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Abstract—The study proposes a regular method that allows one to find (one or more) solutions of a multi-
extreme problem for optimizing the transfer of a spacecraft, equipped with a perfectly controlled electro-jet
propulsion system, in a central gravitational field. The method consists of three main stages. In the first stage,
using an algorithm based on the Bellman optimality principle, for various values of angular range, the com-
posite transporting trajectories are generated in an impulse formulation. In the second stage, in the vicinity
of these trajectories, the first-approximation trajectories with continuous control are formed using the local
variation method. At the third stage, the latter trajectories are used to find an accurate solution of a nonlinear
boundary value problem. Then, the results are analyzed to determine the optimum. The numerical example
of using this method to construct optimal trajectories of spacecraft transfer from Earth to the Apophis aster-
oid is presented.
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1. INTRODUCTION
The topical problem of optimizing trajectories of a

spacecraft equipped with an electro-jet propulsion
system (EJPS) is considered [1]. Such an engine pro-
vides high exhaust velocities (tens of kilometers per
second), and, therefore, it is, generally, more efficient
than a chemical one. The task is to find the control of
motion of a spacecraft that commits a transfer, for a
fixed time, using an EJPS with a perfectly controlled
thrust, in a central gravitational field, from one speci-
fied position, characterized by a spacecraft’s coordi-
nates and velocities, into another specified position.
In this case, it is necessary to maximize the value of
the spacecraft’s final mass. It should be noted that, for
practical calculations, spacecraft mathematical mod-
els are often applied, in which EJPS thrust is limited in
magnitude and changes stepwise. However, the
results, obtained within the framework of a perfectly
controlled thrust model, are also very important since
they depend on the trajectory rather than on a space-
craft’s mass parameters, and, therefore, they can be
used at early stages of design when technical spacecraft
characteristics are still in the refinement stage.

The analysis of numerous studies, devoted to the
problem of optimizing transfers with a perfectly con-
trolled thrust [1–10], allows us to conclude that this
problem is multi-extreme in its nature. At the same
time, finding optimal solutions using mathematical
methods [11–14], which do not take into account spe-

cific features of a particular task is possible [7], but is
associated with significant calculation expenses and
requires additional investigations. Another approach
to the problem is based on constructing a series of
extreme trajectories that differ from each other by an
integer number of revolutions around the gravitational
center and in a subsequent analysis of the results [8].

In this study, optimal control is found within the
framework of the second approach. In this case, the
following method is proposed for constructing
extreme trajectories with a specified angular range. At
the first stage of calculations, the zero approximation
(the composite transporting trajectory) is determined,
which represents the solution of an auxiliary optimiza-
tion problem in impulse formulation. To construct
this solution, one uses a method based on the Bellman
optimality principle [15]. Then, a “plausible” assump-
tion is made that the solution of the original continu-
ous problem, at a specified angular range, lies in the
vicinity of a composite transporting trajectory. To find
this solution, at subsequent calculation stages, one
uses the method of local variations (the problem is
solved in linear formulation) [16] and the local descent
method (the nonlinear boundary value problem of
Pontryagin’s maximum principle is solved in the accu-
rate formulation) [17].

The mentioned scheme was proposed by N.N. Moi-
seev [18] for finding the extremum of a non-convex
additive function. In [4–6], a set of optimal trajecto-
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ries of spacecraft transfer from Earth to Apophis was
obtained for a wide range of boundary conditions
based on this scheme. At the same time, in the course
of the calculations, some shortcomings were identified
that are inherent in the computational procedures
described in [4–6] (low accuracy of determining the
base path, high computational costs), as well as limita-
tions of the search scheme itself (impossibility to find
several different solutions for the same boundary con-
ditions). The method proposed in this paper is free
from the aforementioned disadvantages.

Some features of practical application of the men-
tioned method are illustrated by the example of solv-
ing one particular problem of optimizing spacecraft
transfer to Apophis while approaching Earth.

2. PROBLEM FORMULATION
AND DISCUSSION

Consider the motion of a spacecraft with a per-
fectly controlled EJPS in a central gravitational field.
Let some rectangular inertial coordinate system OXYZ
and the mathematical model of spacecraft motion be
specified:

(1)

where  and  is the radius
vector and velocity vector of a spacecraft in OXYZ;

 is the gravitational force acceleration;

;  is the gravitational parameter;  is the vector
of controlling acceleration of a spacecraft; and  is the
current time. It is assumed that transfer start time ,
transfer termination time , initial conditions

(2)

and the final conditions of spacecraft trajectory

(3)

are known, and there are no restrictions on vector . In
accordance with [3], the mass of a spacecraft with an
ion engine at moment  is determined by the formula:

where  is the spacecraft’s initial mass;  is
the time-constant power of an ion engine; and  is the
functional of form:

(4)

It is obvious that, all other things being equal, the
smaller the value of functional (4), the greater the
quantity .
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The minimum of (4), apparently, can be found
only numerically. Here, the most accurate numerical
results in this area were obtained using Pontryagin’s
maximum principle [19]. Applying the maximum
principle to (1)–(4), we write the conjugate system of
differential equations:

(5)

where  and  are vectors of conjugate variables, as
well as the formula for determining :

(6)

We introduce into consideration: 

 Then, the minimization of func-
tional (4) is reduced to selecting a certain vector of ini-
tial conditions , which represents the solu-
tion of a two-point boundary value problem, i.e., it
translates (1), (5) from (2) to (3).

Unfortunately, for the models described by nonlin-
ear systems of differential equations of type (1), (5),
Pontryagin’s maximum principle is a necessary but not
sufficient optimality condition [19]. In practice, this
means that, from a number of possible solutions  of
boundary value problem (1)–(3), (5), (6), only a few
actually impart a minimum to functional (4) [7]. In
addition, it should be borne in mind that the optimum
of (4) can be achieved on several various trajectories of
system (1)–(3), (5), (6) [3, 7] simultaneously. Thus, in
the general case, the problem of determining the
global minimum of (4) for (1)–(3) is currently unsolv-
able. Nevertheless, there exist various approaches that
allow obtaining some results that are of great practical
importance. One of these approaches is based on using
the multi-extreme optimization methods [11–14].
These include: (1) the multi-start methods, determin-
istic or stochastic; (2) the metaheuristic methods,
namely, genetic algorithms, the algorithms of particles
in a f lock, etc.; (3) the methods of transition from one
local minimum into another, such as the heavy ball
algorithm; the Branin method, etc. For (1)–(3), (5),
(6), all of these methods will be reduced to generating
a series of initial (zero) approximations  of conju-
gate variables  and their subsequent updating one
way or another. It should be noted, however, that it is
very difficult to specify the permissible ranges of
changing . In addition, the nonlinear boundary
value problem of the maximum principle for (1)–(3),
(5), (6) is extremely sensitive to the selection of ,
especially when the resulting trajectory passes in a rel-
ative proximity to the gravitational center. Thus, the
direct application of known multi-extreme optimiza-
tion algorithms to the problem under study can be
associated with significant calculation expenses.
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By this reason, another approach to solving the
problem was accepted [8]. This approach is based on the
fact that, under specified boundary conditions and
transfer time, the optimum of (4) is often achieved on
trajectories (1)–(3), (5), (6), which differ from each
other by integer number  of revolutions around the
attracting center. Therefore, for various values of angu-
lar range of transfer , where , one can
construct corresponding extremes (1)–(3), (5), (6) and
compare the obtained values of functional (4) between
each other, or, in other words, to solve the following
optimization problem.

Problem 1. It is required to find vectors  that
provide the specified value of angular range ,
when (1), (5), (6) move from (2) to (3), and form man-
ifold

(7)

the elements of which represent various , on
which functional (4) reaches its minimum, quantity

, which is also subject to determination.
In this paper, the algorithm for constructing

extreme trajectories with a specified angular range is
proposed to solve Problem 1. This algorithm imple-
ments the searching strategy, formulated by N.N. Moi-
seev in [18], and consists of three main stages. At the first
stage, the zero approximation (the composite transport-
ing trajectory) is composed of the sections of Keplerian
orbits connecting reference points   the
position of which is determined in the process of solv-
ing the auxiliary problem in the impulse formulation by
the dynamic programming method (DPM). It should
be noted that the DPM is subject to the “curse of
dimension,” and, in practice, its modification is widely
applied, namely, the differential dynamic programming
method (DDPM). The latter one is based on expanding
the Bellman recurrent relation into the Taylor series
with respect to some reference trajectory [20–22].
However, in our case, the solution of an auxiliary prob-
lem (more correctly, its finite-dimensional approxi-
mation) is constructed with using the classical DPM,
which allows one to find the global extremum of an
additive function on the corresponding calculation
grid, even if this function is not unimodal in the calcu-
lation domain [18]. It is possible to obtain such a solu-
tion without significant calculation resources by
accepting certain assumptions that allow mitigating
the curse of dimension. In our case, the optimal
spacecraft transfer trajectories are assumed to be close
to the OXY plane (for example, to the ecliptic plane),
and  monotonously grows (i.e., the change of
the motion direction is impossible). Usually, in prac-
tice, the transversal component of the spacecraft
velocity vector is, as a rule, very large, and the maneu-
ver, during which this component would change its
sign, is rarely optimal. However, such a situation is

Ω
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possible (especially if a significant change of the plane
of motion is necessary) [23]. As a result, the men-
tioned assumptions certainly restrict the field of appli-
cation of this technique.

At the second stage of calculations, the “plausible”
assumption is made that the solution of the original
continuous problem, with a specified angular range, is
located near the composite transporting trajectory. By
this reason, in its vicinity, the first-approximation tra-
jectories, describing the motion of a linearized system
of spacecraft equations, are constructed using the
method of local variations and the transporting trajec-
tory method (TTM). And, finally, at the third stage,
the initial-approximation trajectories are used, by the
local descent method, to accurately solve the nonlin-
ear boundary value problem of the maximum princi-
ple (1)–(3), (5), (6). In other words, accurate spatial
solution (1)–(3), (5), (6) is found on the basis of using
the planar initial approximation. Then, quantities (4),
obtained for various  values, are compared with
each other to detect .

3. FORMATION OF COMPOSITE 
TRANSPORTING TRAJECTORIES

Assume the spacecraft basically moves in the OXY
plane of the OXYZ coordinate system (i.e., the , 
components can be ignored at this stage of calcula-
tions). We assume the position of some reference
point  to be completely defined by parameter:

(8)

and by vector , where
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 are quantities  and  for , symbol 
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in the range from 0 to  radians.
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C.3. Point  is characterized by parameter 

 and vector 

Relation (8) specifies the trajectories, in which
angle  increases monotonously from  to . Fol-
lowing [18], we introduce into consideration elemen-
tary operation , which puts
vectors ,  of spacecraft velocities at points

 and  into correspondence to each pair .
Here, vectors  and  are calculated under
the condition that the spacecraft transfers from  to

 over a Keplerian orbit. In this paper,  and
 vectors are determined on the basis of using the

quite efficient and reliable algorithm, described in [24].
At nodal points , , ...,  of a composite transport-
ing trajectory, the spacecraft must acquire the corre-
sponding controlling impulses:

(9)

It is proposed to specify  in such a manner,
that the sum of magnitudes of impulses (9)

(10)

be minimal. Thus, the construction of a composite
transporting trajectory can be reduced to solving the
following problem.

Problem 2. It is required to find vectors  that
satisfy conditions C.1–C.3 and impart a minimum to
functional (10) at a specified value of .

To find , we will use the DPM [15, 18]. We
perform a two-step, finite-dimensional approximation
of Problem 2. At the first stage, we will correspond to
each angle , , the manifold  consist-
ing of  vectors (or nodes, otherwise) 

such that:  

 , where  and

 are the known discrete values of quantities

 and . In addition, we specify 

and , where  coincides with 

from C.2, and  coincides with  from C. 3. At

the second stage, for all allowable pairs 

and , where ; j =
; and , by using elementary

operation  , we deter-

mine velocities  of spacecraft departure from

, as well as velocities  of a spacecraft

approaching . And, then, we form manifolds

  consisting of

 elements. Here and hereafter the first super-
script indicates the initial node and the second super-
script indicates the final node of a transfer. Similarly,
we construct ,  for  and ,  for

, which include  elements.

The step-by-step procedure for constructing the
solution of Problem 2, on the basis of , , and ,
is as follows. Initially, we let  and, for all indices

 and , we calculate:

where , , .
Then, we specify initial values  , check
all allowable nodes from manifold , and, for each

, where , we, on the basis of

specified indices  and , find vector 
Then, in accordance with the DPM, the optimal value
of functional  and sought node ,
on which this value is achieved, can be found by means
of the following recurrent relations:

Looking over all allowable ,  and, moving suc-
cessively from  to  we determine required
trajectory , ,.., . Within the framework of a
finite-dimensional approximation of Problem 2,

such a trajectory imparts a global minimum to func-
tional (10) on calculation grid ,
even if (10) is not unimodal in the calculation
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We will show that the mentioned method of finding
, , …,  requires lower calculation expenses than

the technique described in [4–6]. Following [18], we
introduce into consideration the coordinate grid

 such that the number of points on each
scale , , , and  is equal to . Then, on interval

 where  are neighboring points on
the time scale, the value of functional (4) is deter-
mined by eight varying parameters:  

   , , and  and

must be calculated  times. In this case, within the
framework of Problem 2, functional (10) depends on
six varying parameters:    

 and  If we assume that the number of
calculation points on each scale , , , and  is also
equal to K, then, on interval , quantity  must

be calculated  times.
The algorithm for solving Problem 2 is described in

details below.

Algorithm for Solving Problem 2
Stage 1. Initialization.
1.1. We specify  (the number of additional revolu-

tions around the gravitational center), store  =

 and  =  

1.2. We let indices , .
1.3. We calculate  and store

1.4. If , we pass to step 1.5; otherwise, we
assume , and pass to step 1.3.

1.5. If , we pass to step 1.6; otherwise, we
assume , , and pass to step 1.3.

1.6. If , we pass to step 1.7; otherwise, we
assume , , and pass to step 1.3.

1.7. We let indices .

1.8. We extract  and . We check

that  (see C.1). If this condition is
met, we pass to step 1.9, otherwise, to step 1.11.

1.9. Using elementary operation 

, we calculate and store vectors 

and 

1.10. We initialize the value of  by a
large positive number.

1.11. If  or , we pass to step 1.12;
otherwise, we assume  and pass to step 1.8.
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1.12. If , we pass to step 1.13, otherwise,
we assume , , and pass to step 1.8.

1.13. If , we exit from the cycle, otherwise,
we assume , , , and pass to step 1.8.

Stage 2. First step.
2.1. We let indices .

2.2. We extract  and  We check

that  (see C.1). If this condition is
met, we pass to step 2.3, otherwise, to step 2.4.

2.3. Using , we find

  and store  =

 + 

2.4. If , we pass to step 2.5, otherwise, we
assume , and pass to step 2.2.

2.5. If , we exit from the cycle, otherwise,
we assume , , and pass to step 2.2.

Stage 3. Next steps.
3.1. We let indices , .

3.2. We extract  and  We check

that  (see C.1). If this condition is
met, we pass to step 3.3, otherwise, to step 3.5.

3.3. We extract  

 We calculate  +
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 and 
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4.4. If it is found that  we store
 and 

4.5. If , we exit from the cycle, otherwise,
we assume , and pass to step 4.2.

Stage 5. Construction of a trajectory.
5.1. We extract . In accordance with C.3, we form

point .
5.2. We assume , 

5.3. We extract  We form point , char-
acterized by parameter , as well as by vector

5.4. We extract  We calculate

  
5.5. If , we pass to step 5.6, otherwise, we

assume , and pass to step 5.3.
5.6. In accordance with C.2, we form point  and

exit the algorithm.
The composite transporting trajectory, passing

through points , , …, , is characterized by angu-
lar range  and is further used to
find the first-approximation trajectory with control
that is continuous on the interval .

4. FORMATION 
OF THE FIRST-APPROXIMATION 

TRAJECTORY WITH CONTINUOUS CONTROL
We construct, in the vicinity of a composite trans-

porting trajectory, the approximate trajectory of
spacecraft transfer with continuous control over the
entire time interval . To do this, we generate one
more system of reference points , , …, , lying
entirely in the OXY plane, such that  are completely
defined by angle (8), as well as by vector  =

 We will initially assume
that  are close to , , …,  and are specified by
formulas:

(11)

Here,  is known (see paragraph 5.3 of the
algorithm for solving problem 2), and velocities

and  can easily be obtained using
, 
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Now we associate  and  using elementary oper-
ation Ex(ϕi, [y1(ϕi), y2(ϕi)]T,  ,
by Keplerian orbit and calculate corresponding 
and  On the i-th time interval 
where  and  we linearize
Eqs. (1) with respect to the indicated orbit, taking into
account, that the function of changing its radius-vec-
tor  in time  is known. Neglecting
components , , we get

(12)

where  

  is the identity matrix

. We calculate the initial and final conditions
for (12) by formulas:

(13)
and also

(14)

Now we find function  which imparts
a minimum to functional:

(15)

subject to conditions (13), (14). Applying Pontryagin’s
maximum principle, we obtain system of conjugate
equations:

(16)

where  and  are vectors of conjugate vari-
ables, as well as relation:

(17)
Minimization of (15) is reduced to selecting the

vector of initial conditions

which transfers (12), (16), and (17) from (13) into (14).
Since systems (12) and (16) are linear,  and  are
calculated analytically based on the TTM [9]. Thus,
we have introduced into consideration elementary
operation  which puts the
value of functional (15) into correspondence to each
pair of points  where . Now we
formulate the following problem.

iQ +1iQ

+ϕ 1,i ( ) ( )[ ] )+ +ϕ ϕ T
1 1 2 1,i iy y

( )ϕiu
( )+ϕ 1 .iw [ ]∈ ϑτ , ,i it

( )= ϕ2τ i iy ( )+ϑ = ϕ2 1 ,i iy

( ) ( )i tρ [ ]∈ ϑτ ,i it
z vz

( )
( ) ( ) ( )

( )
( )δ δ= δ + = δ( ) ( )( ) , ,

i i
i i i id d

dt dt
v rA ρ r α v

( ) ( )
( )

δ = − λ
λ λ

( ),
i

i i d
dt
ρv v ( ) ( ) ( )δ = −λ λ λ ,i i ir r ρ

( )
( )

( ) ( )

( )

 
= − 

 
 

T

3 2
μ 3 ( )( ) ,

i i
i

i i

ρ ρA ρ E
ρ ρ

E

=λ 1,2

( ) ( ) ( ) ( ) ( ) ( )+δ = ϕ − ϕ δ =λ λ 2 λ λτ , τ 0,i i
i i i iv y u r

( ) ( ) ( ) ( ) ( ) ( )+ + +δ ϑ = ϕ − ϕ δ ϑ =λ λ 2 1 λ 1 λ, 0.i i
i i i iv y w r

( ) ( ) ( )= ,i i tα α

( )
ϑ

= 
2

τ

,
i

i

i
iJ dtα

( )( ) ( )
( )( ) ( )( ) ( )δ δ= −δ = − δv

v

T
, ,

i i
i i ir

r
d d

dt dt
ψ ψψ A ρ ψ

( )δ i
rψ ( )δ

v

iψ

( ) ( )= δ
v

2.i iα ψ

( ) ( ) ( ) ( ) ( ) δ = δ δ v

TT Tτ , τ ,i i i
i r iψ ψ ψ

iJ ( )δ iψ

( ) ( )( )+ +ϕ ϕ ϕ ϕ1 1, , , ,y i i iE y y

{ }+1, ,i iQ Q = −0,.., 1i N



198 KRYLOV
Problem 3. It is required to find vectors 
 that impart minimum:

(18)

provided that  are determined using

Problem 3 will be solved numerically, using the
method of local variations [16]. In accordance with [16],
we will form vector , containing the steps of varying ,
and denote by symbols  and  the current number of
the algorithm iteration, as well as the current index of
component . Then, for , , , as well as
for vector , in which the component with index  is
equal to unity, and all remaining components are
zeroes, we calculate:

Then:

(19)

Sequentially increasing  up to , we perform
varying (19); initially, for the first component , then,
for second one, etc. When all components  are varied
and functional (18) has decreased, we let , ,
and then repeat the procedure. In the opposite case,
we check the stopping condition: , where  is the
maximum allowable number of iterations . If the
stopping condition is met, the process of determining
the sought first-approximation trajectory can be con-
sidered complete. Otherwise, we should decrease the
components of vector  by half, let , ,

 and repeat the iteration. The corresponding
algorithm for solving Problem 3 is described below.

Algorithm for Solving Problem 3
Stage 1. Initialization.
1.1. We let index .
1.2. We initialize  using formulas (11).
1.3. If , we pass to step 1.4; otherwise, we

assume , and pass to step 1.2.
1.4. We calculate  by formula (18). We

store  and 
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Stage 2. Varying.
2.1. We specify , as well as vector , and let indices

, , and .
2.2. We perform variation by formula (19). If the new

value is , we store , ,

as well as vectors .
2.3. If , we pass to step 2.4; otherwise, we

assume , and pass to step 2.2.
2.4. If , we pass to step 2.5; otherwise, we

assume , , and pass to step 2.2.
2.5. If , we store ,

assume , , and pass to step 2.2; otherwise, we
pass to step 2.6.

2.6. We check condition . If it is met, we exit
the algorithm; otherwise, we assume , ,

, and pass to step 2.7.
2.7. We assume .
2.8. We calculate 
2.9. If , we pass to step 2.2; otherwise, we

assume , and pass to step 2.7.
Thus constructed first-approximation trajectory

passes through points , , …,  and can be used to
find the accurate spatial solution of the nonlinear,
boundary value problem of maximum principle (1)–(3),
(5), (6).

5. DESCRIPTION OF THE PROCEDURE
FOR SOLVING THE BOUNDARY

VALUE PROBLEM USING
THE LOCAL DESCENT METHOD

We assume that, somehow (for example, using the
information obtained in the previous section), we man-
aged to determine vector , quantity , as well as
the initial (2) and final (3) conditions of spacecraft
transfer. We formulate the following auxiliary problem.

Problem 4. It is required to find vector  that
transfers (1), (5) from (2) into (3) during time ,
provided that initial approximation  is specified.

Problem 4 will be solved numerically, using the local
descent method. In accordance with [17], we specify

 and, having integrated equations (1), (5),
(6) from  to , we get , , which, generally
speaking, differ from (3). We introduce into consider-
ation the function of discrepancy:

(20)

where  and  are scaling coefficients, and  is the
index of a current iteration. After performing qua-
dratic approximation of (20), we have:
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(21)

where  are gradient vectors,
 is the Hessian,  is the nabla-

operator, and  is a non-zero vector called the
descent direction. The minimum of (21) is reached, if

 satisfies the equality:

and the Hessian is positively defined. However, in
practice,  does not always possess this property.
So, it is advisable to calculate the descent direction by
formula:

(22)

where, instead of , positively defined matrix
, associated with , is used. This matrix

has the form:  =  and  is a
non-negative, diagonal matrix, the algorithm of con-
structing which is based on the modified Cholesky
factorization and is described in detail in [17].

We also introduce into consideration unit vector

  and the scalar quantity 

which should provide monotonous decrease of func-
tion (20):

(23)

where

(24)

In this study, sought value  is obtained from the
solution of an auxiliary, one-dimensional minimiza-
tion problem:

(25)

using the well-known golden cross-section method.
If, however, during the calculation process, function

is suddenly not unimodal,  is found on the
basis of a simple and reliable, but not so fast, scanning
method.

The iterative local descent process should be inter-
rupted in the case, if: (1) the required accuracy of solu-
tion is achieved; (2) the acceptable solution has not
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been found yet, but the rate of progress towards the
optimum highly dropped; and (3) the maximum num-
ber of iterations is fulfilled. In this case, the stopping
conditions have form

(26)

where  is

the absolute error of calculating function (20) and  =
2.2204460492503131 ⋅ 10–16 is the machine accuracy.
In this way, we determine vector which
ensures compliance of (3). The corresponding local
descent algorithm, provided that  is known, is
described below.

Algorithm for Solving Problem 4

(1) We specify quantities , ,  We
assume  .

(2) We integrate equations (1), (5), (6) from  to 
and calculate function (20).

(3) We check conditions (26). If at least one of
them is fulfilled, we assume  and exit from the
algorithm; otherwise, we pass to step 4.

(4) If , we pass to step 6; otherwise, we pass to
step 5.

(5) We check condition (23). If it is not fulfilled,
we exit the algorithm with an indication of emer-
gency response.

(6) We calculate   and use formula (22)
to determine .

(7) Using the golden cross-section method or the
scanning method, we solve auxiliary sub-problem (25)
and determine .

(8) We calculate vector (24), assume , and
pass to step 2.

It should be noted that the local descent method
from [17] possesses a high convergence rate, does not
require essential calculation resources, and is easy to
implement.

6. SOLUTION OF A MULTI-EXTREME 
OPTIMIZATION PROBLEM

Now we directly transfer to solving Problem 1. Let
the maximum number of spacecraft revolutions around
gravitational center  be specified (see section 3).
Then, for each value of angular range , we, with
using the algorithm for solving Problems 2 and 3, will
construct the composite transporting trajectory, the
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first-approximation trajectory, as well as the sequence
 (see the algorithm for solving

Problem 3, paragraph 2.2). Then, on the basis of
, we form vector . It may seem that the most

obvious candidate for this role is:

(27)

However, practice has shown that trajectory (1), (2),
(5), (6) is extremely sensitive to the choice of , espe-
cially if it involves additional revolutions around the
gravitational center. By this reason, we accepted in this
paper the following approach to solving the problem.

Initially, the motion of system (1), (2), (5), (6) is con-
sidered on a relatively short time interval  only,
where  and  characterize the position of point .

Here, , 

. Specifying  by formula (27),
we solve the corresponding nonlinear boundary value
problem using the local descent method (the algo-
rithm of solving Problem 4) and obtain vector .
Then, the motion of system (1), (2), (5), (6) is con-
sidered on a longer time interval . Here,

, 

. Letting , we apply the
local descent method to the mentioned problem and
obtain new vector . Operating in this manner, we suc-
cessively increase the time interval  and, hav-

ing brought it up to , we find ; the solution
to the original boundary value problem (1)–(3), (5), (6).

Finally, comparing the values of  of func-
tional (4), obtained for , we determine

, and also form manifold (7), on the elements of
which  is implemented. Here, we assume that

 and  differ from each other, if the
condition  is met, where  is some fixed
threshold value. Thus, the complete algorithm for
solving Problem 1 has the following form.

Algorithm for Solving Problem 1

(1) We specify quantities  and . We initialize
quantity  by a large positive number.

(2) We let .

(3) Using the algorithm for solving Problem 2, we
obtain points , , .., .
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(4) For points , , ..., , using the algorithm for
solving Problem 3, we obtain , , ...,  and also

, , …, .

(5) We specify  and determine vector  by
formula (27).

(6) We calculate  = [y1(ϕi)cos(ϕi), y1(ϕi)sin(ϕi),0]T

and 
(7) For initial conditions (2) and final conditions

from paragraph 6, we perform the algorithm for solv-
ing Problem 4 on the time interval  and

obtain .

(8) If , we assume   and
pass to step 6. Otherwise, we assume  and
pass to step 9.

(9) For initial conditions (2) and final conditions (3),
we perform the algorithm for solving Problem 4 on the
time interval , obtain vector , and, using for-
mula (4), calculate functional .

(10) If  we include  into ;
otherwise, if  we delete all elements of mani-

fold , assume  and include  into
. Then, we pass to step 11.

(11) If , we assume  and pass to
step 3; otherwise, we exit from the algorithm.

In conclusion, we note that Problem 1 can also be
solved by the method of continuation over the gravita-
tional parameter [8]. This method makes it possible to
find the extremal of the nonlinear boundary value
problem of the maximum principle using homotopy.
Here, gravitational constant μ acts as a continuation
parameter, and the initial-approximation trajectory
occurs to be some fictitious orbit that satisfies condi-
tion (2) and is constructed for constant , the
value of which is selected in such a way, that the spec-
ified angular distance of transfer be provided.

In our case, the zero approximation, which satisfies
not only the initial (2) but also the final (3) boundary
value conditions, is constructed in the simplest and
most natural manner and represents a composite
transporting trajectory, on which the sum of con-
trolling impulses (10) is minimal. Therefore, there is a
reason to believe that the sought continuous control
trajectory, which imparts a local minimum to func-
tional (4), will be located in the vicinity of an impulse
zero approximation, and its finding will not require
essential calculation resources.

In addition, the composite transporting trajectory
provides important information about the nature and
parameters of a sought extremal and can be success-
fully used within the framework of various optimiza-
tion methods (quasi-linearization, composite firing
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method, etc.), which differ from those described in
sections 4 and 5. Thus, the developer keeps relative free-
dom in choosing the final optimization method (4),
which allows him to take into account the specifics of
a particular task in the best way.

Finally, a by-product of operation of the algorithm
for solving Problem 2 (provided that it was performed
from end to beginning) are the optimal trajectories,
obtained as a result of the synthesis procedure, which
associate each node of the calculation grid

 and the final node. They can
also be applied at subsequent stages of research, for
example, in the process of studying the disturbed
motion of a spacecraft.

7. NUMERICAL EXAMPLE
To illustrate the method described above, we con-

sider the problem of optimizing the trajectories of
spacecraft transfer from Earth to Apophis. We choose
as OXYZ the heliocentric, elliptical, rectangular coor-
dinate system, the OX axis of which is directed to the
vernal equinox point, the OZ axis points to the north
pole of the ecliptics, and the OY axis supplements the
system to the right-hand one. Following the f light pat-
tern from [7], we will assume that a spacecraft with
mass , which is located in a circular near-Earth
orbit with radius , is accelerated by a high-thrust
engine up to a parabolic velocity, as a result of which it
leaves Earth’s sphere of action. Thus, at the specified
moment of heliocentric motion beginning at  = Sep-
tember 2, 2018 (JD = 2458364.34), the spacecraft
mass  can be estimated by formula:

and conditions (2) will take the form:  

where ,  is the gravitational

parameter of Earth,  is the exhaust velocity of parti-
cles in the jet stream for a high-thrust chemical engine,

 is the mass of separated upper stage,  and  are
the radius-vector and Earth’s velocity vector. In pro-
jections on the OXYZ axes, we, respectively, obtain:

= 141837938.1 km,  = –51586562.08 km,
 = 0.0 km,  = 9.696559723 km/s,  =

27.88321627 km/s,  = 0.0 km/s. It is required
that, 185 days later, the spacecraft, having performed a
heliocentric transfer using an EJPS, should be located
at the point with coordinates , while having
velocity , where  and  are the radius vector
and Apophis velocity vector. At the same time, we
note that the launch date and the spacecraft transfer
duration are not optimal; they were borrowed from [7]
and have to demonstrate the presence of two extremals
with the same value in Problem (4).
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In projections on the OXYZ axis, we, respectively,
obtain:  = –16866036.34 km,  =
148415503.4 km,  = –8273116.384 km,  =
–28.44266644 km/s,  = 1.669202204 km/s, and

 = –0.7733438831 km/s. Meeting the asteroid
there, the spacecraft, also using an EJPS, will perform
braking and transition into the orbit of its artificial sat-
ellite. Since the energy expenses required for space-
craft transition into an asteroid-centric orbit, are low
in this case [6], then:

(28)

where  is the final spacecraft mass in the orbit of
Apophis. It is necessary to find the spacecraft transfer
trajectories and corresponding value , for which
quantity , or, as follows from (28), quantity ,
would reach a maximum.

The analysis of parameters   , and
 allows us to conclude that the spacecraft transfer

from Earth to the asteroid will be accomplished near the
ecliptic plane. By this reason, to solve the stated prob-
lem, we will use the algorithm for solving Problem 1. We
specify parameters  m2/s3 and 
(step 1). Thus, the optimum of (4) will be found on the
direct transfer trajectories, as well as on the trajecto-
ries with one additional revolution. Consider the case

 (step 2, the direct transfer trajectories). Using
formulas (8), we get  = 340.0136362° and

 = 116.4696808°. We assume , as a
result of which, the spacecraft transfer angle on one
section of a composite transporting trajectory will not
exceed 60°. We specify nodes , such that:

(29)

where  

  km, rmax =

 km,  = 50 days,  = 31, and  = 61. Hav-
ing performed step 3 of the algorithm for solving Prob-
lem 1, we obtain quantity (10) equal to 27.18911743 km/s.
Here, the single intermediate point  is characterized
by the following parameters:  –  = 58.23484039°,

 = 193.(3) · 106 km, and  –  = 92.5 days.
The composite transporting trajectory of the space-
craft transfer from (2) to (3) is designated in Fig. 1 by
symbol . It should be noted that, in this case,  actu-
ally coincides with a Keplerian orbit associating (2)
and (3). Next, we construct the first-approximation
trajectory (step 4). To do this, using formulas (11), we
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Fig.1. Composite transporting (  ) trajectories, as well as first-approximation trajectories and optimal (T0, T1) trajectories of
spacecraft transfer from Earth to Apophis. 
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will form , specify  and vector , such that

 km,  days, and  km/s.
Having applied the algorithm for solving Problem 3,
we obtain quantity (18) equal to 168.5265666 m2/s3.
The single intermediate point  is characterized by
the following parameters:  –  = 58.23484039°,

 = 183014710.7 km,  –  = 99.42506027 days,
 = –10.99439222 km/s, and  =

9.775907364 km/s. Using formula (27), we have:  =
93.8106916025 · 10–7,  = –54.6452421284 · 10–7,

 = 239.664827357 · 10–14,  = –64.2359106942 ·
10–14, and  =  = 0. The corresponding first-
approximation trajectory is designated in Fig. 1 by
symbol T0. Then, having specified  = 1.0 · 10–12,

 = 100,  =  km/s, and = km, we perform
the steps from 5 to 9 of the algorithm for solving Prob-
lem 1 and calculate vector , which represents the first
element of manifold  (step 10):  = 94.66532165 ·

( )ϕiy = 20S h

= ⋅ 6
1 2.5 10h =2 1.0h = =3 4 2.0h h

1Q
ϕ1 τϕ
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optΨ 1
eψ
10–7,  = –51.42365888 · 10–7,  = 0.3813270949 ·
10–7,  = 251.0494271 · 10–14,  = –48.40369378 ·
10–14, and  = 5.344841215 · 10–14. In this case,
quantity (4) is equal to 168.5541035 m2/s3, and the
corresponding trajectory of spacecraft transfer from
(2) to (3) visually coincides, in the figure, with first-
approximation trajectory T0.

Since , we assume  and proceed
to considering the trajectories with one additional rev-
olution around the Sun (step 3). Using formulas (8),
we obtain  = 476.4696808°. We assume

, as a result of which, the angle of spacecraft trans-
fer on one section of the composite transporting trajec-
tory will be close to 60°. We assume that, when calculat-
ing  by formulas (29),  km,

 km,  = 50 days,  = 31, and  = 61.
Having performed step 3 of the algorithm for solving
Problem 1, we obtain quantity (10) equal to
43.80742264 km/s. Here, the parameters that charac-
terize intermediate points , are given in Table 1. The
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Table 1. Points  of a composite transporting trajectory with a revolution for  = September 2, 2018 and  = 185 days,

 – , ° , km  – , days

59.55871010 89.(3) 56.458(3)

119.1174202 50.(3) 76.25

178.6761303 37.(3) 84.375

238.2348404 37.(3) 90.8(3)

297.7935505 46.0 98.958(3)

357.3522606 63.(3) 112.08(3)

416.9109707 93.(6) 133.541(6)

iP τ ϑ − τ
= 1,...,7i

ϕi ϕτ ( )ϕ ⋅ 610ir ( )ϕit τ

Table 2. Points  of a composite transporting trajectory with a revolution for  = September 2, 2018 and  = 185 days,

 – , deg , km  – , days , km/s , km/s

59.55871010 103.2767957 57.91917546 –31.97886150 11.79095125

119.1174202 53.05461915 84.21600723 –40.40808053 –35.84220059

178.6761303 31.17158159 92.69376755 –2.183127483 –77.93131524

238.2348404 25.67682965 96.70842679 55.67403381 –68.57613603

297.7935505 30.24283028 100.6025842 78.09474130 –14.30637096

357.3522606 49.99214013 108.3635953 45.39695908 32.86645807

416.9109707 95.77118746 131.7055708 –4.370425087 35.48209364

iQ τ ϑ − τ
= 1,...,7i

ϕi ϕτ ( )ϕ ⋅ 610ir ( )ϕit τ ( )ϕvx i ( )ϕvy i
composite transporting trajectory of spacecraft trans-

fer from (2) to (3) is designated in Fig. 1 by symbol .
Next, we construct the first-approximation trajectory
(step 4). To do this, we form  by formulas (11),

specify  and vector , such that  km,
 day, and  km/s. Having applied

the algorithm for solving Problem 3, we obtain quan-
tity (18) equal to 167.6679442 m2/s3. The information,
characterizing intermediate points , is given in Table 2.
In accordance with (27), we have = –102.281590402 ·
10–7,  = –30.7907152907 · 10–7,  =
‒387.113857394 · 10–14,  = 64.2118702125 · 10–14,
and  =  = 0. The corresponding first-approxima-
tion trajectory is designated in the Fig. 1 by symbol T1.
Having performed steps 5 to 9 of the algorithm for
solving Problem 1, we calculate sought vector  with
components:  = –101.890974187 · 10–7,  =
‒31.2262700771 · 10–7,  = –4.03357164751 ⋅ 10–7,

1
'T
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 = –386.554657820 · 10–14,  = –58.0257795804 ·
10–14, and  = –0.17249478303 · 10–14 and quantity (4)
equal to 168.5525918 m2/s3. The corresponding trajec-
tory of spacecraft transfer from (2) to (3) visually coin-
cides, in Fig. 1, with first-approximation trajectory T1.
Since |168.5541035 – 168.5525918| , the
indicated  acts as the second element of manifold

 (step 10). Thus, for  = September 2, 2018 (JD =
2458364.34) and  = 185 days,  168.55 m2/s3

with the specified accuracy  is achieved on two dif-
ferent trajectories of spacecraft transfer to Apophis,
designated in the figure as T0 and T1.

It should be noted that the results can also be used
as an initial approximation for solving the problems
with a non-zero, hyperbolic excess of the spacecraft’s
velocity near Earth, when the velocity impulse of a
high-thrust engine on the circular near-Earth orbit is
estimated by formula:

4
eψ 5

eψ

6
eψ

−< ⋅ 32.0 10
eψ

optΨ τ
ϑ − τ =optJ

εJ

∞Δ = + −2E E

0 0
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where  is the hyperbolic velocity excess vector, the
optimal value and direction of which are subject to
determination.

The total time of solving stated problem , on a
single processor core with a frequency of 2.4 GHz, was
478 seconds. At the same time, the construction of a
composite transporting trajectory has spent ,
the formation of the first-approximation trajectory
required , and the accurate solution of the
boundary value problem by the local descent method
was performed for . It is obvious that the
above estimates of calculation expenses are only indic-
ative, and quantity  can be essentially reduced by
optimizing the corresponding program code in the
operation speed. It is also advisable to make use of the
dynamic programming method capabilities and paral-
lelize the calculations of the algorithm for solving
Problem 2 between several processor cores.

CONCLUSIONS
In this study, we proposed the regular method for

numerical optimization of transfer trajectories for a
spacecraft with perfectly controlled EJPS thrust. The
main features of the method are as follows:

(1) The method allows one to find extreme trajec-
tories with a specified angular range, which differ from
each other in the number of revolutions around the
attracting center.

(2) The procedure for solving the stated problem is
regular and is performed in three stages: (1) generation
of a series of composite transporting trajectories in the
impulse formulation, (2) construction of first-approx-
imation trajectories in the linear formulation, and
(3) accurate solution of nonlinear boundary value prob-
lems with subsequent analysis of the results.

(3) The algorithm for constructing pulsed compos-
ite transporting trajectories is based on an optimiza-
tion method that allows finding the optimum of an
additive function on the corresponding computational
grid, even if this function is not unimodal in the com-
putational domain.

(4) The procedure of finding accurate solutions of a
nonlinear boundary value problem, in the zero approx-
imation vicinity, is quite reliable, since it is developed
while accounting for a high sensitivity of these solutions
to the quality of an initial approximation.

(5) All the a priori information, involved in the
working process, has an obvious physical interpreta-
tion (so, for example, the user does not need to specify
the initial ranges of change of conjugate variables).

(6) All used algorithms do not require significant
calculation resources.

The disadvantages of this technique include the
limitations that it imposes on the nature of optimal
spacecraft transfer trajectories; it is believed that such
trajectories, although they are spatial in the nature,

∞v

calcT

⋅0.6 calcT

⋅0.35 calcT

⋅0.05 calcT

calcT
cannot deviate far from a certain plane (for example,
the ecliptic plane).
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