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Abstract—We find a closed-form classical solution of the homogeneous wave equation with
Cauchy conditions, a boundary condition on the lateral boundary, and a nonlocal integral con-
dition involving the values of the solution at interior points of the domain. A classical solution
is understood as a function that is defined everywhere in the closure of the domain and has
all classical derivatives occurring in the equation and conditions of the problem. The deriva-
tives are defined via the limit values of finite-difference ratios of the function and corresponding
increments of the arguments.
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1. INTRODUCTION

Numerous papers deal with problems for the one-dimensional wave equation (e.g., see [1–15]).
Most of them study classical solutions. Note that numerical methods in the form of difference
schemes or finite elements for solving boundary value problems for differential equations are based
on the assumptions of existence of classical solutions of these problems. However, under the same
boundary conditions without a correct choice of the functions in these conditions satisfying so-called
matching conditions, the problem will have no classical solution: the solution does not have the
same smoothness in the entire domain, which is required by the numerical method applied to
the case. This aspect was analyzed in detail in [9, 10], where a classical solution of the mixed
problem was found for the equation of small transverse vibrations of a string.

In the mathematical modeling of processes in physics and other fields of science, there arise
problems in which the values of the unknown function are defined in integral form [16]. Numerous
papers deal with such nonlocal problems (see [17–24]). However, in most of those papers, the
problems are considered in a generalized statement. As was mentioned above, classical solutions
play an important role from the viewpoint of practical use. It turns out that the method of finding
classical solutions suggested in the case of boundary value problems for hyperbolic equations [1–10]
can also be used for nonlocal problems with integral conditions. In the present paper, we use
this approach for the simplest problem for the one-dimensional wave equation in the case of an
integral condition. It can also be used for hyperbolic equations in the case of problems with
more general integral conditions without any essential modification with regard of the specific
statement.

Note also the papers [4, 25, 26] in which solutions were found by the above-mentioned method in
the case of integral boundary conditions. However, the presence of singularities in these conditions
does not permit one to find a classical solution in the entire domain where the unknown functions
are to be defined.
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CLASSICAL SOLUTION OF A PROBLEM WITH AN INTEGRAL CONDITION 1365

2. STATEMENT OF THE PROBLEM

In the closure Q = [0,∞)× [0, l] of the domain Q = (0,∞)× (0, l) of two independent variables
(t, x) ∈ Q ⊂ R

2, consider the wave equation

(∂tt − a2∂xx)u(t, x) = f(t, x), (t, x) ∈ Q, (2.1)

where a2 and l are positive real numbers, (0, l) ⊂ [0, l], (0,∞) ⊂ [0,∞), and ∂tt = ∂2/∂t2 and
∂xx = ∂2/∂x2 are second partial derivatives with respect to t and x. Equation (2.1) is supplemented
with the Cauchy condition

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x), x ∈ [0, l], (2.2)

on the lower base Ω(0) = {(t, x) ∈ Q|t = 0} of the half-strip Q, the boundary condition

u(t, 0) = μ(t), t ∈ [0,∞), (2.3)

on the lateral line Γ = {(t, x) ∈ Q, x = 0}, and the integral condition

l∫

0

u(t, x) dx = s(t), t ∈ [0, l]. (2.4)

Here f : Q � (t, x) → f(t, x) is a given function on Q, ϕ : [0, l] � x → ϕ(x) ∈ R and ψ : [0, l] �
x → ψ(x) ∈ R are functions on [0, l], and μ : [0,∞) � t → μ(t) ∈ R and s : [0,∞) � t → s(t) ∈ R

are given functions on [0,∞) whose smoothness will be specified below.
The functions f , ϕ, ψ, μ, and s satisfy the matching conditions

l∫

0

ϕ(x) dx − s(0) = 0, (2.5)

μ(0) − ϕ(0) = δ(1),
1
a
(ψ(0) − μ′(0)) = δ(2),

1
a2

(μ′′(0) − ϕ′′(0) − f(0, 0)) = δ(3), (2.6)

ϕ(0) − 1
a

l∫

0

ψ(x) dx − μ(0) +
1
a
s′(0) = σ(1),

ϕ′(0) − ϕ′(l) +
1
a
ψ(0) +

1
a2

s′′(0) − 1
a
μ′(0) − 1

a2

l∫

0

f(0, x) dx = σ(2), (2.7)

ϕ′′(0) +
1
a
ψ′(0) − 1

a
ψ′(l) − 1

a2
μ′′(0) +

1
a3

s′′′(0) +
1
a2

f(0, 0)

− 1
a3

l∫

0

∂tf(0, x) dx − 1
a2

l∫

0

∂xf(0, x) dx = σ(3).

If all numbers σ(0), δ(j), and σ(j), j = 1, 2, 3, in the matching conditions (2.5)–(2.7) are zero,
then conditions (2.5)–(2.7) are said to be homogeneous with respect to the given functions in
problem (2.1)–(2.4).

Note that, for sufficiently smooth given functions occurring in Eq. (2.1) and conditions
(2.2)–(2.4), on the set Q there exists a unique classical solution of this problem if and only if
the matching conditions (2.5)–(2.7) for these functions are homogeneous. Otherwise, on certain
characteristics in the domain Q, the solution u of problem (2.1)–(2.7), together with its derivatives,
has discontinuities. These discontinuities can be represented as matching conditions, which will be
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stated below. Therefore, in the general case, problem (2.1)–(2.7) can be replaced by problem (2.1)–
(2.4) with matching conditions on the characteristics, where the jumps of the function and its
derivatives are expressed via given real numbers δ(j), j = 1, 2, 3, and σ(j), j = 0, . . . , 3. We obtain
a solution of problem (2.1)–(2.7) in closed form in terms of the functions f , ϕ, ψ, μ, and s.

3. SOLUTION OF EQUATION (2.1)

By using the reduction of Eq. (2.1) to the second canonical form, one can readily find a general
solution of the homogeneous equation (2.1) [3], and it is given by the sum of two functions

g(1)(x + at) + g(2)(x − at), (3.1)

where g(i) are arbitrary twice continuously differentiable functions on the corresponding domains
D(g(i)), where D(g(1)) = [0,∞) and D(g(2)) = (−∞, l] if (t, x) ∈ Q and a > 0.

By Ck(G) we denote the set of continuous functions that are defined on G and have continuous
derivatives of order k ≥ 0, where for G one can take the interval [0, l], the half-line [0,∞], the closure
Q of the domain Q, and other sets.

Let a function v : R
2 ⊃ Q � (t, x) → v(t, x) ∈ R belong to the class C2(Q) and satisfy Eq. (2.1).

Such a function is referred to as a particular solution of this equation.

Lemma 3.1. The general solution of Eq. (2.1) is the sum

u(t, x) = ũ(t, x) + v(t, x) = g(1)(x + at) + g(2)(x − at) + v(t, x), (3.2)

where ũ is the general solution (3.1) of the homogeneous equation (2.1) and v is a particular solution
of the inhomogeneous equation (2.1).

Proof. Suppose that, in addition to the solution (3.2), Eq. (2.1) has a solution U . Then the
difference u − U satisfies the homogeneous equation (2.1) and has the form (3.1). Therefore it
follows that the assumed other solution U of Eq. (2.1) can also be represented in the form (3.2).
The proof of the lemma is complete.

It follows from the general solution ũ that ũ(t, x) = ũ(1)(t, x) + ũ(2)(t, x). In addition to the
function ũ, we introduce the function ũ = ũ(1) − ũ(2). From the representation of the general
solution (3.2), we obtain the relations

a ∂xũ = ∂tũ, a ∂xũ = ∂tũ. (3.3)

Let us construct a particular solution v of the inhomogeneous equation (2.1) with the proper-
ties (3.3).

Let a function w : (t, τ, x) → w(t, τ, x) be a solution of the homogeneous equation (2.1) with
respect to the independent variables t and x and depend on a parameter τ ∈ [0,∞); i.e., w satisfies
the equation

∂ttw(t, τ, x) − a2∂xxw(t, τ, x) = 0. (3.4)

In addition to Eq. (3.4), the function w satisfies the Cauchy conditions

w(0, τ, x) = 0, ∂tw(0, τ, x) = f(τ, x), (3.5)

where the function f occurring in (3.5) is the right-hand side of Eq. (2.1). We solve prob-
lem (3.4), (3.5).

It is well known that the general solution of Eq. (3.4) is a sum of two functions,

w(t, τ, x) = G(1)(x + at, τ) + G(2)(x − at, τ), (3.6)
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where the G(j) are arbitrary functions of the class C2 with respect to the first argument with
domains D(G(j)) = D(g(j)) × [0,∞). By requiring that the function (3.6) satisfies the Cauchy
conditions (3.5), we obtain the system of equations

G(1)(x, τ) + G(2)(x, τ) = 0, (3.7)
a ∂x+atG

(1)(x + at, τ) − a ∂x−atG
(2)(x − at, τ) = f(τ, x) for t = 0,

or
a ∂xG(1)(x, τ) − a ∂xG(2)(x, τ) = f(τ, x). (3.8)

By integrating Eq. (3.7), we obtain

G(1,0)(x, τ) − G(2,0)(x, τ) =
1
a

x∫

0

f(τ, ξ) dξ + 2C(τ), (3.9)

where C(τ) is an arbitrary function in C2([0,∞)). From system (3.7), (3.9), we have

G(j,0)(x, τ) =
(−1)j+1

2a

x∫

0

f(τ, ξ) dξ + (−1)j+1C(τ), j = 1, 2. (3.10)

Since the function f is defined on Q, it follows that the functions G(j,0) (j = 1, 2) are defined by
relations (3.10) only on the interval [0, l] with respect to the first argument. Set

G(j)(x, τ) =

{
G(j,0)(x, τ) for x ∈ [0, l],

G̃(j)(x, τ) for x ∈ D(g(j))\[0, l].
(3.11)

Obviously, for the functions G(j) defined by relations (3.11) to belong to the class C2(D(g(i)))
with respect to the first argument, they should satisfy the matching conditions

∂p

∂xp
G̃(1)(x, τ) =

∂p

∂xp
G(1,0)(x, τ) for x = l,

∂p

∂xp
G̃(2)(x, τ) =

∂p

∂xp
G(2,0)(x, τ) for x = 0, p = 0, 1, 2.

Therefore, the function G̃(1) satisfies the conditions

G̃(1)(l, τ) =
1
2a

l∫

0

f(τ, ξ) dξ + C(τ),

∂G̃(1)

∂x
(l, τ) =

1
2a

f(τ, l),
∂2G̃(1)

∂x2
(l, τ) =

1
2a

∂

∂x
f(τ, l),

(3.12)

and the function G̃(2) satisfies the conditions

G̃(2)(0, τ) = −C(τ),
∂G(2)

∂x
(0, τ) = − 1

2a
f(τ, 0),

∂2G(2)

∂x2
(0, τ) = − 1

2a
∂

∂x
f(τ, 0). (3.13)

On the basis of the function w defined by relations (3.6), (3.7), and (3.10)–(3.13), we introduce
the function v : Q � (t, x) → v(t, x) ∈ R by the relation

v(t, x) =

t∫

0

w(t − τ, τ, x) dτ =

t∫

0

G(1)(x + a(t − τ), τ) dτ

+

t∫

0

G(2)(x − a(t − τ), τ) dτ = v(1)(t, x) + v(2)(t, x). (3.14)

DIFFERENTIAL EQUATIONS Vol. 50 No. 10 2014



1368 MOISEEV et al.

The function v defined via w by relation (3.14) is a solution of Eq. (2.1). Indeed, let us compute
their derivatives,

∂tv(t, x) = w(0, t, x) +

t∫

0

∂t−τw(t − τ, τ, x) dτ =

t∫

0

∂t−τw(t − τ, τ, x) dτ,

∂ttv(t, x) = f(t, x) +

t∫

0

∂(t−τ)(t−τ)w(t − τ, τ, x) dτ,

∂xxv(t, x) =

t∫

0

∂xxw(t − τ, τ, x) dτ.

By substituting the derivatives ∂ttv and ∂xxv into Eq. (2.1), we find that, by virtue of (3.4), the
function v defined by relation (3.14) is a solution of this inhomogeneous equation.

It follows from (3.14) that the first derivatives of the function v satisfy the relations

a ∂xv = ∂tv, a ∂xv = ∂tv. (3.15)

We have thereby proved the following assertion.

Lemma 3.2. If a function f belongs to the class C1(Q) and the G(j), j = 1, 2, satisfy the
matching conditions (3.12) and (3.13), then the function v given by relations (3.14), (3.6), (3.11),
and (3.10) belongs to the class C2(Q), is a solution of Eq. (2.1), and satisfies relations (3.15).

It follows from Lemmas 3.1 and 3.2 that the general solution (3.2) satisfies the inhomogeneous
equation (2.1), where the function v is defined by relation (3.14), has the properties listed in
Lemma 3.2, and satisfies the relations

a ∂xu = ∂tu, a ∂xu = ∂tu. (3.16)

In what follows, we consider only the general solution (3.2), (3.14) of Eq. (2.1). For this solution,
the integral condition (2.4) can be replaced by the nonlocal boundary condition

au(t, l) − au(t, 0) = s′(t). (3.17)

Lemma 3.3. If the given function s belongs to the class C1[0,∞), then the integral condi-
tion (2.4) is equivalent to conditions (3.17) and (2.5).

Proof. The proof is by a straightforward verification in direct and inverse order. The boundary
condition (3.17) is obtained by the differentiation of relation (2.4) with respect to t and by the use
of relation (3.16). Condition (2.4) is obtained in the opposite order with the use of integration of
relation (3.17), relations (3.16), and the matching condition (2.5).

4. PROBLEM FOR THE HOMOGENEOUS WAVE EQUATION
WITH HOMOGENEOUS MATCHING CONDITIONS

We seek a particular solution v of problem (2.1)–(2.7) in the class C2(Q). It is defined by rela-
tion (3.14) via the function w, and w is a solution of the homogeneous equation (3.4). The smooth-
ness of the solution v depends on the matching conditions (2.5)–(2.7). If w belongs to the class
C2 with respect to the variables t and x, then v ∈ C2(Q). However, this is the case if and only
if the matching conditions are homogeneous. Therefore, consider the problem for the function
u : Q � (t, x) → u(t, x) that is the homogeneous equation

∂ttu − a2∂xxu = 0, (t, x) ∈ Q, (4.1)
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with the Cauchy conditions (2.2), the boundary condition (2.3), the nonlocal boundary condi-
tion (3.17), and the homogeneous matching conditions (2.6) and (2.7), δ(j) = σ(j) = 0, j = 1, 2, 3.

It is well known that the general solution u of Eq. (4.1) can be represented in the form

u(t, x) = g(1)(x + at) + g(2)(x − at), (4.2)

where the g(j) (j = 1, 2) are twice continuously differentiable functions with domains D(g(1)) =
[0,∞) and D(g(2)) = (−∞, l].

By subjecting the solution (4.2) to the Cauchy conditions (2.2), we obtain the following system
for the functions g(j) (j = 1, 2) defined on [0, l] :

g(1)(x) + g(2)(x) = ϕ(x), −ag(1)′(x) + ag(2)′(x) = ψ(x), x ∈ [0, l], (4.3)

where g(j) ′ are the first derivatives of the functions g(j), j = 1, 2. By solving system (4.3), we find
the functions g(j) given by the relations

g(j)(z) = g(j,0)(z) =
1
2
ϕ(z) + (−1)j 1

2a

z∫

0

ψ(ξ) dξ + (−1)j
C (4.4)

for z ∈ [0, l], where C is an arbitrary constant appearing after the integration of the second equation
in system (4.3).

For other values of the argument z, the functions g(j) are defined step by step by subjecting the
desired solution (4.2) to the boundary conditions (2.3) and (3.17). By satisfying condition (2.3),
we obtain the equation

g(2,1)(z) = μ
(
−z

a

)
− g(1,0)(−z). (4.5)

Since the function g(1)(z) = g(1,0)(z) is already determined by relation (4.4), by the expression (4.5),
we find g(2)(z) = g(2,1)(z) via given functions for z ∈ [−l, 0]. Next, we use condition (3.17). By sub-
stituting the function (4.2) into relation (3.17) and by using relations (4.4) and (4.5), we obtain

g(1)(z) = g(1,1)(z) = g(2,0)(2l − z) − g(2,1)(l − z) + g(1,0)(z − l) +
1
a
s′

(
z − l

a

)
(4.6)

for z ∈ [l, 2l].
By returning to condition (2.3), we find the values g(2,2)(z) of the function g(2); then from

condition (3.17), we find the values g(1,2)(z) of the function g(1) for z ∈ [2l, 3l], and so on. In the
general case, the above-performed procedure can be represented in the form

g(2,k)(z) = μ
(
−z

a

)
− g(1,k−1)(−z), z ∈ [−kl,−(k − 1)l], k = 1, 2, . . . , (4.7)

g(1,k)(z) = g(2,k−1)(2l − z) − g(2,k)(l − z) + g(1,k−1)(z − l) +
1
a
s′

(
z − l

a

)
, (4.8)

z ∈ [kl, (k + 1)l], k = 1, 2, 3, . . .

Let us compute the first and second derivatives of the functions (4.7) and (4.8),

g(2,k)′(z) = −1
a
μ′

(
−z

a

)
+ g(1,k−1) ′(−z), g(2,k)′′(z) =

1
a2

μ′′
(
−z

a

)
− g(1,k−1)′′(−z),

z ∈ [−kl,−(k − 1)l], k = 1, 2, 3, . . . ,
(4.9)

g(1,k)′(z) =
1
a2

s′′
(

z − l

a

)
− g(2,k−1)′(2l − z) + g(2,k)′(l − z) + g(1,k−1)′(z − l),

g(1,k)′′(z) =
1
a3

s′′′
(

z − l

a

)
+ g(2,k−1)′′(2l − z) − g(2,k)′′(l − z) + g(1,k−1)′′(z − l),

z ∈ [kl, (k + 1)l], k = 1, 2, 3, . . .

(4.10)
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For the functions g(1) to belong to the class C2[0,∞), and for the functions g(2) to belong
to the class C2(−∞, l], in addition to the smoothness requirements for given functions of prob-
lem (4.1), (2.2), (2.3), (3.17), one should require that the values of the functions g(j,k)(z), j = 1, 2,
k = 1, 2, 3, . . . , and values of their first and second derivatives should coincide at their common
points; i.e., the following relations should be valid:

g(1,k)(kl) = g(1,k−1)(kl), g(1,k)′(kl) = g(1,k−1)′(kl),

g(1,k)′′(kl) = g(1,k−1) ′′(kl), k = 1, 2, 3, . . . ,
(4.11)

g(2,k)(l − kl) = g(2,k−1)(l − kl), g(2,k)′(l − kl) = g(2,k−1)′(l − kl),

g(2,k)′′(l − kl) = g(2,k−1)′′(l − kl), k = 1, 2, 3, . . .
(4.12)

Lemma 4.1. Relations (4.11) and (4.12) hold if and only if they hold for k = 1.

Proof. We rewrite relations (4.11) for k = 1 via the values of the given functions,

g(1,1)(l) = g(2,0)(l) − g(2,1)(0) + g(1,0)(0) +
1
a
s′(0)

=
1
a
s′(0) +

1
2
ϕ(l) − 1

2a

l∫

0

ψ(ξ) dξ + C − μ(0) +
1
2
ϕ(0) + C +

1
2
ϕ(0) − C

= g(1,0)(l) =
1
2
ϕ(l) +

1
2a

l∫

0

ψ(ξ) dξ + C,

g(1,1)′(l) = g(2,0)′(l) + g(2,1)′(0) + g(1,0)′(0) +
1
a
s′′(0)

= −1
2
ϕ′(l) +

1
2a

ψ(l) − 1
a
μ′(0) +

1
2
ϕ′(0) +

1
2a

ψ(0) +
1
2
ϕ′(0) +

1
2a

ψ(0) +
1
a2

s′′(0)

= g(1,0)′(l) =
1
2
ϕ′(l) +

1
2a

ψ(l),

g(1,1)′′(l) =
1
2
ϕ′′(l) − 1

2a
ψ′(l) − 1

a2
μ′′(0) + ϕ′′(0) +

1
a
ψ′(0) +

1
a3

s′′′(0)

= g(1,0)′′(l) =
1
2
ϕ′′(l) +

1
2a

ψ′(l).

(4.13)

Relations (4.13) hold by virtue of the homogeneous matching conditions (2.7).
In a similar way, we consider relations (4.12) for k = 1,

g(2,1)(0) = μ(0) − 1
2
ϕ(0) + C = g(2,0)(0) =

1
2
ϕ(0) + C,

g(2,1)′(0) = −1
a
μ′(0) +

1
2
ϕ′(0) +

1
2a

ψ(0) = g(2,0)′(0) =
1
2
ϕ′(0) − 1

2a
ψ(0),

g(2,1)′′(l) =
1
a2

μ′′(0) − 1
2
ϕ′′(0) − 1

2a
ψ′(0) = g(2,0)′′(0) =

1
2
ϕ′′(0) − 1

2a
ψ′(0).

(4.14)

Relations (4.14) hold by virtue of the homogeneous matching conditions (2.6). The proof of the
lemma is complete.

The constructed functions g(j,k) : D(g(j,k)) = {z| z ∈ [(−1)j+1kl, (−1)j+1kl + l]} � z → g(j,k)(z)
find the functions g(j), where

g(j)(z) = g(j,k)(z), z ∈ D(g(j,k)(z)), j = 1, 2, k = 0, 1, 2, . . . (4.15)
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Lemma 4.2. If ϕ ∈ C2[0, l], ψ ∈ C1[0, l], μ ∈ C2[0,∞), s ∈ C3[0,∞), and the homogeneous
matching conditions (2.6) and (2.7) are satisfied , then the functions g(j) (j = 1, 2) given by rela-
tions (4.15) and (4.4)–(4.8) have the form

g(j)(z) = g̃(j)(z) + (−1)jC, j = 1, 2, (4.16)

where C is an arbitrary constant. In addition, the functions g̃(j) are uniquely determined , g(1) ∈
C2[0,∞), and g(2) ∈ C2(−∞, l].

Proof. By the assumptions of Lemma 4.2 and relations (4.4), (4.7), and (4.8), it follows that
the functions g(j,k) belong to the classes C2(D(g(j,k))), j = 1, 2, k = 0, 1, 2, . . . Definition (4.15)
of the functions g(j), Lemma 4.1, relations (4.11) and (4.12), and the homogeneous matching
conditions (2.6) and (2.7) imply that g(1) ∈ C2[0,∞) and g(2) ∈ C2(−∞, l].

Starting from the representation (4.4), the functions g(j,k) for each k = 1, 2, . . . are determined
by relations (4.7) and (4.8). By induction, one can readily show that

g(j,k)(z) = g̃ (j,k)(z) + (−1)j
C, (4.17)

where the g̃ (j,k) are uniquely determined. The proof of the lemma is complete.
The result of these considerations can be stated as the following assertion.

Theorem 4.1. If ϕ ∈ C2[0, l], ψ ∈ C1[0, l], μ ∈ C2[0,∞), s ∈ C3[0,∞), and these functions
satisfy the homogeneous matching conditions (2.6) and (2.7), then the function (4.2) belongs to the
class C2(Q) and is the unique classical solution of problem (4.1), (2.2), (2.3), (3.17), where the g(j)

(j = 1, 2) are the functions defined in relations (4.15) and (4.4)–(4.8).

Let the function w : R
2 ⊃ G = [0,∞)× [0,∞)× [0, l] � (t, τ, x) → w(t, τ, x) ∈ R be a solution of

the homogeneous equation (3.4), satisfy the Cauchy condition (3.5) on [0,∞)× [0, l], the boundary
condition

w(t, τ, 0) = tf(τ, 0) +
t2

2
f(0, 0), t, τ ∈ [0,∞), (4.18)

and the integral condition

l∫

0

w(t, τ, x) dx

= t

l∫

0

f(τ, x) dx +
t2

2!

l∫

0

f(0, x) dx +
t3

3!

l∫

0

[∂tf(0, x) + a ∂xf(0, x)] dx, t, τ ∈ [0,∞). (4.19)

One can readily see that the functions occurring in conditions (3.5), (4.18), and (4.19) satisfy
the homogeneous matching conditions (2.5)–(2.7).

We seek the solution of problem (3.4), (3.5), (4.18), (4.19) in the form (3.6). The Cauchy
conditions (3.5) find the functions G(j) on the closed interval z ∈ [0, l] by relations (3.10). Then,
by using conditions (4.18) and (4.19), we find the functions G̃(j) (j = 1, 2) for other values of z;
more precisely, G̃(1)(z, τ) for z ∈ [l,∞) and τ ∈ [0,∞) and G̃(2)(z, τ) for z ∈ (−∞, 0] and τ ∈ [0,∞).
By reproducing the argument in the proof of Theorem 4.1 for this case, we obtain a solution w of
problem (3.4), (3.5), (4.18), (4.19) in the class C2(G) if f ∈ C1(Q).

On the basis of the function w, we define the function v : Q � (t, x) → v(t, x) ∈ R by
relation (3.14). The function v belongs to the class C2(Q), is a solution of Eq. (2.1), and satisfies
the homogeneous Cauchy conditions

v(0, x) = ∂tv(0, x) = 0, (4.20)
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the boundary condition

v(t, 0) =

t∫

0

(t − τ)f(τ, 0) dτ +
t3

3!
f(0, 0) = μ̃(t), (4.21)

and the integral condition
l∫

0

v(t, x) dx

=

t∫

0

l∫

0

(t − τ)f(τ, x) dx dτ +
t3

3!

l∫

0

f(0, x) dx +
t4

4!

l∫

0

[∂tf(0, x) + a ∂xf(0, x)] dx = s̃(t). (4.22)

Let f ∈ C1(Q). Then f , μ̃, and s̃ satisfy the homogeneous matching conditions (2.5)–(2.7).

Lemma 4.3. If the function f occurring in Eq. (2.1) belongs to the class C1(Q), then prob-
lem (2.1), (4.20)–(4.22) has exactly one solution in the class C2(Q), and relations (3.15) hold.

5. PROBLEM (2.1)–(2.7)

We seek a solution of problem (2.1)–(2.7) in the form of a general solution (3.2) of Eq. (2.1),
where v is its particular solution, that is, a solution of problem (2.1), (4.20)–(4.22). It follows that,
to find a solution u of the form (3.2) of problem (2.1)–(2.7), one should find a solution ũ = u − v
of the homogeneous equation (4.1) satisfying the Cauchy conditions (2.2), the boundary condition

ũ(t, 0) = u(t, 0) − v(t, 0) = μ(t) − μ̃(t) = ˜̃μ(t) (5.1)

and the integral condition
l∫

0

ũ(t, x) dx =

l∫

0

u(t, x) dx −
l∫

0

v(t, x) dx = s(t) − s̃(t) = ˜̃s(t). (5.2)

Since the function v satisfies the homogeneous conditions (2.6) and (2.7), it follows that the
function ũ satisfies conditions of the form (2.6) and (2.7), where the numbers δ(m) and σ(m),
m = 1, 2, 3, can be nonzero. In addition, since the functions ũ and v satisfy relations (3.3) and (3.15),
it follows from Lemma 4.1 that conditions (5.2) can be replaced for ũ by the nonlocal boundary
condition

aũ(t, l) − aũ(t, 0) = ˜̃s ′
(t), t ∈ [0,∞). (5.3)

Therefore, we find a classical solution ũ of problem (4.1), (2.2), (5.1), (5.3) satisfying the inho-
mogeneous matching conditions (2.6) and (2.7).

To find a solution of this problem, we use the scheme and some results presented in Section 4.
By reproducing the argument for the solution (4.2), we obtain the representations (4.4)–(4.8) for
the functions g(i) (i = 1, 2) and their derivatives, which form the function ũ in formula (4.2). Here,
instead of μ and s and their derivatives, we take the functions ˜̃μ = μ−μ̃ and ˜̃s = s− s̃. The partially
defined functions (4.4)–(4.8) satisfy the relations

g(1,k)(kl) − g(1,k−1)(kl)
= g(2,k−1)(2l − kl) − g(2,k)(l − kl) + g(1,k−1)(kl − l) − g(2,k−2)(2l − kl)

+ g(2,k−1)(l − kl) − g(1,k−2)(kl − l)
= g(2,k−1)(2l − kl) − g(2,k−2)(2l − kl) + 2[g(1,k−1)((k − 1)l) − g(1,k−2)((k − 1)l)], (5.4)

g(2,k)(l − kl) − g(2,k−1)(l − kl) = −[g(1,k−1)((k − 1)l) − g(1,k−2)((k − 1)l)], (5.5)

k = 2, 3, 4, . . . , at their common points.
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Let us compute the functions (5.4) and (5.5) via the values of given functions of the considered
problem with regard of the matching conditions (2.6) and (2.7). By using the representations
(4.4)–(4.6), for k = 1, we obtain

g(2,1)(0) − g(2,0)(0) = μ(0) − ϕ(0) = δ(1),

g(1,1)(l) − g(1,0)(l) =
1
2
ϕ(l) − 1

2a

l∫

0

ψ(x) dx − μ(0) + ϕ(0) +
1
a
s′(0) − 1

2
ϕ(l) − 1

2a

l∫

0

ψ(x) dx

= ϕ(0) − 1
a

l∫

0

ψ(x) dx − μ(0) +
1
a
s′(0) = σ(1). (5.6)

Next, by induction, we obtain the relations

g(2,k)(l − kl) − g(2,k−1)(l − kl) = −(k − 2)δ(1) − (k − 1)σ(1), k = 2, 3, . . . ,
g(1,k)(kl) − g(1,k−1)(kl) = (k − 1)δ(1) + kσ(1), k = 1, 2, . . . (5.7)

Likewise, by using the representations (4.9) and (4.10), for the derivatives, we obtain the relations

dp

dzp
[g(2,k)(z) − g(2,k−1)(z)]z=l−kl

= (−1)p+1 dp

dzp
[g(1,k−1)(z) − g(1,k−2)(z)]z=kl−l, k = 2, 3, . . . , p = 1, 2, (5.8)

dp

dzp
[g(1,k)(z) − g(1,k−1)(z)]z=kl

= (−1)p dp

dzp
[g(2,k−1)(z) − g(2,k−2)(z)]z=2l−kl

+ 2
dp

dzp
[g(1,k−1)(z) − g(1,k−2)(z)]z=kl−l, k = 2, 3, . . . , p = 1, 2. (5.9)

For k = 1, the values of the derivatives are defined as follows:

g(2,1)′(0) − g(2,0)′(0) =
1
2
ϕ′(0) +

1
2a

ψ(0) − 1
a
μ′(0) − 1

2
ϕ′(0) +

1
2a

ψ(0) =
1
a
(ψ(0) − μ′(0)) = δ(2),

g(2,1)′′(0) − g(2,0)′′(0) =
1
a2

μ′′(0) − ϕ′′(0) = δ(3),

g(1,1)′(l) − g(1,0)′(l) = ϕ′(0) − ϕ′(l) +
1
a
ψ(0) +

1
a2

s′′(0) − 1
a
μ′(0) − 1

a2

l∫

0

f(0, x) dx = σ(2),

g(1,1)′′(l) − g(1,0)′′(l) = ϕ′′(0) +
1
a
ψ′(0) − 1

a
ψ′(l) − 1

a2
μ′′(0) +

1
a3

s′′′(0)

+
1
a2

f(0, 0) − 1
a3

l∫

0

∂tf(0, x) dx − 1
a2

l∫

0

∂xf(0, x) dx = σ(3).

(5.10)
In the general case, for any index k, the values of the derivatives (5.8) and (5.9) can be repre-

sented in the form
dp

dzp
[g(2,k)(z) − g(2,k−1)(z)](−(k − 1)l)

= −(k − 2)δ(p+1) + (−1)p+1σ(p+1), k = 2, 3, . . . , p = 1, 2, (5.11)
dp

dzp
[g(1,k)(z) − g(1,k−1)(z)](kl) = (−1)p

δ(p+1) + kσ(p+1), k = 1, 2, 3, . . . , p = 1, 2. (5.12)

Relations (5.7), (5.11), and (5.12) imply the following assertion.
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Assertion 5.1. If the homogeneous matching conditions (2.6) and (2.7) fail for given functions
f, ϕ, ψ, μ, and s, then, for any smoothness of these functions, problem (2.1)–(2.7) does not have
a classical solution defined on Q = [0,∞) × [0, l].

If the inhomogeneous matching conditions (2.6) and (2.7) are valid, f ∈ C1(Q), ϕ ∈ C2[0, l],
ψ ∈ C1[0, l], μ ∈ C2[0,∞), and s ∈ C3[0,∞), then there exists a subset Q̃ ⊂ Q on which the
function u is a solution of problem (2.1)–(2.7).

The set Q̃ is the union of the following disjoint subsets Q(k,m) ⊂ Q.
The empty set Q(0,−1) = ∅.
Q(0,0) = {(t, x) ∈ Q| x ∈ [0, l/2], 0 ≤ at < x} ∪ {(t, x) ∈ Q| x ∈ [l/2, l], 0 ≤ at < l − x}.
Q(k,k−1) = {(t, x) ∈ Q| x ∈ [0, l/2], x + (k − 1)l < at < kl − x}.
Q(k,k) = {(t, x) ∈ Q| x ∈ [0, l/2], kl − x < at < x + kl} ∪ {(t, x) ∈ Q| x ∈ [l/2, l], x + (k − 1)l <

at < (k + 1)l − x}.
Q(k−1,k) = {(t, x) ∈ Q| x ∈ [l/2, l], kl − x ≤ at < x + (k − 1)l}, k = 1, 2, . . .; i.e. (see the figure),

Q̃ =
∞⋃

k=0

k+1⋃
m=k−1

Q(k,m).

The solution
u(t, x) = ũ(t, x) + v(t, x) (5.13)

of problem (2.1)–(2.7) on the set Q̃ is defined as follows. The function v is a solution of prob-
lem (2.1), (4.20)–(4.22) on Q; consequently, it is a solution of the same problem on Q̃. One has

ũ(t, x) = ũ(k,m)(t, x) = g(1,k)(x + at) + g(2,m)(x − at),

(t, x) ∈ Q(k,m),

where g(1,k) and g(2,m) are defined via the given functions f , ϕ, ψ, μ, and s in the course of the
solution of problem (4.1), (2.2), (5.1), (5.2), (2.6), (2.7).

The partition of the domain Q into subdomains Q(k,m).
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Theorem 5.1. Let the functions f ∈ C1(Q), ϕ ∈ C2[0, l], ψ ∈ C1[0, l], μ ∈ C2[0,∞), and s ∈
C3[0,∞) satisfy the inhomogeneous matching conditions (2.5)–(2.7). Then the function u defined by
relation (5.13) belongs to the class C2(Q̃) and is the unique classical solution of problem (2.1)–(2.7)
on the set Q̃.

If conditions (2.6) and (2.7) are homogeneous, then it follows from relations (5.7)–(5.12) that
ũ ∈ C2(Q), where δ(j) = σ(j) = 0, j = 1, 2, 3. In this case, Theorem 5.1 is stated as follows.

Theorem 5.2. Let the assumptions of Theorem 5.1 be satisfied for the smoothness of given
functions, and let these functions satisfy the homogeneous matching conditions (2.5)–(2.7) (δ(j) =
σ(j) = 0, j = 1, 2, 3). Then the function (5.13) belongs to the class C2(Q) and is the unique classical
solution of problem (2.1)–(2.7) on Q.

Remark 5.1. If δ(1) = σ(1) = 0, then it follows from the representations (5.6) and (5.7) and
Theorem 5.1 that the solution u of problem (2.1)–(2.7) belongs to the class C(Q) ∩ C2(Q̃). But if
δ(j) = σ(j) = 0 for j = 1, 2, then u ∈ C1(Q) ∩ C2(Q̃).

Remark 5.2. If, in general, the given functions in problem (2.1)–(2.4) satisfy the inhomoge-
neous matching conditions (2.6) and (2.7) (at least one of the numbers δ(i) and σ(i), i = 1, 2, 3,
is nonzero), then the solution of problem (2.1)–(2.7) can be reduced to the solution of the corre-
sponding transmission problem, where the transmission conditions are posed on the characteristics
x − at = −(k − 1)l and x + at = kl, k = 1, 2, . . . For the transmission conditions, one can take the
conditions

[(
∂pu

∂xp

)−

−
(

∂pu

∂xp

)+
]

(t, x)|x=at = δ(p+1), at ∈ [0, l],

[(
∂pu

∂xp

)−

−
(

∂pu

∂xp

)+
]

(t, x)|x=at−(k−1)l = −(k − 2)δ(p+1) + (−1)p+1(k − 1)σ(p+1), (5.14)

at ∈ [kl, (k − 1)l], k = 2, 3, 4, . . . ,[(
∂pu

∂xp

)−

−
(

∂pu

∂xp

)+
]

(t, x)|x=−at+kl = −(−1)p(k − 1)δ(p+1) + kσ(p+1), (5.15)

at ∈ [kl, (k − 1)l], k = 1, 2, 3, . . . ,

where the (·)± are the limit values of the function u and its derivatives ∂u/∂x and ∂2u/∂x2 on
different sides from the characteristics x − at = −(k − 1)l and x + at = kl; i.e.,

(
∂pu

∂xp

)±

(t, x)|x=at−(k−1)l = lim
Δx>0
Δx→0

(
∂pu

∂xp

)
(t, x)|x=±Δx+at−(k−1)l,

(
∂pu

∂xp

)±

(t, x)|x=−at+kl = lim
Δx>0
Δx→0

(
∂pu

∂xp

)
(t, x)|x=±Δx+(−at+kl).

Now one can state problem (2.1)–(2.7) by using the transmission conditions (5.14) and (5.15).

Problem. Find a classical solution of Eq. (2.1) satisfying the Cauchy conditions (2.2), the
boundary condition (2.3), the integral condition (2.4), and the transmission conditions (5.14) and
(5.15), where δ(j) and σ(j), j = 1, 2, 3, are the numbers defined in relations (2.6) and (2.7).

Note that such a statement of the considered problem with transmission conditions is more
convenient for its numerical implementation.
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