5.

By Theorem 1, a system with such a nonlinearity has a self-exciting cycle whose attraction domain
contains points in an arbitrarily small neighborhood of the point of equilibrium x = 0. By using
the above-represented algorithm for detecting hidden oscillations, we find a cycle of the considered
system. The stages of operation of the algorithm are presented in Figs. 9–11 [projections of the
cycle onto the plane (x, y)].
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Fig. 9. ε = 0. Fig. 10. ε = 0.5. Fig. 11. ε = 1.

Fig. 12.

Figure 12 presents the graph of σ(t) for the found cycle.
In Fig. 12, one can see that |σ(t)| < 8. By using Theorem 2, we choose a nonlinearity ψ2(σ) in

the considered system so as to ensure that the system has a self-exciting cycle, which necessarily
differs from the above-found cycle. We set

ψ2(σ) =

{ 6σ + 24 for σ ≤ −8,
4σ for |σ| ≤ 8,
6σ − 24 for σ ≥ 8.

By using again the above-described algorithm of detecting hidden oscillations, we find one more
orbitally stable cycle of the considered system. The stages of the operation of the algorithm are
presented in Figs. 13–15.

Note that, in addition to the found orbitally stable cycles, the considered system has two more
unstable cycles, which can be found by some well-known method of finding unstable cycles, for ex-
ample, “the shooting method” described in the monograph [34]. Figure 16 presents the projection
to the plane (y, z) of the minimum global attractor of the considered system found by numeri-
cal integration; this attractor consists of the stable equilibrium (0, 0, 0), two orbitally stable cycles
with the initial conditions (−0.28697,−3.74819, 3.68689) and (4.39634,−40.59566,−66.18277), and
two unstable cycles with the initial conditions (−0.13393,−1.7377, 2.01380) and (2.02008, 5.13178,
−24.27500).

Example 3. Let us show that, in some cases, the above-suggested method for detecting hidden
attractors of systems of the form (2) can be used for finding attractors of systems of a more general
form. Consider the third-order system

ẋ = −z,

ẏ = −x − z,

ż = 2x − 1.3y − 2z + x2 + z2 − xz.

(20)
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Fig. 13. ε = 0. Fig. 14. ε = 0.3. Fig. 15. ε = 1.

Fig. 16.

This system was considered in detail in [7], where it was shown that this system has the unique
stable, in small, equilibrium O(0, 0, 0) and a hidden chaotic attractor. Let us try to find this
attractor numerically.

We rewrite system (20) in the form

ẋ = −z,

ẏ = −x − z,

ż = 2x − 1.3y − 2z + (1 − ε)ϕ(x − z) + ε(x2 + z2 − xz)
(21)

and choose a function ϕ(x − z) such that system (21) with ε = 0 has a self-exciting attractor.
If ε = 0, then system (21) has the form (2) with

A =

⎛
⎜⎝

0 0 −1

−1 0 −1

2 −1.3 −2

⎞
⎟⎠, B =

⎛
⎜⎝

0

0

1

⎞
⎟⎠, C =

⎛
⎜⎝

1

0

−1

⎞
⎟⎠, W (p) =

p2 + p

p3 + 2p2 + 0.7p + 1.3
.

The linear analysis provides the following results. For μ ∈ (−∞,−0.037559), the matrix A(μ) =
A+μBC∗ has two eigenvalues in the open right half-plane and has no one in the strip −1 ≤ Re p ≤ 0.
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Fig. 17. ε = 0. Fig. 18. ε = 0.6. Fig. 19. ε = 0.95.

Fig. 20. ε = 0.99. Fig. 21. ε = 1.

For μ ≈ −0.037559, the matrix A(μ) has a pair of pure imaginary eigenvalues and one negative
eigenvalue. If μ > −0.037559, then A(μ) is a Hurwitz matrix. If μ1 = −1.2, μ2 = 2.5, and
λ = 1, then one can readily see that Re {[1 + μ1W (iω − λ)][1 + μ2W (iω − λ)]∗} > 0 for all ω ≥ 0.
By using Theorem 1, we construct a function ϕ(σ) = ϕ(x − z) such that system (21) with ε = 0
has a cycle self-exciting in an arbitrarily small neighborhood of the point of equilibrium O(0, 0, 0).
For example, we set

ϕ(σ) =

{ 2σ + 2 for σ ≤ −1,
σ3 − σ for |σ| ≤ 1,
2σ − 2 for σ ≥ 1.

By issuing from that cycle and by varying ε in system (21) from 0 to 1 with a small increment,
we try to detect a hidden attractor of system (20). Figures 17–21 present the results of operation
of the algorithm.

4. KALMAN PROBLEM

The Kalman and Aizerman problems [35, 31] well known in the theory of nonlinear regulated
systems were posed in the middle of the XX century and readily attracted the attention of specialists
in control theory and the theory of differential equations. The matter of these problems is the
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following. Consider system (2), where A is an n × n matrix, B and C are n vectors, and ϕ(σ)
is a scalar function with ϕ(0) = 0. Let all systems (2) with ϕ(σ) = μσ be asymptotically stable
for μ ∈ (μ1, μ2).

Aizerman conjecture. System (2) with an arbitrary piecewise continuous nonlinearity ϕ(σ)

satisfying the condition μ1 <
ϕ(σ)

σ
< μ2 for σ �= 0 is globally stable.

Kalman conjecture. System (2) with any piecewise continuous nonlinearity ϕ(σ) satisfying
the condition μ1 < ϕ′(σ) < μ2 at the points of differentiability is globally stable.

For n = 2, the first counterexample to the Aizerman conjecture was constructed by Krasovskii
in 1952 [36]. In 1958, Pliss [37] suggested a method for constructing three-dimensional nonlinear
systems that satisfy the Aizerman condition and have periodic solutions. Later, this method was
generalized by Leonov to systems of arbitrary dimension [38]. The proof of the fact that the
Kalman problem has the positive solution for n = 2 and n = 3 was obtained in [39]. Finally,
in 1988 Barabanov [40] proved the existence of fourth-order systems for which the Kalman problem
has the negative solution. As was noted in [14], the Barabanov result is an “existence theorem” and
should be verified carefully. In other words, one should find examples of particular fourth-order
systems that satisfy the Kalman condition and have, for example, periodic solutions.

Let us present the procedure of constructing a counterexample to the Kalman conjecture based
on Theorem 1.

Consider system (2) with

A =

⎛
⎜⎜⎜⎜⎝

3.5 1 −4.5 −2

−4 −2 3.5 2.5

2.5 1 −2.5 −1

−0.5 −1 −0.5 0

⎞
⎟⎟⎟⎟⎠, B =

⎛
⎜⎜⎜⎜⎝

−25.55

26.05

−15.55

−4.55

⎞
⎟⎟⎟⎟⎠, C =

⎛
⎜⎜⎜⎜⎝

−9.2

−20.2

−21

10

⎞
⎟⎟⎟⎟⎠,

ϕ(σ) = tanh σ =
eσ − e−σ

eσ + e−σ
.

The function ϕ(σ) satisfies the conditions 0 < ϕ′(σ) < 2, while A+μBC∗ is a Hurwitz matrix if
0 < μ < 9.9. Therefore, the considered system satisfies all assumptions of the Kalman conjecture.
By using the above-described procedure, we show that the considered system has a cycle.

One can readily see that, in this case, assumption 3 of Theorem 1 is satisfied for μ1 = 0.1,
μ2 = 20, and λ = 0.3. As ψ(σ) we take the function 15 tanh σ+0.1σ. Theorem 1 guarantees that the
considered system with such a nonlinearity has an orbitally stable cycle. The numerical integration
of the system with such a function and with the initial conditions (0.1; 0.3; 0.3; 0.2) by the Runge–
Kutta method leads to that cycle. The projection of the cycle onto the plane (x3, x4) is shown
in Fig. 22. Now consider the family of systems (2) with the nonlinearities εjϕ(σ) + (1 − εj)ψ(σ),
where εj = 0.1j, j = 0, . . . , 10. To this family, we apply the above-described procedure of successive
construction of the solutions xj(t). The cycles obtained for j = 5 and j = 10 are shown in Figs. 23
and 24.

5. HIDDEN ATTRACTORS OF THE CHUA SYSTEM

Chua chains are analogs of self-generators, that is, generators of oscillations with a feedback.
Systems of differential equations governing the behavior of Chua chains [23] are three-dimensional
dynamical systems with one scalar nonlinearity. In dimensionless coordinates, such a system can
be represented in the form [14]

ẋ = α(y − x) − αϕ(x),
ẏ = x − y + z,

ż = −βy − γz,

(22)

where the function ϕ(x) specifies a nonlinear element (a “Chua diode”). Depending on the form
of the function ϕ(x), one can distinguish a classical and generalized Chua systems. A generalized
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Fig. 22. Fig. 23. Fig. 24.

Chua system is defined as system (22) with a nonlinearity of the form [30]

ϕ(x) = m1x + 0.5(m0 − m1)(|x + 1| − |x − 1|) + 0.5(s − m0)(|x + δ0| − |x − δ0|). (23)

In relations (22)–(23) α, β, m0, and m1 are parameters of the classical Chua system, δ0 and s are
parameters of the generalized Chua system responsible for the stability of the zero equilibrium.

First, we consider the classical Chua system, and, following [14], we choose its parameters as
follows: α = 8.4562, β = 12.0732, γ = 0.0052, m0 = −0.1768, and m1 = −1.1468. We rewrite
system (22)–(23) in the form

Ẋ = AX + Bϕ1(σ), σ = C∗X; X = col(x, y, z), (24)

A =

⎛
⎜⎝
−α(m1 + 1) α 0

1 −1 1

0 −β −γ

⎞
⎟⎠, B =

⎛
⎜⎝
−α

0

0

⎞
⎟⎠, C =

⎛
⎜⎝

1

0

0

⎞
⎟⎠, ϕ1(σ) = ϕ(σ) − m1σ.

Note that A + 0.97BC∗ is a Hurwitz matrix; therefore, the solution x = 0, y = 0, z = 0 of
the considered system is stable in the small. This fact does not permit one to detect numeri-
cally an attractor of the system after the “start” from a neighborhood of the above-mentioned
equilibrium.

By setting ϕ1(σ) = μσ in (24), we perform the linear analysis of the system, i.e., we ex-
tract the stability and instability sectors of the linear system Ẋ = (A + μBC∗)X for various
values of μ ∈ (−∞,∞). If μ ∈ (−∞, 0.14723), then the matrix Aμ = A + μBC∗ has one pos-
itive eigenvalue and two complex conjugate eigenvalues in the open left half-plane. For some
μ̃1 ∈ (0.14723, 0.147231), the positive eigenvalue passes into the left half-plane, and Aμ becomes
a Hurwitz matrix. For μ ∈ (0.147231, 0.20986) the matrix Aμ remains a Hurwitz matrix (the Hur-
witz sector). For some μ̃2 ∈ (0.20986, 0.20987), two eigenvalues of Aμ become pure imaginary, and
one remains in the open left half-plane. For μ ∈ (0.20987, 0.9596), the matrix Aμ has two complex
conjugate eigenvalues with positive real parts and one negative eigenvalue (the sector of instability
of degree 2). For some μ̃3 ∈ (0.9596, 0.9597), the matrix Aμ has a pair of pure imaginary eigenvalues
and one negative eigenvalue again. Finally, for μ ∈ (0.9597,∞), the matrix Aμ is a Hurwitz matrix.

We take μ1 = 0.17 ∈ (μ̃1, μ̃2), μ2 = 4 > μ̃3, and λ = 0.5. One can readily see that relation (7)
holds for these values. Let us construct an auxiliary nonlinearity ψ(σ) so as to ensure that sys-
tem (24) with such a nonlinearity satisfies all assumptions of Theorem 1. One can readily see that
as ψ(σ) one can take, for example, the function

ψ(σ) =

{ 0.18σ − 0.62 for σ ≤ −1,
0.4(|σ + 1| − |σ − 1|) for |σ| ≤ 1,
0.18σ + 0.62 for σ ≥ 1.

The result of the above-described algorithm of detecting a hidden attractor in the Chua classical
system is shown in Figs. 25–27 [the projection to the plane (x, y)].
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Fig. 25. ε = 0. Fig. 26. ε = 0.5. Fig. 27. ε = 1.

Fig. 28. ε = 1. Fig. 29. ε = 1.

The hidden strange attractor of the system shown in Fig. 27 is obtained by numerical integration
with the initial conditions (3.414309, 1.41477,−3.666077). Note that this attractor is not symmet-
ric around the origin, while the original system is preserved under the replacement of (x, y, z)
by (−x,−y,−z). The latter permits one to assume that the system has one more hidden attractor,
which is obtained by the numerical integration with the initial conditions (−3.414309,−1.41477,
3.666077). This assumption proves to be true. Two hidden attractors-twins are shown in Figs. 28
and 29.

Now consider the generalized Chua system (22) with a nonlinear ψ(σ) of the form (23) and with
the parameter values α = 8.4562, β = 12.0732, γ = 0.0052, m0 = 0.14, m1 = −1.1468, s = −0.9668,
and δ0 = 0.2. This system is stable in small.

We begin the process of detection of hidden oscillations with the construction of an auxiliary
nonlinearity g(σ) such that system (24) with such a nonlinearity satisfies all assumptions of Theo-
rem 1. For example, let

g(σ) =

{ 2σ + 0.3 for σ ≤ −0.2,
0.5σ for −0.2 ≤ σ ≤ 0.2,
2σ − 0.3 for σ ≥ 0.2.

The result of operation of the algorithm for the detection of a hidden oscillation in the Chua
generalized system is shown in Figs. 30–32 [the projection onto the plane (x, y)].

Figure 33 represents the graph of x(t) for the found cycle Γ.
In Fig. 33, one can see that the relation |x(t)| = |σ(t)| < 0.76 holds for the cycle Γ. Now we

construct one more auxiliary system, which has a cycle necessarily different from the above-found
cycle Γ of the Chua generalized system. As such a system we take system (24) with the nonlinearity

g1(x) =

{ 0.18x − 0.64 for x ≤ 2,
0.5x for −2 ≤ x ≤ 2,
0.18x + 0.64 for x ≥ 2.
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Fig. 30. ε = 0. Fig. 31. ε = 0.5. Fig. 32. ε = 1.

Fig. 33. Fig. 34.

The system with such a nonlinearity satisfies all assumptions of Theorem 1; therefore, it has
an orbitally stable cycle Γ1, which is detected by the computational procedure after the start from
any point of a neighborhood of the zero equilibrium. That cycle necessarily differs from the above-
found cycle Γ of the Chua system. Indeed, it lies in the cone Ω = {x : x∗Hx ≤ 0}. Should it
coincide with the cycle Γ, it would satisfy the condition |x(t)| = |σ(t)| < 0.76 for all t ∈ (−∞,∞).
But then Γ1 would be a trajectory of the linear system (24) with ϕ1(σ) = 0.5σ. The eigenvalues
of the matrix A + 0.5BC∗ of that system are λ1 = −4.3652 and λ2,3 = 0.1666 ± 2.8669i; i.e., it has
no eigenvalue in the strip −0.5 ≤ Re p ≤ 0. Therefore, by Theorem 2, all solutions of such a linear
system with initial conditions in Ω are unbounded as t → ∞. Therefore, Γ1 �= Γ. The “large” cycle
Γ1 and the “small” cycle Γ are shown in Fig. 34.

Now we repeat the above-described procedure for finding a hidden attractor issuing from some
point of the cycle Γ1. Namely, consider the family of systems (24) with the nonlinearities ζj(x) =
εjϕ1(x) + (1 − ε1)g1(x). When approaching the attractor, it is reasonable to diminish the dis-
cretization step in ε. The result of operation of the algorithm for finding an attractor other than
the attractor Γ is shown in Figs. 35–37.

The found attractor of the Chua generalized system is not symmetric around the origin. By re-
peating the arguments used above in the study of the Chua classical system, for the considered
system, we find the symmetric attractor-twin. Figures 38–40 present the projections of hidden
attractors of the Chua generalized system onto the planes (x, y), (x, z), and (y, z), respectively.

Figure 41 represents the attractor of the Chua generalized system in R3.
In addition to the stable equilibrium (0, 0, 0), the considered system has two more saddle equi-

libria (±7.2365, 3.1154×10−3 ,∓7.2365). The numerical integration shows that, among trajectories
issuing from a small neighborhood of saddle equilibria, there are unbounded increasing ones [for ex-
ample, trajectories with the initial conditions (±7.2, 0.03,∓7.2)]. Note that the attraction domain
of the cycle is “sufficiently large.” Thus, for example, the trajectories with the initial conditions
(±7.2, 0,∓7.2) in a small neighborhood of unstable equilibria are attracted to the cycle. Therefore,
by issuing from an arbitrary point of a sufficiently small neighborhood of any of three equilibria,
one cannot numerically detect hidden attractors of the studied system.
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Fig. 35. ε = 0.4. Fig. 36. ε = 0.8. Fig. 37. ε = 1.

Fig. 38. Fig. 39. Fig. 40.

Fig. 41.

6. HIDDEN ATTRACTORS OF AIRCRAFT CONTROL SYSTEM

In the presence of external perturbations in aircraft control system, one can face unstable modes,
which can lead to catastrophic results. Such modes (hidden oscillations) are usually not detected
by an approximate linear analysis of control systems used in engineering. As a rule, systems
constructed on the basis of such an analysis operate normally in the case in which defining and
perturbing influences in the system are sufficiently small. But if perturbations become large, then
the control system cannot necessarily parry related discoordinations caused by a nonlinearity like
a “saturation” in a control contour. Oscillational processes generated in the system and correspond-
ing to maximum possible amplitudes of the input influence on the control object are referred to as
“wind up.” The paper [41] dealt with the survey of methods of the elimination of wind-up used in
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engineering and to the development of new methods of anti-windup correction for aircraft control
systems. Below we illustrate the possibility of the generation of hidden oscillations in a rocket
control system in the case of a nonlinearity of “saturation” type in the control contour (similar
results were obtained in [22]).

The linearized model of the control system for the flexible space launch vehicle is described by
the system of equations [42]

···
ψ(t) + aψ̇(t)

y ψ̇(t) + aψ
y ψ(t) = aδr

y δr(t) + fy(t),
¨̃
ψ (t) + 2ξ1ω1

˙̃
ψ (t) + ω2

1ψ̃(t) = l1ω
2
1δr(t) + f̃y(t),

ψg(t) = ψ(t) + ψ̃(t).

(25)

Here the first equation describes the dynamics of the vehicle as an absolutely rigid body, where
ψ is the yaw angle, and δr is the angle of the rudder deviation. The second equation describes
the dynamics of the control system, and the third one describes the system output. The external
perturbations ft(t) and f̃y(t) are assumed to be absent.

By taking into account some constraints for the dynamics and the rudder servomotor, the
operation of the rudder servomotor can be described as follows:

δr = M sat
( u

M

)
,

where u(t) is the control signal generated by the angular stabilization system. Here

sat(σ) = sgn(σ)min(1, |σ|), u(t) = −kpψg(t) − kDψ̇g(t),

where kp and kD are the proportional and differential gain factors, respectively.

By setting X =
(
ψ, ψ̇, ψ̃, ˙̃ψ

)
, we rewrite system (26) in the form (2) with

A =

⎛
⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

−aψ
y 0 −aψ̇

y 0

0 −ω2
1 0 −2ξ1ω1

⎞
⎟⎟⎟⎟⎠, B =

⎛
⎜⎜⎜⎜⎝

0

0

aδr
γ

l1ω
2
1

⎞
⎟⎟⎟⎟⎠, C =

⎛
⎜⎜⎜⎜⎝

−kp

−kp

−kD

−kD

⎞
⎟⎟⎟⎟⎠.

Fig. 42.
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Fig. 43.

Fig. 44.

We define the following values of coefficients of the studied model [42] : aψ
γ = −4c−2, aψ̇

γ = 0.4c−1,
aδr

γ = 14c−2, ω1 = 2c−1, ξ1 = 0.03, l1 = −0.12c−2, kp = 5, kD = 2, M = 0.174. Then

A =

⎛
⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

4 0 0.4 0

0 −4 0 −12

⎞
⎟⎟⎟⎟⎠, B =

⎛
⎜⎜⎜⎜⎝

0

0

14

−0.48

⎞
⎟⎟⎟⎟⎠, C =

⎛
⎜⎜⎜⎜⎝

−5

−5

−2

−2

⎞
⎟⎟⎟⎟⎠,

W (p) =
2(1690p3 + 4411p2 + 7705p + 18100)

(5p2 + 2p − 20)(25p2 + 3p + 100)
.

Let us perform the linear analysis of the system: we extract sectors of stability and instability
of the linear system Ẋ = (A + μBC∗)X for various values of μ ∈ (0,∞). For μ ∈ (0, 0.05524), the
matrix Aμ = A+μBC∗ has one positive eigenvalue and three eigenvalues in the open left half-plane.
For some μ̃1 ∈ (0.05524, 0.05525), the positive eigenvalue passes into the left half-plane, and Aμ

becomes a Hurwitz matrix. For μ ∈ (0.05525, 0.056), Aμ remains a Hurwitz matrix (the Hurwitz
sector). For some μ̃2 ∈ (0.056, 0.057), two eigenvalues of Aμ become pure imaginary, and two ones
remain in the open left half-plane. For μ ∈ (0.057, 0.1633) the matrix Aμ has two complex conjugate
eigenvalues with positive real parts and two eigenvalues with negative real parts (the sector of the
instability of degree 2). For some μ̃3 ∈ (0.1633, 0.1634), the matrix Aμ has a pair of pure imaginary
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Fig. 45.

Fig. 46.

eigenvalues again and two eigenvalues with negative real parts. Finally, Aμ is a Hurwitz matrix
for μ ∈ (0.1634,∞).

If we set ϕ(σ) = σ in the considered system, then we obtain a globally stable linear system.
Set μ1 = 0.0555, μ2 = 0.14, and λ = 0.009. The graph of the function

χ(ω) = μ1μ2|W (iω − λ)|2 + (μ1 + μ2)Re W (iω − λ) + 1

is shown in Fig. 42. Therefore, assumptions 3 of Theorem 1 are satisfied in this case. In addition,
for all μ ∈ [μ1, μ2] the matrix Aμ = A+ μBC∗ has two eigenvalues in the open right half-plane and
has no one in the strip −λ ≤ Re p ≤ 0.

In accordance with chosen parameters of the system, here the nonlinearity of the “saturation”
type has the form ϕ(σ) = 0.5(|σ + 0.174| − |σ − 0.174|). By using the performed linear analysis,
as the “starting” inequality providing the existence of a cycle at a starting point from an arbitrarily
small neighborhood of the equilibrium, we take

ψ(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.0555σ − 0.174
(

1 − 0.0555
0.13

)
for σ < −0.174

0.13
,

0.13σ for |σ| ≤ 0.174
0.13

,

0.0555σ + 0.174
(

1 − 0.0555
0.13

)
for σ >

0.174
0.13

.
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Fig. 47.

Fig. 48.

Fig. 49. Fig. 50.

The results of the step operation of the algorithm for the localization of the hidden attractor
of system (25) are represented in Figs. 43–48 (projections onto the coordinate subspaces of dimen-
sion 2). In Fig. 48, one can see that the system has two hidden attractors-twins. Figures 49 and 50
present the projections of the hidden attractors-twins onto the subspace of dimension 3.
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We have clearly demonstrated that the use of only linear analysis for the design of aircraft
control systems does not guarantee the absence of complicated oscillatory modes in the system,
and they can be detected only by its special nonlinear analysis.
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