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Abstract—The influence of internal dissipation on the rotational motion of the Earth in the gravitational field
of the Sun and Moon is studied within the model of M.A. Lavrentiev. The averaged equations of second
approximation describing the evolution of the Earth’s rotation axis and the magnitude of its angular velocity
are obtained. The dependence of the rate of evolution on the values of the model parameters is studied. Phase
trajectories of the evolutionary process are constructed for different parameter values. It is shown that the
observed drift of the Earth’s magnetic poles can be explained within the framework of a mechanical model
by the angular acceleration of the Earth.
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INTRODUCTION
As is known [1], for a satellite modeled by one solid

body and moving in a central gravitational field, the
only evolutionary effect is precession around the nor-
mal to the orbit plane.

Accounting for internal dissipative forces makes it
possible to reveal additional evolutionary effects, such
as a change (decrease) in the angular velocity with
time and a secular shift of the rotation axis along the
nutation angle.

The problem of the influence of internal dissipative
forces on the rotational motion of satellites in a gravi-
tational field has been considered in various formula-
tions by many authors. In most works on this topic,
one of three satellite models was used to model inter-
nal dissipation:

1) a solid body with a cavity filled with a viscous
fluid [2–4];

2) a solid body with a spherical damper (model of
M.A. Lavrentiev) [5–10]; and

3) a model of tidal friction, including a viscoelastic
body [1, 11–14].

All of the above models give, as a rule, qualitative
conclusions that agree with each other about the main
evolutionary effects in the rotational motion of the
satellite. However, the Lavrentiev model is distin-
guished by the greatest simplicity, which makes it pos-
sible to study in detail the quantitative characteristics
of the evolution of the satellite’s rotational motion in a
wide range of parameter values and initial conditions.

In this paper, within the framework of the Lavren-
tiev model, we study the evolution of the rotational
motion of the planet Earth in the gravitational field of
the Sun and Moon under the influence of internal dis-
sipative forces.

The planet Earth, as is known, has a complex
structure [15]. Its main components are a hard shell
(crust) covered with oceans, which occupies about 1%
of the volume of the Earth, a layer of viscous mantle
(about 84% of the Earth’s volume), an outer liquid
core (about 14% of the Earth’s volume), and an inner
solid core (about 1% of the Earth’s volume).

In the Lavrentiev model used below, the tidal influ-
ence of the oceans on the evolution of the Earth’s rota-
tional motion is not taken into account. The main pur-
pose of this paper is to study the influence of dissipa-
tive forces in the inner part of the planet (between the
shell, mantle, and core) on the rotational motion of
the shell.

1. EQUATIONS OF ROTATIONAL MOTION 
OF A PLANET IN THE GRAVITATIONAL 
FIELD OF TWO ATTRACTING CENTERS
In the Lavrentiev model, the planet consists of two

solid bodies: a solid shell and a homogeneous spheri-
cal core, which plays the role of a damper [5]. Within
the framework of this model, the planet is represented
by a gyrostat, i.e. its inertia tensor in the basis associ-
ated with the shell remains unchanged. Let O be the
center of mass of the planet and  be an ortho-1 2 3Oe e e
510
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Fig. 1. 

e2

e1′

′

i1

i3

n = i3

e1

e2

e3

r

� �

�

�

normal basis with the origin at point O and axes asso-
ciated with the shell. Let us denote by J the tensor of
inertia of the entire system (the shell together with the
damper) in this basis, and by I the moment of inertia
of the damper relative to its central axis.

Below, we will assume that the moment of dissipa-
tive forces depends linearly on the relative angular
velocity of the damper and is determined by the for-
mula

(1.1)
where  is the absolute angular velocity vector of the
shell,  is the vector of the absolute angular velocity of
the damper, and factor  will be called the “coefficient
of viscous friction between the shell and the damper.”

In addition, we will assume that the plane of the
Moon’s orbit coincides with the plane of the ecliptic,
and the orbits of the Earth around the Sun and the
Moon around the Earth are circular.

We choose the Koenig basis Oi1i2i3 respect to which
the rotational motion of the planet is studied so that
axis  coincides with normal  to the ecliptic plane
and axis  coincides with some fixed direction in the
ecliptic plane (Fig. 1).

The gravitational moment acting on the planet is
determined by the formula [1]

(1.2)

Here,  is the gravitational constant,  is the
mass of the Sun,  is the mass of the Moon, and 

 are vectors connecting the centers of the Sun and
the Moon with the Earth’s center of mass.

Let us denote by  the mass of the Earth, by  the
angular velocity of the orbital basis in the Sun–Earth
problem, and by  the angular velocity of the orbital
basis in the Moon–Earth problem. These angular
velocities are expressed by the formulas

(1.3)

Let us introduce dimensionless variables according
to the formulas

(1.4)

Here,  and  are unit vectors,  is the reduced
angular velocity of the shell, and  is the reduced rel-
ative angular velocity of the damper.

Let us denote by  and  the dimensionless coef-
ficient of viscous friction and the reduced gravitational
moment

(1.5)
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(1.6)

Here,  and 
As an independent variable that plays the role of

time, we choose the true anomaly in the Sun–Earth
problem  Then the dynamic equations of the
rotational motion of the planet can be written in the
following form [8]:

(1.7)

Here,  is the identity matrix and the dot denotes
dimensionless time derivative  In the written
equations, all vectors are given by their components in
the basis  associated with the shell.

We note that Eqs. (1.7) differ from the equations
obtained in [8] only by the expression for reduced
gravitational moment  (1.6). In publication [8], the
motion of a planet in the field of one attracting center
was considered and moment  was expressed by only
one (first) term from expression (1.6).

Equations (1.7) are supplemented to a closed sys-
tem by kinematic equations for the rotational motion
of the planet’s shell. For the purposes of numerical
integration of these equations, it is advisable to use the
Poisson equations in quaternions:

(1.8)

Here,  is a quaternion of the unit norm, which
specifies the position of the basis of the main axes of
inertia of the planet  associated with the shell
relative to the Koenig basis  For the analytical
study of the rotational motion of the planet, we will
use kinematic equations in Euler angles   and 
(Fig. 1).

Considering further the case of a dynamically sym-
metric planet oblate along the axis of symmetry

, we introduce the following parameters
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characterizing the geometry of the masses of the
planet:

(1.9)

Considering that the vectors  and  are given in
the Koenig basis by the formulas

and, projecting Eqs. (1.7) onto the axes of the Resal
basis   (  is the axis of symmetry of the planet),
given by angles  and  (Fig. 1), we obtain the follow-
ing closed system of eight equations [8]:

(1.10)

Here, functions  and  are defined by the formulas

(1.11)

Equations (1.10) differ from the equations in [8]
only in those additional terms on the right-hand sides
that contain factor .

2. EVOLUTIONARY EQUATIONS
In the problem of the evolution of the planet’s rota-

tional motion, the main interest is the behavior of the
planet’s rotation axis and the value of its angular velocity.
For an oblate planet in the steady state of slow evolution,
the motion is close to rotation around the axis of sym-
metry. Therefore, the analysis of evolution reduces to the
study of the behavior of phase variables   and .

Evolutionary equations for a dynamically symmet-
ric planet with a spherical damper, close to spherically
symmetric (  is a small parameter), moving in
the gravitational field of one attracting center, were
obtained earlier in [8]. When deriving these equations,
the averaging method [16, 17] was used, but without
reducing the system to the standard form.

The method described in [8] is also applicable to
the problem of the motion of a planet in the field of
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two attracting centers. In the problem under consider-
ation, to obtain averaged equations, the following
change of variables is used

(2.1)

where Uk and  are the evolutionary components
and  are oscillatory components, which are defined
as solutions of the system of equations

(2.2)

Here and below, we use the notation

(2.3)

Solutions to system (2.2) are written as harmonic
functions of the form

where coefficients    and  are bounded
functions of small parameter  and depend only on
variables  and 

The change of variables (2.1) leads to the fact that
in the equations for evolutionary components Uk and

, the dependence on the time  “goes” into terms of
the second order and higher in . After substituting
this replacement into equations (1.10), we obtain, after
averaging over , the following system of averaged
equations of the second approximation:

(2.4)

+= + = + =2, , 1,2,k k k k k ku U S w W S k

kW
jS

∂ = − + ε + μγ + τ − ψ
 ∂τ
+ α βτ − ψ

∂ = + ε + μγ + τ − ψ ∂τ
+ α βτ − ψ
∂ = ε − − τ − ψ

∂τ
− α βτ − ψ
∂ = −ε − − τ − ψ

∂τ
− α βτ − ψ

1
2 3 1

1

2
1 4 2

2

3
2 3 1

1

4
1 4 2

2

(1 ) cos2( )

cos2( ),

(1 ) sin2( )

sin2( ),

cos2( )

cos2( ),

sin2( )

sin2( ).

S US S F

F
S US S F

F
S US mS F

F
S US mS F

F

= μ + γ = 3(1 ), .m U U

= τ − ψ + τ − ψ
+ βτ − ψ + βτ − ψ

1 1

2 2

sin2( ) cos2( )
sin2( ) cos2( ),

k k k

k k

S p q
p q

1 ,kp 1 ,kq 2 ,kp 2kq
ε

U θ.

kW τ
ε

τ

= − + ε + θ + μγ
− + α + ε

= ε + θ − −
+ + α + ε

= + ε − θ + μγ + ε
= −ε + − − θ

μ− + α + ε
θ

= −μ + γ + ε + ε + −
− μ

�

�

�

�

�

2
1 2 2 1

2
1

1 2 2 2 2 3 1
2

1
3

2 1 2 1 2

2 1 1 3 2 2 1
2

2 32
1 2

3 3 2 1 1 2

(1 ) cot

(1 ) ( ),
cot

(1 ) ( ),

(1 ) cot ( ),
cot

( ) ( ),
sin

(1 ) (1 )

U UU U W

F O
W UU U W U W mW

F O

U UU U U W O
W UU U W mW U W

F G G O

W W U W U W

F ( )

















+ α + ε
2 2 3

2 1 2 ( ).H H O
COSMIC RESEARCH  Vol. 61  No. 6  2023



EVOLUTION OF ROTATIONAL MOTION OF THE PLANET EARTH 513
(2.5)

In Eqs. (2.4), we have used the notation

(2.6)

(2.7)

Equations (2.4) and (2.5) differ from the averaged
equations in [8] only in those additional terms on the
right-hand sides that contain factor . When deriving
these equations, it was assumed that the values of
parameter  are bounded by the inequality

System (2.4) has stationary solutions that are
asymptotically stable in variables     and

 for fixed  and . These solutions are determined
from the conditions that the right-hand sides of
Eqs. (2.4) are equal to zero and are expressed by the
following formulas:
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steady-state mode of slow evolution, variables  
  and  are “fast” in comparison with variables

 , and  (due to the second of formulas (2.8), the
right-hand side of the equation  will be a
bounded by the function , and, due to formulas (2.9)
and (2.11), the right-hand sides of the first two equa-
tions (2.5) will be bounded by functions ). There-
fore, according to Tikhonov’s theorem, the system of
differential equations (2.4) can be replaced by system
of algebraic equations (2.8)–(2.11) and solved jointly
with differential equations (2.5).

Substituting solutions (2.8), (2.9), and (2.11) into
Eqs. (2.5), we obtain the following equations describ-
ing the evolution of variables , , and :

(2.12)
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It should be noted that, if Eqs. (1.10) are immediately
averaged over time  without using substitution (2.1),
then, from these averaged equations of the first
approximation, it would be impossible to obtain ade-
quate expressions for solutions (2.9)–(2.11) and the
right-hand sides of Eqs. (2.13) and (2.14) up to the
accuracy of  These averaged equations of the
first approximation would describe the motions of the
original system (1.10) only up to the accuracy of .

Equations (2.13) and (2.14) form a closed system of
evolution equations with respect to variables  and 
From these equations, one can eliminate the time and
the problem of determining the phase trajectories of
the system and reduce to the integration of a single
equation:
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It follows from Eqs. (2.13), (2.14) and formulas (1.11)
that the rate of evolution with respect to variables 
and  is proportional to  and inversely proportional
to  Since the rate of numerical integration of differ-
ential equations is proportional to the rate of evolu-
tion, then, at , to construct phase trajecto-
ries with acceptable accuracy over large time intervals,
an unacceptably long running time of the program for
numerical integration of exact equations (1.10) may be
required. As for Eq. (2.15), its numerical integration
does not cause the above difficulties, and the required
program running time for calculating phase trajectories
with acceptable accuracy turns out to be many orders of
magnitude less than when integrating Eqs. (1.10).

In [8], the adequacy of the evolution equations was
confirmed by the results of numerical integration of
the exact equations. It was found that. in the problem
of the motion of a planet in the field of one attracting
center for the values of the parameters 

 and under the initial conditions , the
phase trajectories of the exact and evolutionary equa-
tions are practically indistinguishable throughout the
entire process of the planet’s evolution.

In the considered problem for the planet Earth,
where  and  to obtain one complete
evolutionary trajectory using exact equations (1.10), an
unacceptably long running time of the numerical inte-
gration program will be required (thousands of times
longer than for the initial conditions ).
Therefore, Eqs. (2.13)–(2.15) are the only effective
means of studying the evolution of the rotational
motion of the Earth over large time intervals (millions
and billions of years).

Below, the adequacy of evolution equations (2.13),
(2.14) will be confirmed by the results of numerical
integration of exact equations (1.10) over relatively
short time intervals (several thousands of years).

Hereinafter, to write Eqs. (2.12)–(2.14) and subse-
quent equations, the following parameters will be used
instead of parameters (1.9):

(2.16)

Here,  is the coefficient of the Earth’s
dynamic compression.

The relationship between parameters (1.9) and (2.16)
is expressed by the formulas
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ditions:
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At the same time, since all these variables are
“slow,” in the first approximation, to calculate their
changes over time intervals up to 104 years, values 
and  in the right parts of Eqs. (2.12)–(2.14) can be
considered unchanged, coinciding with initial values

 and 

For the angular velocity of precession, on the basis
of Eqs. (2.12) and formulas (1.11) and (2.17), we obtain
the following expression, up to the accuracy of :

(2.19)

Since  is the time derivative  where  is
the angular velocity of the orbital basis in the Earth–
Sun problem, then, according to formula (2.19), the
change in the precession angle for 1 Earth year is

 i.e. about 1.4° per century.
The value inverse to expression (2.19) is the period of
precession of the Earth’s axis expressed in years and is
about 25600 years.

Thus, the planet’s precession rate determined by
formula (2.19) is proportional to small parameter 
and, up to the accuracy of , does not depend on
the action of internal dissipative forces.

The equations for the magnitude of the Earth’s
angular velocity and the nutation angle based on
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(2.23)

Eliminating the time from Eqs. (2.20), (2.21), we
obtain one Eq. (2.15), which is rewritten in terms of
parameters  and  in the following form:

(2.24)

It follows from Eqs. (2.20) and (2.21) that the rate of
evolution with respect to variables  and  is propor-
tional to  i.e., much less than precession rate (2.19).

The rate of evolution depends in a complex way on
parameters  and  the values of which are unknown.
Taking into account that, in the considered problem,

, to estimate the magnitude of this velocity,
instead of Eqs. (2.20), (2.21), we can use the approxi-
mate equations

(2.25)

(2.26)

It follows from Eq. (2.26) that, for the above values
α and β and initial conditions (2.18) the angle between
the Earth’s axis of rotation and the normal to the
ecliptic plane decreases for any values of parameters 
and  from the region

(2.27)

Moreover, in region (2.27), the maximum possible
change in angle  in 1 year is limited by the inequality

(2.28)

that is, it is no more than 1.3 arcsec per century.
Based on Eq. (2.25), the change in the Earth’s angu-

lar velocity over time is estimated within the framework
of the model under consideration. Let us denote by 
the change in the value  over 1 year. Taking into
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account that this change is determined by the formula
 we obtain that, in the region (2.27),

(2.29)

The change in length of the day  for 1 year is
determined by the formula

(2.30)

where  is the current duration of the day. From for-
mulas (2.25), (2.29), and (2.30), it follows that, in the
range of values of parameters (2.27), the maximum
possible increase in duration of a day  cannot
exceed 0.37 s per century.

Below are two tables that indicate the increments of
the duration of the day in milliseconds per century cal-
culated on the basis of Eq. (2.20) and formula (2.30)
(Table 1) and the increments of the nutation angle cal-
culated on the basis of Eq. (2.21) in arc milliseconds
per century (Table 2) depending on the values of
parameters  and 

If we proceed from the fact that, at present, the
lengthening of the day is estimated at 2 ms per century,
i.e.,  then, according to Table 1, in the
region  and  where
the evolution equations used are applicable, there are
many values  and  for which Eq. (2.20) gives the
observed value. According to Table 1, the relationship
between  and  on this set is close to linear and is
approximated by the formula  In turn,
according to the data in Table 2, increments of the
nutation angle at different points of this set do not dif-
fer significantly from each other and do not exceed
12.5 marcsec per century.

Note that, for , value  is deter-
mined by the formula

(2.31)

To check the adequacy of evolution equations (2.20),
(2.21), we compared the data obtained from these
equations in Tables 1 and 2 with the results of numer-
ical integration of exact equations (1.10).

In Figs. 2–4, we present plots of changes in the
length of the day and the angle of nutation as a func-
tion of time obtained by numerical integration of exact
equations (1.10) for the following three combinations
of parameter values:
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Table 1. Day-length increment (in milliseconds per century)

Parameters

13.3 2.25 0.99 0.64 0.48 0.39 0.32
26.7 4.51 2.00* 1.31 0.97 0.78 0.65
40.0 6.78 3.02 1.97 1.47 1.18 0.98
53.4 9.09 4.07 2.65 1.98 1.58 1.33
66.7* 11.4 5.14 3.35 2.50 2.01* 1.69
80.1 13.9 6.24 4.07 3.05 2.46 2.07
93.6 16.5 7.39 4.84 3.65 2.97 2.53

μ = 0.1 μ = 0.6 μ = 1.4 μ = 2.2 μ = 3.0 μ = 3.8 μ = 4.6

λ = 0.1
λ = 0.2
λ = 0.3
λ = 0.4
λ = 0.5

λ = 0.6
λ = 0.7

Table 2. Increment of nutation angle (in arc milliseconds per century)

Parameters

–76.2 –12.5 –5.17 –3.18 –2.27 –1.76 –1.43
–152 –25.0 –10.2* –6.30 –4.51 –3.49 –2.84
–228 –37.3 –15.2 –9.35 –6.69 –5.18 –4.20
–304 –49.4 –20.0 –12.3 –8.81 –6.89 –5.50
–380* –61.3 –24.7 –15.2 –10.8 –8.33* –6.69
–456 –72.5 –29.1 –17.9 –12.7 –9.67 –7.69
–532 –82.9 –33.2 –20.2 –14.2 –10.6 –8.26

μ = 0.1 μ = 0.6 μ = 1.4 μ = 2.2 μ = 3.0 μ = 3.8 μ = 4.6

λ = 0.1
λ = 0.2
λ = 0.3
λ = 0.4
λ = 0.5

λ = 0.6
λ = 0.7
(2.32)

In these plots,  denotes the number of years; 
indicates the increment of the duration of the day, ms;
and  denotes the increment of the nutation angle,
marcsec.

As can be seen from the presented plots, there is an
oscillatory component of large amplitude in the
behavior of the nutation angle. Therefore, in order to
identify with acceptable accuracy the evolutionary
component in the behavior of the nutation angle, the
numerical integration of equations (1.10) was carried
out over a time interval of 1000 years (Figs. 2, 3) and
2000 years (Fig. 4). In the latter case, the evolutionary
component in the change in the nutation angle was
only about 0.17 arcsec for 2000 years and the running
time of the program for the numerical integration of
equations (1.10) was about 1 h. This example shows
that exact equations (1.10) are unsuitable for analyzing
the evolution of a system over long time intervals (mil-
lions or billions of years), since their numerical inte-
gration requires an unacceptably large amount of time.

Comparison of the results of numerical integration
of exact equations (1.10) presented in Figs. 2–4 and
those given in Tables 1 and 2 of the results of calcula-
tions based on evolution equations (2.20) and (2.21)
for the values of the parameters (2.32) shows (the cells

μ = λ =
μ = λ =
μ = λ =

Fig 0.1, 0.5;
Fig 1.

.1:

.2:

.3:
4, 0.2;

Fig 3.8, 0.5.

N ΔT

Δθ
of the tables corresponding to the values of the param-
eters (2.32) are marked with *) that Eqs. (2.20), (2.21)
are adequate and describe the evolution of system
(1.10) with high accuracy. This circumstance gives
grounds for using Eqs. (2.20), (2.21), and (2.24) in
the analysis of the evolution of a system over large
time intervals, where the use of exact equations is
problematic.

In Fig. 5, we present the phase trajectories of the
evolutionary process in the rotational motion of the
Earth calculated on the basis of Eq. (2.24). Here,
angular velocity  was expressed as the number of rev-
olutions of the Earth around its axis in 1 year and 
and  denote the projections of this angular velocity
onto the orbital plane and onto the normal to the
orbital plane, respectively.

In the left part of the figure,  and different
phase trajectories correspond to different values of
parameter , from  (upper curve) to 10.1 (lower
curve). In the right part of the figure , and differ-
ent trajectories correspond to different values of
parameter , from  (upper curve) to 
(lower curve).

As can be seen from the presented plots, on each
trajectory, the angular velocity of the Earth and the
nutation angle decrease monotonically, and the end of
the evolutionary process in each case is rotation
around the normal to the orbital plane with a constant
angular velocity.

U
xU

zU

λ = 0.5

μ μ = 0.1
μ = 2

λ λ = 0.1 λ = 0.9
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Fig. 2. 
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Fig. 5. 
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3. ON THE DRIFT OF THE EARTH’S 
MAGNETIC POLES

According to observational data [19], the Earth’s
north magnetic pole is at an angle of about 10° to the
Earth’s rotation axis and drifts westward at a speed of
almost 50 km per year.

Let us show that the observed drift of the magnetic
poles can be explained within the framework of the
mechanical model by the angular acceleration of the
Earth. Without delving into the physics of the mag-
netic-field generation process in detail, we will pro-
ceed from the assumption that the direction of the
magnetic field is determined by the orientation of the
magnetic dipole associated with the inner solid core of
the Earth. In this formulation, the drift of the magnetic
poles can be explained by the rotations of the Earth’s
inner core relative to its shell (crust).

To solve the problem, the planet Earth will be
modeled by a system of three bodies: a shell, a damper,
and a core. By designate as the “shell” the Earth’s
crust and the part of the viscous mantle layer adjacent
to it, the rest of the viscous mantle layer and the outer
liquid as the “damper,” and the spherical homoge-
neous internal solid core of the Earth as the “core.”
Within the framework of such a model, the inner solid
core, due to the relative smallness of its moment of
inertia (according to rough estimates, the ratio of the
moment of inertia of the inner solid core to the
moment of inertia of the entire Earth is no more than
5 × 10–3) will not have a significant effect on the
motion of the shell and damper. Therefore, to describe
the rotational motion of the shell and damper, we will
use averaged equations (2.19)–(2.21) obtained in the
previous section in the framework of the “shell–
damper” problem, and we will determine its angular
displacement relative to the shell from the equations of
rotational motion of the internal solid core.
Let us denote by  the vector of the
dimensionless angular velocity of the core relative to
the shell. Here, as before,  is the absolute angular
velocity of the shell,  is the absolute angular velocity
of the nucleus, and  is the angular velocity of the
orbital basis in the Sun–Earth problem. Using, as
before, dimensionless time  we obtain the fol-
lowing equations for the rotational motion of the core
relative to the shell, written in projections on the axes
of the Resal basis :

(3.1)

Here,  is the dimensionless angular
velocity of the shell,

(3.2)
is the dimensionless angular velocity of the Resal
basis,  is the dimensionless relative angular velocity
of the damper, and  is the dimensionless
coefficient of viscous friction between the damper and
the inner core. In the written equations, the behavior
of variables  , and  will be described by solu-
tions of evolution equations (2.19)–(2.21).

Further, we will proceed from the assumption that
 where  is the dimensionless coefficient of

viscous friction between the shell and the damper.
Under these conditions, in the steady state of slow
evolution, we will have  and Eqs. (3.1) can be
replaced by the equations

(3.3)
The angular velocity of the shell in projections on

the axis of the Resal basis is expressed by the formula

(3.4)
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where   and  are expressed by formulas
(2.19) and (2.21). The main terms in the expression for
the angular acceleration of the shell are written as

(3.5)

where  is expressed by formula (2.31).
As a result, from vector equation (3.3), taking into

account formulas (3.2), (3.4), and (3.5), we obtain the
following system of equations in projections on the
axes :

(3.6)

System (3.6) admits a stationary solution, which
corresponds to the steady rotation of the nucleus. This
solution is determined by the condition that the right-
hand sides of Eqs. (3.6) are equal to zero and is
expressed by the following formulas:

(3.7)

(3.8)

(3.9)

Given that   and assuming that
 we obtain

(3.10)

Thus, in the steady state, the vector of the relative
angular velocity of the nucleus is approximately
expressed by the formula
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nucleus relative to the shell is a regular precession. It
can be represented as a combination of two rotations:

(3.12)

where the first is the rotation of the Resal basis around
axis  with angular velocity  (precession)
and the second is the proper rotation relative to the
Resal basis with angular velocity  In this case, the
value of the angular velocity of the intrinsic rotation is
expressed by the formula

(3.13)
and the axis of proper rotation is determined by the
unit vector

(3.14)

Let us pass to new dimensionless time  and
introduce the notation

(3.15)

Then. for the precessional rotation of the nucleus
described by formulas (3.11)–(3.14), the quaternion of
the final rotation is expressed as the product

 where

(3.16)

Computing this product, we obtain

(3.17)

It follows that, during time  which
corresponds to one revolution of the planet around its
axis, the quaternion of the final rotation of the nucleus
is expressed by the formula
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This means that, in 1 day, the core will rotate
around axis  by angle  and, in 1 year, the angle
of rotation of the core around axis  will be

(3.19)

For the observed displacement of the Earth’s north
magnetic pole, the angle of rotation of the core around
axis  in one year should be  Substituting
this value into formula (3.19), as well as the previously
calculated values  (2.19),  (2.31),  and

 we obtain the following equation:

(3.20)

The solution of this equation,

(3.21)

determines the value of the coefficient of viscous fric-
tion, at which, within the framework of the model
under consideration, the rotational motion of the
inner core relative to the shell is realized, which ade-
quately explains the observed drift of the Earth’s mag-
netic poles. The low value of the coefficient (3.21) can
be explained by the high temperature of the Earth’s
inner solid core, as a result of which the layer of the
outer liquid core adjacent to it can have the property of
superfluidity.

Note that the value of the coefficient (3.21) satis-
fies the previously accepted assumptions  and

Within the framework of the considered model, the
drift of the magnetic poles is explained only by the
presence of the angular acceleration of the Earth,
which is due to the precession around the normal to
the plane of the orbit and the change in the value of the
angular velocity.

CONCLUSIONS
In the framework of the Lavrentiev model, a study

was carried out of the influence of internal dissipative
forces on the evolution of the rotational motion of the
Earth in the gravitational field of the Sun and Moon.
Evolutionary equations are obtained that describe the
behavior of the Earth’s rotation axis and the value of
its angular velocity. The dependences of the evolution
rate for different variables on the values of the model
parameters are determined. It is shown that the
observed change in the length of the day can be

3e π2 ,h
3e
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explained in terms of the Lavrentiev model. Phase tra-
jectories are constructed that describe the evolution of
the rotational motion of the Earth from the current
state to the final point, at which the Earth will rotate
around the normal to the orbital plane with a constant
angular velocity.

It is shown that the observed drift of the Earth’s
magnetic poles can be explained within the framework
of a mechanical model by the angular acceleration of
the Earth.
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