
ISSN 0010-9525, Cosmic Research, 2021, Vol. 59, No. 5, pp. 401–413. © Pleiades Publishing, Ltd., 2021.
Optimization of Perturbed Spacecraft Trajectories Using Complex 
Dual Numbers. Part 1: Theory and Method

V. G. Petukhova, * and Sung Wook Yoonb, **
a Research Institute of Applied Mechanics and Electrodynamics, Moscow Aviation Institute, Moscow, Russia

b Moscow Aviation Institute, Moscow, Russia
*e-mail: vgpetukhov@gmail.com
**e-mail: wook4573@naver.com

Received December 15, 2020; revised January 18, 2021; accepted January 22, 2021

Abstract—The problem of optimization of perturbed trajectories of spacecraft with finite thrust is considered.
The problem is solved using an indirect approach based on the application of the necessary optimality con-
ditions in the form of the maximum principle, the continuation method, and complex dual numbers for high-
precision calculation of the necessary derivatives of complicated real functions of state variables. The goal of
optimization is to calculate trajectories with minimal fuel consumption at a fixed angular distance and free
transfer duration. A mathematical model of the spacecraft motion in equinoctial elements with an angular
independent variable is used. A mathematical model of the motion, the derivation of the necessary optimality
conditions, and a description of the method for solving the problem are given.
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INTRODUCTION
External perturbing accelerations can have a deci-

sive effect on the orbital motion of a spacecraft. Orbits
of great applied importance such as sun-synchronous
orbits and Molniya-type orbits exist only due to pertur-
bations from non-spherical Earth’s gravitational
potential. The gravity of distant celestial bodies deter-
mines the existence of points of relative equilibrium—
libration points—and allows the spacecraft’s motion
around these points, for example, along halo orbits or
Lissajous orbits. The perturbing acceleration from the
Sun’s gravity makes it possible to implement weak sta-
bility boundary trajectories to the Moon (WSB trajec-
tories), which can reduce the required operating fuel
costs. Organization of the spacecraft motion along
manifolds to quasi-periodic orbits around libration
points L1 and L2 (the existence and characteristics of
which depend on perturbing accelerations from the
gravity of distant celestial bodies) makes it possible to
reduce the required costs of the characteristic velocity
in interplanetary f lights. However, in most cases, per-
turbing accelerations are a factor that significantly
complicates calculations of spacecraft trajectories,
especially low-thrust trajectories.

Currently, transport operations in space are often
implemented using electric propulsion systems (EPSs)
with a high specific impulse of thrust, which signifi-
cantly reduce the required fuel costs. The main feature
of spacecraft f lights with an EPS is low thrust. The
level of thrust acceleration provided by an EPS in

modern spacecraft usually does not exceed tenths of a
mm/s2. The perturbing accelerations on the orbit
transfers can often be comparable in magnitude with
the thrust acceleration or even exceed it significantly.
Perturbations from the second zonal harmonic of the
geopotential in low orbits have a value of approxi-
mately 1 cm/s2, which is more than an order of magni-
tude higher than a typical thrust acceleration of a
spacecraft with an EPS. The main perturbing acceler-
ations for near-Earth spacecraft include accelerations
from the non-spherical Earth’s gravitational field,
perturbing accelerations from the gravity of the Moon
and the Sun, aerodynamic acceleration, and accelera-
tion from the solar radiation pressure. Of course, pre-
vailing types of perturbing accelerations will vary for
different spacecraft configurations and regions of the
near-Earth space, and their influence on the trajec-
tory and the EPS thrust vector control program can be
very complex.

Traditionally, the study of low-thrust spacecraft
trajectories begins with the consideration of spacecraft
motion in the central Newtonian gravitational field. In
most cases, further analysis requires an assessment of
the influence of perturbing accelerations on the trajec-
tory and control program, and it is necessary to take
into account the main perturbations in the preparation
of a f light program. In the simplest cases, for example,
during a multi-revolution transfer between intermedi-
ate circular orbits of the same inclination with a spec-
ified control program (for example, with a circumfer-
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ential thrust of constant magnitude) taking into
account the main perturbing accelerations can be
reduced to estimating the secular drift in the right
ascension of the ascending node and short-term per-
turbations in all orbital elements. In this case, the pre-
cession of the right ascension of the ascending node
can be compensated by appropriately choosing the
right ascension of the ascending node of the initial
orbit; if the amplitudes of the short-term oscillations
of the orbital elements are within the given tolerance,
the task of designing a perturbed transfer trajectory
can be considered complete.

In more complex problems, especially in the case of
trajectory optimization, in order to estimate the influ-
ence of perturbing accelerations on the optimal trajec-
tory and optimal control program, it is necessary to take
into account the perturbing accelerations in the process
of trajectory optimization. Various approaches based
on direct or indirect methods are used to optimize low-
thrust trajectories.

Direct optimization methods, in a typical version,
are reduced to some parameterization and/or discreti-
zation of control and further representation of the
problem of minimizing a given cost function (for
example, the transfer duration or fuel mass) in the form
of a high-dimensional nonlinear programming prob-
lem. The advantage of the direct approach is the rela-
tive simplicity of taking into account the perturbing
accelerations; however, the drawback is the high com-
putational complexity (computation time) and the
uncertainty of the criterion for the end of the optimiza-
tion process, which can lead to calculation of solutions
that differ significantly from the optimal ones.

Indirect methods are based on the use of necessary
and/or sufficient optimality conditions. The most
common option is to use the necessary optimality
conditions in the form of the maximum principle. The
main advantages of indirect methods are their rela-
tively high performance (a significant reduction in the
computation time as compared to direct methods) and
high accuracy. However, to optimize the perturbed
trajectories using the maximum principle, the calcula-
tion of the right-hand sides of differential equations
for costate variables requires an accurate calculation of
the derivatives of perturbing accelerations in state
coordinates.

If the mathematical model of the perturbing accel-
erations is simple (for example, only the zonal har-
monics of the geopotential and/or the aerodynamic
drag with a static model of the upper atmosphere are
taken into account), a reasonably complicated analyt-
ical representation of the right-hand sides of the dif-
ferential equations for costate variables is possible. In
the case of complicated mathematical models for
high-precision calculation of perturbing accelerations,
it is practically not possible to represent their deriva-
tives in closed form. In this case, one can use high-
precision numerical differentiation by the complex
step method [1] or automatic differentiation using the
algebra of dual numbers [2, 3]. The use of the complex
step differentiation or automatic differentiation using
the algebra of dual numbers significantly simplifies
the development of a mathematical model of space-
craft motion for its application in the problem of tra-
jectory optimization, since in this case it is only neces-
sary to calculate the perturbing accelerations in the
complex or dual domain. If the programming involves
the technique of operator overloading and the correct
redefinition of built-in functions in the complex or
dual domain (i.e., if specially developed classes or
modules for calculations in the complex or dual
domain are used), the problem of implementing com-
putations of perturbing accelerations and their deriva-
tives according to the known algorithm for calculating
these accelerations in the real domain is reduced to a
simple redefinition of real state variables to complex or
dual state variables in the program code. With regard
to the optimization of low-thrust spacecraft trajecto-
ries, this technique has been used for a long period of
time and it has already proved itself well [1–3].

However, there is another problem that signifi-
cantly limits the stability and convergence rate of opti-
mization of low-thrust trajectories with the considered
approach. The maximum principle reduces the opti-
mal control problem to a boundary-value problem for
a system of ordinary differential equations for state and
costate variables. To solve this boundary-value prob-
lem, it is necessary to find the values of the unknown
parameters (in the simplest case, the initial values of
the costate variables) at which the given boundary
conditions and transversality conditions are satisfied
(i.e., at which the vector of residuals of the boundary-
value problem becomes zero). Formally, it is required
to solve a system of nonlinear equations for the resid-
uals with respect to the vector of unknown parameters
of the boundary-value problem. It is possible to use
various methods for this purpose, for example, various
modifications of Newton’s method or gradient meth-
ods. In the 1990s, one of the authors of this study pro-
posed [4] to solve the maximum principle boundary-
value problem in the problems of optimization of low-
thrust trajectories using the continuation method in
the form presented in [5, 6]; it was proposed for solv-
ing systems of nonlinear equations and by that time
had already been successfully applied for solving some
other boundary-value problems [7, 8]. After some
time, the continuation method, due to its computa-
tional stability and speed, began to be applied in prob-
lems of optimization of low-thrust spacecraft trajecto-
ries by many other authors [9–11].

The continuation method formally reduces the
problem of solving a system of nonlinear equations to
the integration of embedded systems of ordinary dif-
ferential equations; the right-hand sides of the system
of differential equations in the continuation method
include the partial derivatives of the residuals of the
maximum principle boundary-value problem with
COSMIC RESEARCH  Vol. 59  No. 5  2021
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respect to its unknown parameters. The numerical
integration of the system of differential equations of
the continuation method requires an exact calculation
of these derivatives, which can be easily realized in the
case of an unperturbed problem with the aid of the
same complex step differentiation or automatic differ-
entiation using the algebra of dual numbers [1–3].
However, the use of these methods is much less effec-
tive in the optimization of perturbed trajectories, since
these methods allow high-accuracy calculation of the
first derivatives only, which has already been used
when calculating the derivatives of perturbing acceler-
ations with respect to state coordinates necessary for
calculating the residuals of the boundary-value prob-
lem. Under these conditions, the derivatives of the
residuals of the boundary-value problem with respect
to its unknown parameters were calculated using a less
accurate finite difference method, which reduced the
computational stability and accuracy of the approach.

To construct effective methods for optimizing per-
turbed low-thrust trajectories based on the maximum
principle and the continuation method, it is necessary
to use a method that provides a high-precision calcu-
lation of second-order mixed derivatives. A number of
authors proposed to use multicomplex or hyperdual
numbers for high-precision calculation of the second
derivatives [12, 13]. However, this leads to an overly
large increase in computational costs due to the need
to calculate “extra” second derivatives that are not
used in the process of solving the problem. To over-
come this circumstance, we propose to use a different
mathematical object, complex dual numbers, or dual
numbers with complex coefficients [14, 15]. To lower
computational costs, complex dual numbers with a
vector dual part are used, which make it possible to
reduce the number of repeated computations of func-
tions and their first derivatives in comparison with
complex dual numbers with a scalar dual part or mul-
ticomplex and hyperdual numbers.

This paper presents a method for optimizing multi-
revolution trajectories of the orbit transfers of a space-
craft with an EPS using the algebra of complex dual
numbers; the method is based on the application of
the maximum principle and the continuation method.
The developed method sequentially solves the prob-
lems of optimizing the unperturbed trajectory of a
spacecraft with an ideally controlled engine, so called
power limited problem, using a continuation from
Keplerian motion and optimizing a perturbed trajec-
tory of a spacecraft with an EPS having bounded
thrust magnitude and constant exhaust velocity using
a continuation from the unperturbed optimal trajec-
tory of a spacecraft with an ideally controlled engine.

The paper has the following structure. Section 1
presents the mathematical model of motion. In Sec-
tion 2, an optimal control problem is formulated, to
which the considered trajectory optimization problem
is reduced. Using the maximum principle, this prob-
COSMIC RESEARCH  Vol. 59  No. 5  2021
lem is reduced to a boundary-value problem for a sys-
tem of ordinary differential equations. Section 3
describes a method for solving this boundary-value
problem; in the Conclusion, the main theoretical
results and features of the proposed method for opti-
mizing perturbed finite-thrust trajectories are pre-
sented. Numerical examples of the trajectory optimi-
zation are given in the second part of the article.

1. MATHEMATICAL MODEL OF MOTION
Let us consider a mathematical model for applica-

tion in the method of optimization of a multi-revolu-
tion finite-thrust trajectory taking into account the
influence of perturbing accelerations. The use of Car-
tesian coordinates for optimization of multi-revolu-
tion low-thrust trajectories is not really practical, since
the coordinates and velocity components of the space-
craft are short-period alternating functions, which
leads to the need to reduce the numerical integration
step and, therefore, to an increase in the computa-
tional complexity and growth of the global integration
error at large time intervals. The use of orbital ele-
ments can significantly increase the speed and accu-
racy of numerical integration. We use modified equi-
noctial orbital elements [16], which have no singulari-
ties (in contrast to classical Keplerian elements) in the
vicinity of circular and equatorial orbits. The advan-
tages of using the angular independent variable for the
mathematical model of spacecraft motion applied to
the optimization of multi-revolution trajectories
were shown in [17]. Thus, we will write the equations
of the perturbed controlled spacecraft motion in
modified equinoctial orbital elements using auxiliary
anomaly K [17] as an independent variable:
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LK = L – K is the deviation of true longitude
 from auxiliary longitude K,
, , 

, , ar =

, , μ is the

gravitational parameter of the central celestial body; δ
is the throttling function of thrust (δ = 1 with the pro-
pulsion system turned on, and δ = 0 with the propul-
sion system turned off); T is the propulsion system
thrust; c is the exhaust velocity; m is the spacecraft
mass; ϑ is pitch; ψ is yaw; apt, apr, and apn are the com-
ponents of the perturbing acceleration; e is the eccen-
tricity; ω is the argument of perigee; i is the inclina-
tion; Ω is the right ascension of the ascending node;
and ν is the true anomaly. In the right-hand parts of
system (1), the true longitude should be represented as
L = K + LK.

Hereafter, we restrict ourselves to considering the
problem of a transfer between given orbits with a fixed
angular distance in true longitude ΔL = Lf – L0 (where
L0 and Lf are the initial and final values of the true lon-
gitude, respectively) and free transfer duration. In this
case, without loss of generality, the initial conditions
of motion for a fixed value of the initial auxiliary lon-
gitude K0 are set as

(2)

and the final conditions for the free final value of aux-
iliary longitude Kf = K0 + ΔK are set as

(3)

It should be noted that the initial value of true lon-
gitude K0 without loss of generality can be chosen
equal to 0, while the initial value of true longitude L0,
depending on the formulation of the problem, can be
fixed or free.

2. OPTIMAL CONTROL PROBLEM
Let us consider the problem of optimizing an orbit

transfer, i.e., the problem of optimal control of a
dynamic system described by differential equations (1)
in order to transfer it from state (2) to state (3) with
minimum fuel consumption mp = m(K0) – m(Kf).
Obviously, to solve this problem, we need to find func-
tions (programs) δ(K), ϑ(K), and ψ(K) that minimize
the cost function
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The Pontryagin function of the optimal control
problem has the following form:

(5)
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we consider the Lagrange endpoint function in the
following form [21, 30]:

where  are the Lagrange multipli-
ers, x = (p, ex, ey, ix, iy)T is the part of the vector of
modified equinoctial orbital spacecraft elements,
x0 = (p0, ex0, ey0, ix0, iy0)T and xf = (pf, exf, eyf, ixf, iyf)T

are the modified equinoctial elements of the initial
and final orbits, respectively. The transversality con-
ditions for this Lagrange endpoint function take the
following form:

where px = (pp, pex, pey, pix, piy)T.
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and to solve the boundary-value problem of the maxi-
mum principle (8)–(10), it is required to calculate
eight components of vector px1(0) and final auxiliary
longitude Kf at which the last equation in (9) and eight
scalar equations (10) are satisfied. Due to the depen-
dence of the Hamiltonian on pLK, the last equation in (9)
is reduced to a quadratic equation with respect to pLK(0).
This quadratic equation can be solved for given initial
conditions and the current value of other elements of
px1(0), after which pLK(0), together with the last equa-
tion of (9), can be excluded from the boundary-value
problem, reducing its order to 8. It should be noted
that only one of the two solutions of the quadratic
equation for pLK(0) is a solution to this boundary-value
problem.

The main advantage of the considered formulation
of the trajectory optimization problem with a fixed
angular distance and free transfer duration is that for
same-type families of trajectories, judging by the
numerical analysis carried out earlier (e.g., in [17, 18]),
there is only one solution that satisfies the necessary
conditions of optimality. If a more traditional formu-
lation is used—trajectory optimization with a fixed
transfer duration and free angular distance—there are
many optimal solutions with different numbers of
orbits [10, 19, 20], which limits the convergence of
numerical methods and complicates the calculation of
globally optimal solutions.

It should be noted that, when optimizing unper-
turbed trajectories or in the case in which the perturbing
accelerations do not explicitly depend on time, the dif-
ferential equation for time can be excluded from the sys-
tem of differential equations for optimal motion
together with the boundary conditions for time and the
time costate variable. In this case, the Hamiltonian does
not explicitly depend on time; therefore, dpt/dK ≡ 0 and
pt(K) ≡ 0 by virtue of the last equation in (10). In this
case, the necessary condition for the optimality of the
transfer time (transversality condition) is fulfilled auto-
matically.

If it is necessary to optimize initial true longitude
L0, we use the Lagrange endpoint function in the fol-
lowing form to derive the transversality conditions [30]:

where λL is an additional Lagrange multiplier. The
transversality conditions with this end function will
take the form
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These conditions imply the relations
, , and 

(11)

The first two equations, similar to the case of a
transfer with a fixed initial true longitude, are reduced
to an additional boundary condition represented by
the last equality in (9). Equation (11) for the case of
Keplerian initial and final orbits is simplified to

.
Thus, the problem of optimizing the transfer tra-

jectory for a free L0 is reduced to a boundary-value
problem for system of differential equations (8) with
boundary conditions (9)–(11). Having set K0 = 0 with-
out loss of generality, to solve this problem it is neces-
sary to find eight components of vector px1(0), initial
true longitude L0, and final auxiliary longitude Kf, at
which condition (11) and nine boundary conditions of
the following form are satisfied:
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complementary to the initial conditions at K = 0:
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To solve the problem under consideration, in
addition to calculating residual vector f in the bound-
ary conditions by integrating system (8), it is neces-
sary to calculate the partial derivatives of the residual
vector with respect to continuation parameter τ and
unknown parameters of the boundary-value problem z,
which include the initial values of costate variables
px10 = px1(0). To calculate these partial derivatives, it is
required to calculate the derivatives of the state and
costate variables with respect to τ and px10 at the right
end of the trajectory. It is convenient to calculate such
derivatives by joint integration of differential equations
(8) with differential equations for ∂x1/∂τ, ∂px1/∂τ,
∂x1/∂px10, and ∂px1/∂px10:

(14)

in which case initial conditions (9) are supplemented
by the obvious relations

(15)

for K = 0, where E is the unit matrix.
In accordance with (5), Hamiltonian H of the per-

turbed problem can be represented as H = HT + Hp + Ht.
Partial derivatives ∂H/∂px1, ∂HT/∂x1, and ∂Ht/∂x1 are
easily expressed in the explicit form; thus, the mixed sec-
ond derivatives ∂2H/∂τ∂px1, ∂2H/∂px10∂px1, ∂2HT/∂τ∂x1,
∂2HT/∂px10∂x1, ∂2Ht/∂τ∂x1, and ∂2Ht/∂px10∂x1, which are
necessary for calculating the right-hand parts of sys-
tem (14), can be easily calculated with a high accuracy
using the complex step differentiation [22–25] under
condition of calculating the first derivatives ∂H/∂px1,
∂HT/∂x1, and ∂Ht/∂x1 in the complex domain using
small increments in the imaginary parts of the com-
plex representation of τ and elements of vector px10.
The problem of accurately calculating derivatives
∂Hp/∂x1, ∂2Hp/∂τ∂x1, and ∂2Hp/∂px10∂x1 appears to be
significantly more complicated. Indeed, term Hp in
the Hamiltonian depends on the perturbing accelera-
tions. The components of the perturbing accelerations
depend on x1 and are calculated using complicated
algorithms that, in the general case, do not allow one
to present an accurate analytical estimate of their
derivatives with respect to the components of the state
vector. Of course, it is possible to compute with these
algorithms using complex or dual numbers to calculate
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∂Hp/∂x1 by the complex step differentiation [22–25] or
automatic differentiation using the algebra of dual
numbers [26, 29]; however, to calculate the required
second derivatives ∂Hp/∂τ∂x1 and ∂2Hp/∂px10∂x1, one
will need to use a less accurate and less robust method,
for example, the finite difference method. Alterna-
tively, in a number of studies for the accurate calcula-
tion of the second derivatives of real functions, it is
proposed to use multicomplex [12] or hyperdual [13,
28] numbers. The main disadvantage of methods
using multicomplex or hyperdual numbers is the large
computational cost, in particular, due to the associ-
ated calculation of the second derivatives of the form
∂2Hp/∂τ2, ∂2Hp/∂ , and ∂2Hp/∂  that are not used
in the problem under consideration. To implement a
high-accuracy calculation of only the required sec-
ond-order derivatives of the real function Hp, we pro-
pose to use complex dual numbers [14, 15].

Since the calculation of derivatives using complex
dual numbers is actually a combination of differentia-
tion methods using complex and dual numbers, we
present the basic relations for numerical differentiation
using the complex step differentiation [22–25] and
automatic differentiation with dual numbers [26, 27].

The complex step differentiation was discovered in
1967 [22, 23], forgotten, and rediscovered in 1998 [24],
and since then it has been used in many applications, for
example, [1, 17]. This method is designed to calculate
the derivatives of differentiable real functions of a real
argument. Obviously, for , we
can expand the function f in a Taylor series using a
small increment in the imaginary part of the argu-
ment, as a result of which we obtain an approximate
expression for its derivative:

Unlike the finite difference method, the numerator
in the last formula does not contain the difference of
the functions at close values of the argument; there-
fore, the differentiation step can be chosen to be suffi-
ciently small to ensure the accuracy of calculating the
derivative of the same order as the accuracy of calcu-
lating the function.

There is also a well-known method of automatic
differentiation based on the Clifford algebra, more
precisely, on the use of dual numbers [26]. Let us con-
sider

2
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Expanding f in a Taylor series using the increment
in the dual part of the argument, we obtain the exact
expression for the derivative of this function:

The notation DP(⋅) is used here for the operation of
isolating the dual part of a number: DP(x + εh) = h.

This method makes it possible to slightly reduce
the computational costs in comparison with the com-
plex step differentiation, especially when using dual
numbers with a vector dual part [26]. For example,
using dual numbers with a two-dimensional vector
dual part, one can calculate both partial derivatives of
a real function of two variables using single calculation
of this function in the dual domain:

Here, we use the notation DPi(⋅) for the operation of
isolating the ith dual part of the number and RP(⋅) for
isolating the real part of the number.

In the general case, both methods are approxi-
mately equally good for high-precision computation
of the first derivatives. However, none of these meth-
ods can accurately calculate the second derivatives. We
propose to use complex dual numbers to calculate the
second derivatives [14, 15]. Complex dual numbers are
dual numbers with complex coefficients:

The notation CDP(⋅) is used here for the operation of
isolation of the complex dual part of the number, while
CP(⋅) is used for the isolation of the complex part of
the number.

To calculate the mixed second derivative of a real
function f with respect to x and y, one can supplement x
with the unit dual part (x = x0 + ε) and y with the small
imaginary part (y = y0 + ih, h ! 1), where x0, y0, and h
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are real numbers. The analysis of the expansion of this
function f in a Taylor series in the vicinity of the point
(x0, y0) allows us to show that the calculation of the
complex-dual representation of the function leads to a
simple expression for the mixed second derivative:

In the general case, the data structure considered
below, which represents complex dual number X with
a vector dual part, contains a scalar value of complex
part x and an array of n numbers  representing the
complex-dual part:

The assignment operation X = U, 
is equivalent to assigning the corresponding values to
the complex and complex-dual parts: x = u, = ,
i = 1–n. If U is a complex or real number, the com-
plex-dual part of X is assigned a zero value. In the gen-
eral case, complex numbers are viewed as complex
dual numbers with a zero complex-dual part, just as
real numbers can be viewed as complex numbers with
a zero imaginary part.

The operation of isolating the complex part of a
complex dual number is

CP(Х) = x,
and the operation of isolating the ith complex-dual
part is

CDPi(X) = .
The comparison operations (>, <, =, ≥, ≤) are per-

formed using only real parts from the complex parts of
complex dual numbers:

X ~ U if Re(x) ~ Re(u) (~ is one of the comparison
operations: >, <, =, ≠, ≥ or ≤).

Arithmetic operations on complex dual numbers
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. Complex dual repre-

sentation of elementary functions ϕ(X) has the form

.

If we consider a scalar real function f(x, y) with a
real vector argument x and a scalar argument y, its
value, the first and second mixed partial derivatives
can be calculated using single calculation of the func-
tion in the complex dual domain f(x + ε, y + ih) using
the following expressions:

where 

The following scheme is proposed for solving the
problem of optimizing a perturbed trajectory with a
finite thrust.

(1) The initial data are set, including the elements
of the initial orbit , initial
true longitude L0, elements of the final orbit

, transfer angular distance
ΔL (the final true longitude is determined by the rela-
tion Lf = L0 + ΔL), initial spacecraft mass m0, thrust T,
and exhaust velocity c of the propulsion system.

(2) The continuation method is used to solve the
boundary-value problem for optimizing the unper-
turbed trajectory of a spacecraft with an ideally con-
trolled engine of limited power (LP trajectories, see
[21, 30]). Zero values pp(0) = pex(0) = pey(0) = pix(0) =
piy(0) = pLK(0) = 0 are used as an initial guess values for
costate variables (which corresponds to spacecraft
coasting along the initial orbit); the initial guess for the
unknown final value of the auxiliary longitude is set
equal to the transfer angular distance: Kf = ΔL.

(3) The continuation method is used to solve bound-
ary-value problem of the maximum principle (8)–(10) to
optimize a limited-thrust trajectory (LT trajectory).
The values obtained during the optimization of the LP
trajectory are used as an initial guess for the unknown
initial values of the costate variables pp, pex, pey, pix, piy,
and pLK and final auxiliary longitude Kf. The initial
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OPTIMIZATION OF PERTURBED SPACECRAFT TRAJECTORIES 409
guess values for pm(0) and pt(0) are set equal to 0. To
implement the homotopy between LP and CEV tra-

jectories, the following system of differential equations
is used:

(16)

where .

This system at τ = 0 coincides with the system of dif-
ferential equations for unperturbed transfer with an ide-
ally controlled engine, and at τ = 1 it coincides with sys-
tem (8). The choice of this type of differential equations
ensures the time independence of the right-hand sides
of system (8) at τ = 0, which allows using pt(K) ≡ 0.

The proposed method uses the simultaneous inte-
gration of the equations of motion (16) and partial
derivatives of the state and costate vectors with respect
to unknown parameters of the boundary-value prob-
lem z and continuation parameter τ (for further calcu-
lation of ∂f/∂z and ∂f/∂τ). For this purpose, the unper-
turbed right-hand sides of the differential equations
for ∂x1/∂z, ∂px1/∂z, ∂x1/∂τ, and ∂px1/∂τ are calcu-
lated using the complex step differentiation. The
required mixed derivatives of the form ∂2Hp/∂x1∂z
and ∂2Hp/∂x1∂τ are calculated using automatic differ-
entiation with respect to x1 in the complex-dual
domain followed by the differentiation with respect to
z or τ using the complex step differentiation. There is
no necessity to include the derivatives of the state and
costate vectors with respect to the final value of auxil-
iary longitude Kf in the integrated variables, since they
are calculated after the integration of system (16) from
K0 to Kf by one additional call of the function for cal-
culating the right-hand sides of system (16).

Thus, the system of equations for eight state vari-
ables, eight costate variables. and their derivatives with
respect to the initial values of eight costate variables and
the continuation parameter τ is integrated simultane-
ously: 8 + 8 + (8 + 8)(8 + 1) = 160 equations in total.
The indices of the variables used in the joint integra-

tion of the system of differential equations (16) and
partial derivatives of the state and costate vectors with
respect to the unknown parameters of the boundary-
value problem and the continuation parameter are
given in Table 1. This table uses the notation yi for the

elements of the vector y = .
A scheme is given below for calculating the right-

hand sides of the differential equations of the per-
turbed optimal motion, including the calculation of
the second mixed derivatives of the perturbed part of
the Hamiltonian with respect to the orbital elements
and the initial values of the costate variables (we con-
sider the case of taking into account perturbations
from the geopotential harmonics up to given degree
and order, as well as lunisolar perturbations).

1. Calculate the ephemeris data necessary for fur-
ther computation of the perturbing accelerations
(matrix M of transition from the geocentric inertial
coordinate system ICRS to the geocentric equatorial
rotating coordinate system ITRS [31] and its time
derivative, vectors of position rpj and velocity vpj of the
Moon (l = 1) and the Sun (l = 2) in the ICRS). To fur-
ther calculate the required time derivatives, their com-
plex-dual representation is used in the form Mc = M +
ε7dM/dt, rpcl = rpl + ε7vpl, l = 1, 2.

2. Set j = 1.
3. If j < 9, then calculate the complex representa-

tion of vector y: yk = yk + ihdiff∂yk/∂zj, or otherwise cal-
culate the complex representation of continuation
parameter τ: τ =τ + ihdiff, where hdiff ! 1 is the size of
the differentiation step in the complex step differenti-
ation, k = 1–16, j = 1–8.

4. The unperturbed terms of the right-hand sides
of the differential equations for the state and costate
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Table 1. The indices of the variables used in the joint integration of system of differential equations (16) and partial deriv-
atives of the state and costate vectors with respect to the unknown parameters of the boundary-value problem and the con-
tinuation parameter

Variable p ex ey ix iy LK t m pp pex pey pix piy pLK pt pm

yi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
∂yi/∂pp0 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
∂yi/∂pex0 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
∂yi/∂pey0 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
∂yi/∂pix0 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
∂yi/∂piy0 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
∂yi/∂pLK0 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
∂yi/∂pt0 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
∂yi/∂pm0 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
∂yi/∂τ 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
variables are calculated in the complex representation
using the complex representation of y (j < 9) or τ (j = 9).
The smoothing of the step-like throttling function δ(S)

is used in the form ,

where  and ε(τ) is a positive
regularizing term that regulates the degree of close-
ness of the approximation to the step-like throttling
function: the smaller ε, the closer the approximation
is to the step function. The ε value itself is a linear
function of the continuation parameter τ: at the
beginning of the continuation, at τ = 0, ε is rather
large; as a result, the dδ/dS value remains sufficiently
small in the vicinity of S = 0. At the end of the contin-
uation, at τ = 1, ε becomes sufficiently small for an
acceptable approximation of the throttling step-like
function of thrust. In this study, we used the depen-
dence ε(τ) = 1 – τ + εfτ, where εf = 10–4–10–5.

5. Copies of the state variables in a complex-dual
representation with a unit vector dual part are created:
p + ε1, ex + ε2, ey + ε3, ix + ε4, iy + ε5, LK + ε6, t + ε7,
and m + ε8.

6. State coordinates r, v are calculated from those
copies using the complex-dual algebra.

7. The complex-dual representation of the basis
vectors of the local-vertical-local-horizontal (LVLH)
reference frame in ICRS is calculated.

8. The complex-dual representation of the per-
turbing accelerations in ICRS is calculated using the
real representations of the planetary positions and
the transformation matrix between ITRS and ICRS if
j ≠ 7; and otherwise, their complex-dual representa-
tions are used.

9. The complex-dual representation of the perturb-
ing accelerations in the LVLH reference frame is cal-
culated.

( ) ( )( )δ ≈ + + ε τ2 21 2S S S c

( )= + ≈2 2 1 4.828427c
10. The perturbed part of Hamiltonian Hp is calcu-
lated in the complex-dual representation.

11. The derivatives of Hp with respect to the state
variables (terms of the right-hand sides of differential
equations for costate variables) are calculated. In this
case, the complex representation of the derivative of
Hp with respect to the kth state variable turns out to be
equal to the kth complex-dual part of the complex-
dual representation of Hp.

12. Right-hand sides g of the perturbed system (16)
are calculated in the complex representation.

13. The derivatives of the right-hand sides of the
differential equations with respect to the initial values
of the costate variables are calculated using the com-
plex step method: ∂g/∂zj = Im(g)/hdiff (j < 9) or
∂g/∂τ = Im(g)/hdiff (j = 9). As a result, the right-hand
sides of the differential equations are calculated for
∂yk/∂zj (j < 9) or ∂yk/∂τ (j = 9).

14. If necessary, Hamiltonian H (5) is calculated in
the complex representation. If j < 9, the derivatives
∂H/∂zj = Im(H)/hdiff are calculated by the complex step
differentiation; otherwise, the derivatives ∂H/∂τ =
Im(H)/hdiff, ∂H/∂K = ∂H/∂LK and the real representa-
tion of the Hamiltonian H = Re(H) are calculated by
the complex step differentiation.

15. If j = 9, then go to step 16; else, set j = j +1 and
go to step 3.

16. The right-hand sides of the differential equa-
tions for y are calculated in the real representation:
dy/dK = Re(g).

17. Return to the calling program.
Matrix M of transition from ICRS to ITRS and its

derivative are calculated using the SOFA library of the
International Astronomical Union [31], and the posi-
tion and velocity vectors of the Moon and the Sun are
calculated using the JPL ephemeris software [32].
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The input parameters for calculating the right-
hand sides of the differential system for vector y and its
derivatives are the current value of auxiliary longitude
K, the current value of vector y and its derivatives
∂y/∂zj (j = 1–8), ∂y/∂τ set by a real array in the order
specified by Table 1. The output parameters are the
right-hand sides of system of differential equations (16)
g and their derivatives ∂g/∂zj (j = 1–8), ∂g/∂τ repre-
sented as a real array in the same order.

The vector of residuals of the boundary-value
problem f, matrix ∂f/∂z, and vector ∂f/∂τ necessary for
calculating the right-hand sides of the differential
equations of the continuation method [15, 17, 21, 30]
are calculated after integrating the differential equa-
tions for y, ∂y/∂zj (j = 1–8), and ∂y/∂τ. To calculate
them, it is necessary to specify the current continuation
parameter τ and the current values of the vector of
unknown parameters of the boundary-value problem z.
All the input and output parameters are real type vari-
ables. To calculate the right-hand sides of the system
of differential equations of the continuation method, it
is first needed to determine the initial conditions for
integrating system of differential equations (16) for y
extended by the equations for the derivatives ∂y/∂zj
(j = 1–8), ∂y/∂τ:

y1 = p0, y2 = ex0, y3 = ey0, y4 = ix0, y5 = iy0, 
y6 = LK0 = L0, y7 = t0 = 0, y8 = m0,

y9 = z1 = pp0, y10 = z2 = pex0, y11 = z3 = pey0, 
y12 = z4 = pix0, y13 = z5 = piy0,

y14 = z6 = pLK0, y15 = z7 = pt0, y16 = z8 = pm0,
y17i+8 = ∂yi+8/∂zi = 1, i = 1–8,

and the remaining the array values (corresponding
to the initial values of the derivatives ∂yi+8/∂zj, i ≠ j) are
set to zero.

The initial auxiliary longitude is set to zero: K0 = 0.
The final auxiliary longitude is equal to the current
value of the final auxiliary longitude: Kf = z9.

After setting the initial conditions, the boundaries
of the integration interval of K0, Kf and the settings of
the integration method, the Hamiltonian and its deriv-
atives are calculated at the initial point of the trajectory,
the residual determined by the last equation (9) is cal-
culated. Next, we numerically integrate the joint sys-
tem of differential equations (16) and equations for the
required partial derivatives using the previously
described scheme for calculating the right-hand sides
of the differential equations of the perturbed optimal
motion, fill in the arrays representing the vector of
residuals of the boundary value problem f, matrix ∂f/∂z,
and vector ∂f/∂τ using the results of numerical inte-
gration and use them to calculate the right-hand
sides of the differential equations of the continuation
method [15]. The system of differential equations of
the continuation method is numerically integrated
over the continuation parameter τ from 0 to 1. For
numerical integration, the Gragg–Bulirsch–Stoer
COSMIC RESEARCH  Vol. 59  No. 5  2021
method with an adaptive step and order is used [33].
After each successful step of numerical integration, the
accumulated computational error is corrected using a
limited number of iterations of Newton’s method for
the equation f = (1 – τ)b. After successful completion
of the numerical integration over τ, the vector of
unknown parameters of the boundary-value problem z
(the state vector of the system of differential equations
of continuation) contains the desired solution to the
problem of optimizing the perturbed trajectory.

CONCLUSIONS
Theoretical foundations and a method for optimiz-

ing perturbed finite-thrust trajectories using complex
dual numbers are presented. The problem of optimi-
zation of a transfer with a fixed angular distance and
free duration is considered. In such a setting, judging
by the available computational experience, there is
only one value of the transfer duration that satisfies the
necessary optimality conditions within one family of
optimal solutions (for example, C- or E-trajectories).
This allows avoiding some of the computational diffi-
culties associated with the existence of multiple locally
optimal values of the transfer angular distance in a more
traditional formulation of the trajectory optimization
problem, in which the transfer duration is fixed and the
angular distance is taken as free [18, 20, 21, 30]. To sim-
plify the formulation of the problem, an auxiliary lon-
gitude is used as an independent variable instead of
time [21, 30]. A complete system of necessary opti-
mality conditions for variants with a fixed and free
value of the initial true longitude of the spacecraft is
presented.

One difficulty in optimizing perturbed trajectories
using the maximum principle is the need to accurately
calculate the derivatives of perturbing accelerations
with respect to state coordinates. In high-precision
models of motion, the perturbing accelerations are
calculated using complicated algorithms; therefore, it
is practically impossible to represent expressions for
their derivatives in a closed form. The situation is com-
plicated by the fact that in order to solve the maxi-
mum-principle boundary-value problem, it is neces-
sary to calculate the derivatives of the residuals of the
boundary-value problem with respect to the initial val-
ues of the costate variables. These residuals depend on
the final values of the state variables and costate vari-
ables, which, in turn, depend on the derivatives of the
perturbing accelerations with respect to the state vec-
tor through the differential equations of optimal
motion. Thus, in fact, to calculate the derivatives of
the residuals with respect to the initial values of the
costate variables, it is required to calculate the second-
order mixed derivatives of the perturbing accelerations
with respect to the state vector and initial values of
costate variables. To solve the problem of calculating
those second derivatives with high accuracy, in this
study we develop a method based on the use of com-
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plex-dual numbers, which was previously proposed
in [15]. The proposed method makes it possible to
automate the preparation of the mathematical model
necessary to optimize the perturbed trajectory when
using the maximum principle and the continuation
method, by automating the calculation of the deriva-
tives of the perturbing accelerations with respect to the
state vector using complex dual numbers, followed by
the calculation of the required derivatives of the residual
vector of the boundary value problem using the com-
plex step differentiation. To overcome the computa-
tional instability associated with the presence of corner
points in the dependence of the residuals of the bound-
ary-value problem on its unknown parameters with
simultaneous vanishing of the switching function and
its time derivative, smoothing of the thrust step function
is used. The proposed method was implemented in the
form of experimental software, on which a series of
numerical experiments were carried out. The numerical
results obtained using the developed method are pre-
sented in the second part of the paper.
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