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Abstract⎯Control of an orbital tether system that consists of two small spacecraft has been considered. The
proposed control laws are based on the modification of well-known programs for the deployment of tether
system systems under the assumption that the masses of spacecraft and the tether are comparable in magni-
tude. To construct nominal deployment programs, we have developed a mathematical model of the motion
of the given system in an orbital moving coordinate system taking into account the specific features of this
problem. The performance of the proposed deployment programs is assessed by a mathematical model of the
orbital tether system with distributed parameters written in the geocentric coordinate system. The test calcu-
lations involve a linear regulator that implements feedback on the tether length and velocity.
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STATEMENT OF THE PROBLEM
At present, the construction of orbital tether sys-

tems (OTSs) for different purposes and configurations
has remained an interesting problem. There are dozens
of space tether experiments that have been completed
or planned [1–3]. The most responsible and complex
stage of any space tether experiment is the OTS deploy-
ment, which is responsible for the success of the space
operation as a whole. The stage of OTS deployment is a
complex dynamical process that requires a comprehen-
sive study of control laws and their implementation. In
recent years, small spacecraft are finding ever increas-
ing use due to constant improvement of onboard equip-
ment. The deployment of OTSs with low end masses
requires the development of new OTS deployment pro-
grams and the modification of existing programs.

To construct nominal tethering programs, we
developed a mathematical model of the OTS motion
in an orbital moving coordinate system taking into
account the specific features of the given problem, i.e.,
the fact that the masses of end bodies and the tether are
comparable. The mathematical model was designed for
an inextensible tether in an orbital moving coordinate
system. The model developed was used for the case of
two nominal laws of OTS deployment that differ by the
end state of the system, i.e., (1) in the vertical position
and (2) deviated from is a parametric law that imple-
ments the dependence of the tether tension force on its
length and rate. The control program is based on a
modification of the well-known law of the optimum
damping of OTS oscillations given in the classical
monograph [1]. Other modifications of this law were

used in many studies [4, 5], as well as in the real exper-
iment described in [6]. The nominal program of OTS
deployment with a tether deviation in the end state
from the vertical position is sometimes used to con-
struct a system with some angular velocity of rotation
relative to its center of mass. In this case, for example,
when the tether is broken, the end bodies acquire addi-
tional pulses that change the parameters of their
orbital motion. Specifically, this maneuver was used in
the YES2 real tether experiment [2] in order to
increase the effective braking pulse when the descent
capsule returns back from the orbit with the help of the
OTS. These programs are typically designed using the
performance criteria [4]; they are close to the relay
control laws and consist of acceleration and decelera-
tion phases. Clearly, this involves relatively large accel-
erations; therefore, it becomes of particular signifi-
cance to take into account the tether mass, which
increases the inertia of the system.

Supposedly, in the initial position, small spacecraft
constitute a single entity and move along a circular
Earth orbit. After separation, the small spacecraft
move in the vicinity of the local vertical; here, their
motion trajectory, the deployment time, and other
parameters depend on the parameters of control laws.

The performance of control laws is assessed by the
model of OTS motion with distributed parameters,
where the tether is represented as a set of material
points connected to one another by elastic links. These
mathematical models were used in many studies (see,
e.g., [7, 8]). It is assumed that, in each elementary seg-
ment, the tension force obeys Hooke’s law of elasticity.
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The model with distributed parameters is coupled with
the equation for the control mechanism of the tether
operating only for deceleration. The strength in the
control mechanism is given according to the principle
of feedback in terms of measurements of the tether
length and rate. The spacecraft in the model with dis-
tributed parameters are treated as material points. If
necessary, the rotation of end bodies can be taken into
account with the help of existing methods [9]. To assess
the performance of the nominal program, the so-called
ideal control is used; i.e., the specific features of the
control system (such as the discreteness of control,
delay, and measurement errors) are disregarded.

MODEL FOR CONSTRUCTING NOMINAL 
PROGRAMS OF OTS DEPLOYMENT

The motion of the system is described using the fol-
lowing set of coordinate systems:  

 and  Here,  and  are
orbital geocentric coordinate systems,  is the
orbital coordinate system associated with the OTS
center of mass, and  is the tether system of
coordinates. The  and  axes are directed to
the ascending node of the orbit and along the radius–
vector of the OTS center of mass, the OZ and 
axes coincide and are parallel to the vector of the
kinetic moment of motion of the center of mass C of
the system, and the axes of the  and 
coordinate systems are parallel. The coordinate system
OXYZ is assumed to be fixed. The coordinate system

 is rotated relative to the fixed coordinate sys-
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tem OXYZ with angular velocity  where u is
the argument of latitude; here,   for
an angular orbit. The tether coordinate system

 was used earlier in [10]. In view of the specif-
ics of the given problem, the  axis coincides with
the vector of the tether tension force  and is
directed from the center of mass C to body 1 (Fig. 1)
if the tether length is  The position of the coor-
dinate system  relative to  is deter-
mined by angles  and  (Fig. 1). The transition
matrix between coordinate systems is the same as in
[10]. For , the OTS is deployed in the orbital
plane; in this case, the planes  and  coin-
cide and  is the angle of tether deviation from the
local vertical drawn from the center of mass C of the
system. The tether is deployed from body 1 with a
mass of  where  is the linear density of
the tether material and  is the initial mass.

The equations of system motion are derived using
the classical Lagrange method

(1)

where  and  are the kinetic and potential energies
of the system, respectively;  and  (i = 1, 2, 3) are
the generalized coordinates and velocities, respec-
tively;  are the generalized nonpotential forces; and

  and 
The equations of motion are derived using the fol-

lowing obvious relations:

(2)

 (3)

where M is the center of mass of the system; 
are the radius–vectors of the center of mass and end
points;  is the tether mass;  is
the radius–vector of the center of mass of the tether;
and 

The kinetic energy in Eqs. (1) is the sum of the
kinetic energies

(4)

where   and  and   and  are the coordi-
nates of end bodies in the fixed coordinate system
OXYZ and  is the kinetic energy of the tether.
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According to expressions (2)–(3), the coordinates
of end bodies can be calculated as follows:

(5)

(6)

where  is the magnitude of the radius–vector 
The equations are derived under the assumption

that the center of mass C moves in a circular orbit, i.e.,
 and  The validity of this

assumption can be verified on specific examples for
simulating the motion of OTS as a distributed system
in the geocentric coordinate system.

The kinetic energy of the tether as any mechanical
system is the sum of kinetic energy of the center of
mass and kinetic energy of tether motion relative to its
center of mass ( ). Therefore, we have

(7)

where  is the velocity of the center of mass of the
tether.

The velocity vector of the center of mass of the
tether has the following components:
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center of mass of the system due to changes in the
tether length.

The components of  in the fixed coordinate sys-
tem OXYZ have the form

 (9)

The components of  in the coordinate system
OXYZ are determined as follows:

(10)

where  is the matrix of transition from
the tether coordinate system  to the fixed coor-
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tether (in some direction), one can easily determine its
components in the coordinate system OXYZ:

(14)

Here, the positive direction of  is taken to be the
case when the center of mass of the tether is between the
center of mass of the system and the point ; i.e., the
velocity vector  is directed towards  and, therefore,
is opposite to the  axis (Fig. 1). However, it should be
noted that, from the viewpoint of kinetic energy calcu-
lations, the final expressions obtained for  are the
same for any position of the center of mass of the tether
and, thus, the equations of motion are the same.

The kinetic energy of the tether , as it rotates rel-
ative to its center of mass is

(15)

where  is the moment of inertia of the

tether relative to its center of mass.
The set of expressions (5)–(15) describes the

dependence of kinetic energy of OTS on generalized
coordinates and velocities, which makes it possible to
use expression (4) in the Lagrange equations.

To obtain generalized forces conditioned by the
Newtonian central gravity field of the Earth, we use
the following expressions for potential energy of each
body involved in the system:
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 and  Calculating integral (17),
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respect to generalized coordinates, we obtain
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where 

Here, it should be noted that  is the moment of
inertia of the system relative to its center of mass and

the relation  is true.

The system is influenced by not only potential
gravity forces, but also nonpotential forces (e.g., the
nominal tension force  at the point of tether release
with work only on the possible shift ).
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 (21)

(22)

where

If the mass of the first body is  we
have  and, therefore, 

   Then, as a
partial case, we obtain the equations given in [5], when
the base spacecraft is a body of a large mass and moves
along a fixed circular orbit. If this assumption is cou-
pled with the consideration of the plane problem

 we obtain the equations given in [2].
The nominal trajectories of OTS deployment are often
constructed from equations with a weightless tether
(see, e.g., [4, 10]) under the following assumptions:

  which also follow from system (20)–
(22). Equations (20)–(22) can be used not only in the
OTS deployment from small spacecraft, but also for
designing extended tether systems with a mass that is
comparable to the masses of the end bodies.

ANALYSIS OF NOMINEE PROGRAMS OF OTS 
DEPLOYMENT IN THE VERTICAL POSITION

The control force in the tethering mechanism is
often given as the sum as follows [2, 10]:
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 (  ) if the tension

force is determined from the expression
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where a, b are parameters of the law and  is the
tether length in the end position of the system.

The stability analysis of the end equilibrium posi-
tions is performed in a standard way by constructing a
linearized system. The linearized system has the fol-
lowing specific features: (1) The equations for devia-
tions by the variables  are separated from the
remaining equations of the system and have always
purely imaginary eigenvalues;

(2) for b = 0 and  where  is some crit-
ical value, all the eigenvalues of the linearized system
are purely imaginary;

(3) if   we have asymptotic stability

for the plane motion of OTS  in the linear-
ized formulation;

(4) there is a critical value of the parameter , such
that the two eigenvalues become real and negative at

.
These propositions are independent of the OTS

parameters  the end length of the tether
, and the height of the original circular orbit 

Here, we consider fairly high orbits for which the
atmospheric influence can be disregarded during the
deployment. In typical terminal cases, for a weightless
tether  and a base spacecraft with a large mass

, we have  In other cases,
the critical value satisfies  and depends on
the parameters 

If we consider tether control mechanisms that only
operate for deceleration and have no tether retraction,
the parameter must be satisfy the condition  In
this case, the nonlinear model yields 

 and   as  which
corresponds to the specific features of these mecha-
nisms. Due to asymptotic stability, the OTS deploy-
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When the parameter  increases, the time of OTS
deployment increases on the one hand and the maxi-
mum rate  decreases, which allows the upper
limitation in inequality (25) to be satisfied. On the
other hand, when  , the deployment
time decreases. The lower limitation in inequality (25)
may be violated in the initial section of the OTS
deployment (immediately after the separation of the
small spacecraft). However, when the parameter b
decreases , this limitation can also be satis-
fied. Thus, the choice of the parameter b is based on a
compromise ensures that inequality (25) is satisfied.

Another important limitation that should be taken
into account with law (24) is the following limitation
on the nominal tension force:

(26)
For an OTS that consists of small spacecraft, the

upper limitation on the force is certainly satisfied due
to the materials used. The lower limitation should
eliminate the tether slacking; here, it is necessary to
take into account the transient processes occurring
during the operation of the control system because the
control force is given as (23). An analysis indicated
that the limitation  in using law (24) can only
occur in the initial section of the OTS deployment
(immediately after the separation of the small space-
craft). To avoid this, a simple algorithm is used. If the
force  determined by formula (24) is less than 
it is taken that ; i.e., the system is deployed
with a constant tension force. During further deploy-
ment of the OTS, the tether length increases, which
leads to an increased magnitude of  calculated
according to (24). Therefore, after a relatively short
time, the nominal tension force is again calculated
from formula (24). Clearly, the use of this algorithm in
the initial section of the OTS deployment cannot
change the end state of the system determined accord-
ing to law (24).

Here, it should be noted that, for the partial case con-
sidered in [5], when  and 
the lower limitations in inequalities (25)–(26) can only
be violated at relatively large tether lengths  (at least
20–30 km). For a system that consists of small space-
craft with masses comparable to the tether mass, the
same limitations can also be violated for small values of

 (a few kilometers). Therefore, in this case, the
choice of the law parameters is a more difficult task.

In view of the above discussion, the construction of
the nominal deployment program is formulated as a
two-parameter problem of constrained optimization

 where J is some optimality criterion (e.g.,
the time of system deployment) under the constraints
given above (25)–(26). The relative rate of separation
of small aircrafts can be given or included in the set of
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chosen parameters because its value directly affects
the lower limitations in inequalities (25)–(26).

Mathematical model (20)–(22) makes it possible
to correct the OTS deployment trajectories and nom-
inal dependences   , which enters into
expression (23) to calculate the required control force
in the tethering mechanism. As an example, Fig. 2
shows the trajectories of end bodies relative to the center
of mass for a deployment length of  km with
the following initial data:  kg,  kg,

 kg/km,  km, and a = b = 4. The axis
of ordinates coincides with the local vertical drawn
through the center of mass of the system. The initial
relative rate of separation (  m/s) is directed
along the local vertical. The OTS deployment time
corresponds to approximately three turns of the center
of mass of the system around the Earth and provides
0.2% of the relative error by the tether length. Figure 2
shows the trajectories of end bodies with weighted
(solid line) and weightless (dashed line) tethers. The
positions of end bodies calculated by various models
differ (in terms of distance) by almost 3 km. In this
example, the tether mass is 6 kg, which is comparable
to  and constitutes around one-third of the mass 
of spacecraft that releases the tether.

If the specific features of the OTS deployment with
small spacecraft are disregarded, this can lead to large
errors in the estimate of the nominal tension force of
the tether  For simpler models, the error in calcu-
lating  is largely associated with the fact that the
coefficient  in expression (24) is estimated incor-
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rectly. Figure 3 compares the estimates of  for differ-
ent models. Since the coefficient  has a unit of mass,
the plots show the dimensionless parameter  as a
function of the tether length. The value of the ratio

 provides an approximate estimate for the tether
tension calculated by different models compared with
the tension force found in the simplest case of a weight-
less tether  and ; then,  [1,
4]. The upper dashed line corresponds to the model
described in [2, 5] for ; therefore,

 The solid line corresponds to the

case of  kg/km,  kg, and  kg.
The dash-dotted line corresponds to  kg,

 kg.
Thus, the mathematical model given by Eqs. (20)–

(22) and the resulting program of tether release (24)
make it possible to correct the existing laws of OTS
deployment in the vertical position and obtain nomi-
nal dependences that take into account the specificity
of the given problem.

NOMINAL PROGRAM 
FOR QUICK DEPLOYMENT 

OF OTS WITH SMALL SPACECRAFT

The OTS programs that ensure the system motion
after the tether release with some angular velocity of
rotation relative to the center of mass are normally
constructed using the criteria of fast operation [4]. In
this case, the use of the Pontryagin maximum princi-
ple leads to relay control laws [4]. Therefore, in this

ν e

ν e

2ν e m

2ν e m

ρ 0→ 0
2 1 0m m → 2ν e m→

0
2 1 0m m →

2ν ρ 2.e m L→ +
ρ 0.2= 0

1 20m = 2 10m =
0
1 100m =

2 10m =

case, the OTS deployment is divided into two phases,
i.e., acceleration and deceleration. The programs of
quick OTS deployment differ in their dynamics
because they are characterized by relatively large
accelerations. Therefore, the use of the tether mass in
the construction of programs of OTS deployment with
small spacecraft becomes of special importance.

To estimate the tether mass effect, we consider a
fairly simple program of rapid deployment of OTS
[4] obtained from using the Pontryagin maximum
principle:

(27)

where  are the law parameters. This law of
deployment (with an appropriate choice of its param-
eters) provides the deployment of OTS with a length of

 and a tether deviation in the end state from the
vertical with a zero end relative velocity.

As an example of the use of law (27), we consider
an OTS deployment with the same characteristics as
described above. In the initial state, the center of mass
of the system moves along a circular orbit of a height
of 1000 km. The bodies in the system have the follow-
ing characteristics:  kg,  kg, and

 kg/km. The end length of the tether is
 km. Program (25) with the parameters

  and  s allows
the OTS to be deployed at a given length with a zero
end relative velocity. The deployment time is 1.5 h.
The law parameters were chosen from model (20)–(22)
taking into account the tether mass (in the end state,
the total mass of the deployed tether is 6 kg). The cal-
culation of the deployment process with the same law
and the same parameters by the model with a weight-
less tether  is characterized by noticeable dif-
ferences in the dependences  and , which
describe the nominal motion of the system (Fig. 4).
Figure 4a shows the function  obtained by the
model for weighted (solid line) and weightless (dashed
line) tethers. The rate difference at the end of the OTS
deployment is almost 2.3 m/s, which is comparable to
the initial separation rate. Here, the end relative rate
becomes negative, which is unacceptable in this case.
The difference in functions  leads to a difference
in dependences ; here, the difference 
reaches 1.5 km (Fig. 4b). The positions of end bodies
obtained by various models differ (in terms of dis-
tance) by almost 3.5 km.

The parameters of law (25) are chosen by solving
boundary value problems, which ensure the given end
conditions for the system motion using nonlinear pro-
gramming methods. It follows from the above example
that, if the masses of end bodies and the tether are
comparable in magnitude, this requires the use of

min
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more complex models, such as (20)–(22), taking into
account the tether weight.

ASSESSMENT OF THE IMPLEMENTATION
OF PROGRAMS OF DEPLOYMENT

OF OTS WITH SMALL SPACECRAFTS
The implementation of programs of the deployment

of OTS with small spacecraft and the validity of
assumptions are assessed by a discrete model of motion,
which treats the tether as a set of n material points. Each
material point (including the end points) is affected by
gravity forces in the central Newtonian field, inertial
forces, and tether tension forces. The tension forces are
calculated by Hooke’s law taking into account that the
mechanical links are one-sided (the tether is not
affected by compressive forces). The aerodynamic
forces and dissipative forces in the tether are disre-
garded. If the number of points n is large enough, this
model describes the dynamics of OTS as a system with
distributed parameters.

Here, we describe only some characteristic fea-
tures of the discrete model because similar mathe-
matical models have been used in many studies (see,
e.g., [5, 7, 8]).

The motion of a tether system is described in the
geocentric fixed coordinate system OXYZ as the fol-
lowing set of differential equations:

 (28)

where  , and  are the radius–vector, velocity,
and mass of the kth material point;  is the gravity
force;  is the tether tension force acting between the
kth and ( )th points and applied to the kth point;
and k = 1, 2, …, n. In system (28), the tether is released
from a small spacecraft with mass  During the sys-
tem deployment, the number of material points n that
describe the tether increases. Thus, the second end
body (another small spacecraft) is a material point of
mass 

System (28) is coupled with equations that approx-
imately take into account the dynamics of the control
mechanism operation. These equations can be written
as [10]

 (29)

where the coefficient  describes the inertia of the
control mechanism; l is the length of the tether
released from the control mechanism;  is the tether
release rate;  is the tension force in the first phase,
which starts with the spacecraft that releases the
tether; and F is the control force in deceleration mech-
anism (23). The change in inertia of  during the OTS
deployment is ignored.
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The tension force is calculated by Hooke’s law tak-
ing into account that the mechanical link is one-sided
as follows:

(30)

where    is the
undeformed length of the tether segment, c is the coef-

ficient of tether stiffness, and 

For the numerical simulation of system (28)–(29),
an important point is the algorithm of the introduc-
tion of a new point [5], which is necessary for the OTS
deployment process. The new material point is intro-
duced at a time when the undeformed length of the
first section of the tether, measured from the space-
craft that releases the tether, becomes higher than
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 Here, n is the total number of points
when the tether is fully released according to the nom-
inal control law. The undeformed length of the section
is calculated by Eqs. (29), which excludes the tether sec-
tions that have already been formed. The position of a
new point is determined from the condition that the
tension forces on both sides obtained by formula (30)
are equal; here, the magnitude of these forces must be
equal to the tension force at the same section before
the introduction of the new point. The velocity vector
of the new point relative to the spacecraft  that
releases the tether is determined from the known rela-
tive velocity of the nearest point through appropriate
proportions. Finally, the conservation law for the
motion of the system is used to correct the velocity
components of the base spacecraft .

end ( 1).L n −

( )1m

( )1m

Equations (28)–(29) make it possible to assess how
the OTS deployment is affected by some factors that
were not taken into account in the construction of
nominal trajectories of the system motion. These fac-
tors include the following: (1) the expandability of the
tether, (2) the inertia of the control mechanism, and
(3) the perturbed motion of the center of mass of the
system. Mathematical model (28)–(29) can also be
used for the preliminary choice of feedback coeffi-
cients  , which enter into the expression for con-
trol force (23). However, this choice will not take into
account the disturbances that arise during the imple-
mentation of specific control systems; the discreteness
of control actions and individual elements of control
systems, the delay, the measurement errors, etc. How-
ever, the quality operation of this ideal control is a
necessary condition that must be met at the prelimi-
nary stage of the control system construction.

The numerical calculations using the discrete math-
ematical model of OTS motion (28)–(29) were per-
formed for the above-mentioned nominal deployment
programs and for the same initial data. The tether rigid-
ity is с = 7070 N. The minimum control force is 0.02 N
and the inertia of the control mechanism is 0.3 kg. The
problem of optimal choice of the feedback coefficient
was not solved because it requires separate consider-
ation. Therefore, the feedback coefficients were taken
to be constant (  ) in accordance
with the results of [5, 11], which considers OTS deploy-
ment programs similar to program (24), but for the
above-mentioned special cases.

The simulation of the OTS deployment (Lend =
30 km) by the discrete model in accordance with pro-
gram (24) indicated that, if the separation of small
spacecraft is ideal (the relative separation rate coin-
cides with as the local vertical), the final deployment
errors are slight, i.e.,  m,  m/s. The
inertia of the control mechanism in a fairly wide range

 kg has almost no effect on the magnitude
of errors. The errors in the separation of small space-
craft affect the transient processes in the control sys-
tem differently. The change in the relative separation
rate in a fairly wide range  m/s does
not add up to control errors. The highest effect on the
accuracy of OTS reduction to a given state is based on
the errors associated with the direction of the relative
separation rate of small spacecraft. For example, for
the given initial data, if the error in the direction of
separation is , the control errors become
increased. Specifically, the maximum (by trajectory)
error along the tether length  grows up to
1.5 km. In addition, the finally deployed system is not
in the vertical position and oscillates relative to the
center of mass with some amplitude. This effect is
illustrated in Fig. 5a, which shows the perturbed tra-
jectory (dashed line) of the end body  relative to a
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small spacecraft that releases the tether (the origin of
coordinates). The unperturbed trajectory of the same
body is shown by a solid line. The resulting perturba-
tion cannot be compensated for by control because the
control force is always directed along the tether.

Since the program of quick tether release (27) is
characterized by relatively large accelerations and the
end position of OTS is not an equilibrium state and, in
this case, the simulation of the OTS deployment
(  km) by discrete model (28)–(29) leads to
different results compared to the previous program.
Even with the ideal separation of small spacecraft, the
above-mentioned program leads to maximum control
errors  km,  m/s,
although the same errors when the deployment is
completed are close to zero. However, the large errors
arising during the OTS deployment lead to a differ-
ence in the position of the end point relative to its
nominal position (1.2 km). The effect of object separa-
tion errors on control defects is qualitatively similar to
the previous case. The deployment trajectory is espe-
cially sensitive to the initial errors in the direction of the
separation of small spacecraft. Figure 5b shows the tra-
jectories of a smaller spacecraft  relative to a space-
craft with control mechanism for the case when the
error along the separation direction is 
The solid line denotes the nominal trajectory and the
dashed line denotes the perturbed trajectory. The error
in the end state of the smaller spacecraft relative to the
base spacecraft reaches 5.2 km. The authors did not
manage to significantly reduce the control errors by
varying the feedback coefficients in expression (23).

The construction of nominal programs of OTS
deployment assumed that center of mass of the system
moves along a fixed circular orbit. In these cases, the
verification of this assumption by the model with dis-
tributed parameters shows that the deviations in the
orbit height (Н = 1000 km) at the end tether length
(  km) do not exceed 16 km.

When simulating the motion with discrete model
(28)–(29) for the OTS with the above-mentioned
characteristics, it will suffice to specify the length of

the segment at a level of 1–3 km. A further increase in
the number of points hardly changed the simulation
results.
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