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1. INTRODUCTION

The restricted three�body problem consists in
studying the motion of a passively gravitating point М
in the Newtonian field of attraction of two material
points M1, М2 having masses m1, m2, respectively. The
points move in Keplerian orbits around their centers of
mass [1]. One distinguishes planar and spatial prob�
lems, which have corresponding names, such as “the
spatial–elliptic restricted problem of three bodies.” In
this work we consider the planar circular restricted
three�body problem, where point М moves in a plane
determined by the circular orbits of points M1, М2.

The restricted three�body problem has practical
application in space dynamics. It is sufficient to men�
tion [2], which summarizes the applications of this
problem for calculating the trajectories to reach the
Moon. Note also papers [3–5], in which the periodic
orbits of the restricted three�body problems are inves�
tigated. These papers contain extensive lists of refer�
ences on this subject.

In this paper the regularization (elimination of sin�
gularities) of the equations of motion in the planar cir�
cular restricted problem is considered. As is known [4],
singular points located at attracting centers M1, М2 can
be eliminated by transforming the independent vari�
able. In addition to this transformation, one can con�
sider the transformation of the dependent variables
coordinates and velocities. In the problems of eliminat�
ing the singularities one distinguishes local and global
regularizations (beginning with the three�body prob�
lem). In global regularization all singularities are elimi�
nated. The examples are: global Birkhoff regularization
in the restricted three�body problem [4], the regulariza�
tion of the problem of two motionless centers [6], the
global Heggie regularization of the N�body problem [7].
As an example of local regularization, we mention the

works [8, 9]. We will perform global regularization by
transforming the time and applying two L�transforma�
tions of the second order, generated by generalized
Levi–Civita matrices. Note that we performed a similar
regularization in the motionless coordinate system [10].
Here we will consider regularization in the rotating
coordinate system and present the numerical study of
obtained regular equations. The detailed theory of
L�matries is given in papers [10, 11]. In this paper we
present necessary information on this issue.

We introduce the motionless coordinate system
ОХ1Х2 with its origin at the centers of mass of points M1,
М2. Let X = (X1,X2)

T be the position vector of point М
with mass m. This point is affected by the forces of
attraction F1, F2 from the side of masses М1, М2, respec�
tively (Fig. 1). On the basis of Newton’s second law, the
equation of motion of point М can be written as
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where γ is the gravitational constant, t* is the physical

time, and R1 =  R2 =  are the distances
to attracting masses.

Points M1, О, М2 lie on the same straight line.
Denote by n the angular velocity of points M1, M2.
Then the angle nt* is the longitude of point М1. Let
di is the distance from О to Mi (i = 1, 2). The coordi�
nates of points М1, М2 equal

We introduce the force function

where

.

Then equation (1), after reduction by m, can be
written in the form

(2)

In equation (2) we will pass to the dimensionless
quantities

where l = d1 + d2 is the distance between М1, М2. For
the derivatives we obtain

where the dot indicates the derivative with respect to
the dimensionless time t.

Now we substitute the derivatives and dimension�
less quantities into equation (2). Introducing the vec�
tor u = (u1, u2)

T and using Kepler’s third law, we get the
equation

(3)

where Φ = Φ(t, u1, u2) =  +  is the force function,

μ1, μ2 are the ratios of masses:
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are the distances to attracting centers in the new vari�
ables.

2. CANONICAL EQUATIONS OF MOTION

For further transformations we write equation (3)
in the canonical form

(4)

where v2/2 – Φ is the Hamilton function.

We pass to the new coordinates ξ = (ξ1, ξ2)
T, η =

(η1, η2)
Т, so that the new Hamilton function did not

depend explicitly on time. We take the generating
function of the form

(5)

where S is the matrix of uniform rotation with unit
angular velocity

According to the theory of canonical transforma�
tions, we have

where 

We express the Hamiltonian � in terms of new
variables. We have u2 = ξ2, v2 = η2,

where ξ1 = (μ2, 0)T, ξ2 = (–μ1, 0)T are position vectors
of points M1 М2, respectively, in a rotating coordinate
system.

Now the explicit dependence on t in the force func�
tion disappears:

The new Hamiltonian takes the form
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The equations of motion in the new variables ξ, η
will be as follows:

(6)

or, in more details, in the coordinate form

(7)

Since the Hamiltonian � does not depend explic�
itly on time t, then � = const is the first integral. This
integral is identical to the Jacobi integral [4].

3. NEW VARIABLES

Denote by ξ0, η0 the initial values of variables ξ, η
at time instant t = 0.

By analogy with paper [12], we consider the new
variables, which are zeroed when point М collides with
points М1, М2,

(8)

Since we conserve the canonical form of the equa�
tions of motion, variables хi should comply with the
same number of conjugated momenta yi we will intro�
duce by the formula

(9)

With this approach, the number of degrees of free�
dom of the problem under consideration increases.
Therefore, it is necessary to check the solutions of the
new canonical system transfer, by means of transfor�
mations (8), (9), into the solutions of the original sys�
tem (6).

We form the new Hamiltonian

where the arguments х, у of the Hamiltonian H repre�
sent the four�dimensional vectors

ξ
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The order of the corresponding canonical system

(10)

is equal to eight.

In an expanded form, the equations of system (10)
are as follows:

(11)

(12)

For   we will take the following initial values:

(13)

Then, obviously,   are transferred, by means

of (8), (9), into ξ0, η0.

With regard to the accepted initial conditions (13),
we find from (11) the first integral of system (10) in the
vector form: x1 + ξ1 = x2 + ξ2. These quantities repre�
sent two scalar integrals.

Now we will show that the solutions of system (6) can
be obtained from the solutions of system (10), or, what is
the same, from (11) and (12). Differentiating (8), we
find

Similarly, from (9) we have

Which was to be shown.

4. REGULARIZATION PROCEDURE

The right�hand part of equations (12) contains
singularities generated by attracting points М1, М2.
To eliminate these singularities, we will perform reg�
ularization. At first, we apply the uniform formalism
and introduce the new time. Then we will make use
of L�transformations [10].
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In accordance with this sequence of operations, we
will first consider the system

(14)

where На = H(х, у) + у0. Because

we obtain that На is the integral of system (14). When
choosing, at the initial time instant, for x0, y0 the val�
ues x0(0) = 0, y0(0) = –H(х(0), у(0)), the variable х0
coincides with t, and the integral На assumes a zero
value, regardless of the initial values for the other
variables х, у. In addition, the last four equations of
system (14) coincide with the equations of system (10).

Now we consider the time transformation dt = νdτ
and the system

(15)

where ν = ν(x), Hb = Hb(х, у0, у) = νНа = ν(Н + у0).
The initial values for variables х0, х, у0, у of systems (14)
and (15) are assumed to be identical

(16)

where i = 1, 2. Then the solutions of system (14) are
obtained from the corresponding solutions of
system (15). Now we introduce the vectors qi = (qi1, qi2)

T,
i = 1, 2, and consider the coordinate transformation

(17)

defined by two L�matrices of the second order

.

Here {A1, A2}, {B1, B2} are two sets of generating matri�
ces L1 and L2, respectively. Matrices А1, А2, В1, В2 are
symmetric and orthogonal. These matrices are related
by relationships  = 0, 
From where it obviously follows that А1, А2, B1, B2 differ
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from a unit matrix. As shown in [10], if the matrix А1 is
specified, then the matrix А2 is calculated by the formula

A similar formula is obtained for the second set of
generating matrices {В1, В2}. We note two more prop�
erties of L�matrices of the second order

(18)

We supplement the transformation (17) to a canonical
one, generated by the generating function

We find new momenta by the formulas

We write these equations in vector form. Let рi =
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T, i = 1, 2 are the conjugated momenta corre�
sponding to vectors q1, q2. We have

That is,
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the first relation of (18), we find  = 

In the same manner from p2 =  =  we
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Since the generating function of this transformation
does not depend explicitly on time τ, the new Hamilto�
nian Нс is obtained by substitution of variables (20) into
the Hamiltonian Hb. We find the expression for the new
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Hamiltonian. From the properties of the L�matrices we
obtain the relationships

Therefore,

where the arguments q, p of the Hamiltonian Нс represent

four�dimensional vectors q =  

To eliminate in the equations of motion the singu�
larities generated by point М collisions with attracting
points М1, М2, we take for function ν of time transfor�
mation the expression

Then
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In terms of the new variables the equations of
motion take the form

(21)

Now we write in more details the equations of sys�
tem (21). The first pair of equations of this system con�
tains the transformation of time and the law of change
of quantity р0:

It follows from the last equation that р0 = const.
Equations for qi, рi take the form

(22)

These equations, obviously, do not contain singulari�
ties arising from the collisions of a passively gravitating
point М with points М1, М2. The right�hand sides of
these equations represent polynomials with respect to
all variables; that is, these quantities represent infi�
nitely differentiable and unlimited functions on the
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whole space of variables qi, pi. As continuous func�
tions, they are limited in any closed limited set. There�
fore, for each such set the theorem of existence and
uniqueness of the solution of the Cauchy problem is
valid [13]. Consequently, for any initial values one can
construct converging Pikar’s approximations, which
can be extended or newly reconstructed at any point of
any compact set. In this sense, the problem can be
considered an integrated one. Unfortunately, these
solutions do not provide much information for quali�
tative analysis.

Note that the right�hand part of the equation for q1

is linear with respect to variables p1, р2; for q2 it is linear
with respect to q2, p1, p2; for р1 it is linear with respect
to p1; and for р2 it is linear with respect to q2, p2.

Now we substitute into regular equations (22) the
specific L�matrices. We introduce the notations and
the ten�dimensional vector

Suppose that L�matrices are applied that have a
positive determinant. Then one can take as generating
L�matrices the matrices of the form

where parameters λ1, λ2,   are related by relation�

ships   This means that, actu�
ally, equations (22) contain two arbitrary parameters.

The L�matrices applied in (22) take the form

z z1 z2 … z10, , ,( )T q1
T q2

T p1
T p2

T t p0, , , , ,( )
T

.= =

A1

λ1 λ2–

λ2– λ– 1⎝ ⎠
⎜ ⎟
⎛ ⎞

, A2

λ2 λ1

λ1 λ– 2⎝ ⎠
⎜ ⎟
⎛ ⎞

,==

B1

λ̃1 λ̃2–

λ̃2– λ̃– 1⎝ ⎠
⎜ ⎟
⎛ ⎞

, B2

λ̃2 λ̃1

λ̃1 λ̃– 2⎝ ⎠
⎜ ⎟
⎛ ⎞

,==

λ̃1, λ̃2

λ1
2 λ2

2+ 1,= λ̃1
2

λ̃2
2

+ 1= .

L1 q1( )
λ1z1 λ2z2– λ– 1z1 λ1z2–

λ2z1 λ1z2+ λ1z1 λ2z2–⎝ ⎠
⎜ ⎟
⎛ ⎞

,=

L2 q2( )
λ̃1z3 λ2z4– λ̃–( )2z3 λ̃1z4–

λ̃2z3 λ̃1z4+ λ̃1z3 λ̃2z4–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

L1 p1( )
λ1z5 λ2z6– λ–( )2z5 λ1z6–

λ2z5 λ1z6+ λ1z5 λ2z6–⎝ ⎠
⎜ ⎟
⎛ ⎞

,=

L2 p2( )
λ̃1z7 λ̃2z8– λ̃– 2z7 λ̃1z8–

λ̃2z7 λ̃1z8+ λ̃1z7 λ̃2z8–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

.=

After some simplifications, the system (22) can be
written in the form

(23)

where

dz1

dτ
������ a1 λ2z7 λ1z8–( ) a2 λ1z7 λ2z8+( ) 1

4
��r2z5+ +=

– 1
2
��μ2r2 λ1z2 λ2z1+( ) 1

2
��r1r2z2,+

dz2

dτ
������ a1 λ1z7 λ2z8+( ) a2 λ2z7 λ1z8–( ) 1

4
��r2z6+–=

– 1
2
��μ2r2 λ1z1 λ2z2–( ) 1

2
��r1r2z1,–

dz3

dτ
������ 1

2
��μ2r1A a5λ1 a6λ2

1
4
��r1z7++ +–=

+ a3 λ1z5 λ2z6–( ) a4 λ1z6 λ2z5+( ),+

dz4

dτ
������ 1

2
��μ2r1B a6λ1 a5λ2

1
4
��r1z8++–=

– a4 λ1z5 λ2z6–( ) a3 λ1z6 λ2z5+( ),+

dz5

dτ
������ z1a9 a10A a11B+( )λ1 a10B a11A–( )λ2+ +=

+ 1
2
�� 2z1

2 r1+( )r2z6 r2z1z2z5 a8 λ1z6 λ2z5+( )+–

+ a7 λ1z5 λ2z6–( ),

dz6

dτ
������ z2a9 a12A a13B+( )λ1 a12B a13A–( )++=

× λ2
1
2
�� 2z2

2 r1+( )r2z5 r2z1z2z6+–

+ a8 λ1z5 λ2z6–( ) a7 λ1z6 λ2z5+( ),–

dz7

dτ
������ a14z3

1
2
��μ2r1 λ̃2z7 λ̃1z8+( ) a17z3+ +=

+ a15 λ1z8 λ2z7–( ) a16 λ1z7 λ2z8+( ),+

dz8

dτ
������ a14z4

1
2
��μ2r1 λ̃1z7 λ̃2z8–( ) a17z4+ +=

+ a15 λ1z7 λ2z8+( ) a16 λ1z8 λ2z7–( ),
dz9

dτ
������– r1r2,=

r1 z1
2 z2

2
, r2+ z3

2 z4
2+ ,= =

p1 z5
2 z6

2+ , p2 z7
2 z8

2
,+= =

A λ̃1z4 λ̃2z3+ , B λ̃2z4 λ̃1z3, C– z1
2 z2

2
,–= = =

a1
1
4
�� λ̃1 z1z4 z2z3–( ) λ̃2 z2z4 z1z3+( )+( ),=

a2
1
4
�� λ̃1 z2z4 z1z3+( ) λ̃2 z1z4 z2z3–( )–( ),=
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The equation for the variable z10 is not written here,
since it is constant. Thus, the order of this system is
nine.

Now we will obtain formulas for the conversion of
the second�order L�transformation. Our calculations
involve two L�matrices. The conversion formulas for
them are identical. So, for brevity, we will write the
L�matrix and pairs of vectors q, p and х, у, corre�
sponding to this matrix, without index. Instead of
parameters λ1, λ2 we introduce the angular parameter
ψ ∈ [0, 2π): λ1 = cosψ, λ2 = sinψ. Then the matrix L(q)
can be represented in the form

(24)

where S(ψ) is the matrix of turning counterclockwise
by angle ψ

a3
1
4
�� z2A z1B–( ), a4

1
4
�� z2B z1A+( ),= =

a5
1
2
��AC– z1z2B–⎝ ⎠

⎛ ⎞ r1, a6
1
2
��BC– z1z2A+⎝ ⎠

⎛ ⎞ r1,= =

a7
1
4
�� z7B z8A+( ), a8

1
2
�� 2μ2r2 z7A z8B+–( ),= =

a9 μ2 2 z7A z8B–+( ) 1
4
��p2 2z10r2,––=

a10 r1z2z8 2z1
2 z2z8 z1z7+( ),+=

a11 r1z2z7 2z1
2 z2z7 z1z8–( ),+=

a12 r1z1z8 2z2
2 z2z7 z1z8–( ),–=

a13 r1z1z7 2z2
2 z2z8 z1z7+( ),+=

a14 2μ1
1
4
��p1 2z10r1,––=

a15
1
2
��λ̃1r1C z1z2λ̃2r1

1
4
��z5 λ̃1z2 λ̃2z1–( )–+=

– 1
4
��z6 λ̃1z1 λ̃2z2+( ),

a16
1
2
��λ̃2r1C z1z2λ̃1r1

1
4
��z5 λ̃1z1 λ̃2z2+( )––=

+ 1
4
��z6 λ̃1z2 λ̃2z2–( ),

a17 μ2 z5z2 z6z1+( )λ1 z5z1 z6z2–( )λ2+( )=

+ z1z6 z5z2–( )r1.

L q( ) S ψ( )L+
0 q( ),=  L+

0 q( )
q1 q– 2

q2 q1⎝ ⎠
⎜ ⎟
⎛ ⎞

,=

S ψ( )
ψcos ψsin–

ψsin ψcos⎝ ⎠
⎜ ⎟
⎛ ⎞

.=

In the complex form the transformation х = L(q)q
has the form

We will write it in the trigonometric form

where tanϕ = х2/х1, tanχ = q2/q1, tanψ= λ2/λ1.
Therefore,

Thus, if х1, х2 are known initial values, then the initial
values of regular coordinates q1, q2 are calculated by
the formulas (for k = 0)

After finding the vector q = (q1, q2)
T we calculate the

initial value of the regular momentum vector р by the
formula: р = 2LT(q)y, where у is the momentum vector
conjugated to х.

Note that in the system (23) (or (22)) one can intro�

duce, instead of parameters λ1, λ2,  , two angular
parameters ψ,  Specification of different pairs ψ, 
implies the transition from regular variables q, p to the
other variables , , which is performed by means of
two orthogonal transformations (for matrix L1 and for
L2). In so doing, the form of equations of systems (22),
(23) does not change. This implies the invariance of
these equations with respect to orthogonal transforma�
tions of regular coordinates.

5. NUMERICAL STUDY

Systems (6) and (23), with appropriate choice of
the initial values, describe the motion of the same
problem. Unlike (6), system (23) does not contain sin�
gularities. Thus it has an advantage when considering
the orbits undergoing close encounters with attracting
centers.

We denote the ratio of masses m1 to m2 as k. Then
we have

x1 ix2+ λ1 iλ2+( ) q1 iq2+( )2
, i 1– .= =

x ϕcos i ϕsin+( )

=  q 2 2χ ψ+( ) i 2χ ψ+( )sin+cos( ),

q 2 x , χ ϕ ψ– 2πk+
2

������������������������= = , k 0 1.,=

q1 q χcos x ϕ ψ–
2

�����������,cos= =

q2 q χsin x ϕ ψ–
2

�����������.sin= =

λ̃1, λ̃2

ψ̃. ψ̃

q̂ p̂

m1

m2

�����
μ1

μ2

���� k, μ2k μ2+ 1 μ⇒ 2
1

k 1+
����������,= = = =

μ1
k

k 1+
����������.=
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From Kepler’s third law we find the angular velocity

which is used at transition to dimensional quantities.
We will perform numerical experiments for the exam�
ple of the Earth–Moon system. In this case, k = 81.3,
l = 384400 km, γm1 = 398601.3 km3/s2. We apply the
Runge–Kutta–Felberg method of the eighth order
with automatic choice of the integration step. The step
of integration is controlled by the method of the sev�
enth order. The corresponding program is called the
pair RKF87 [14, 15]. As the relative local error of the
method we will take the quantity ε = 10–14.

As the control relation we will use the relative value
of the integral of system (6)

(25)

where �(0) is the value of the integral at the initial
time instant, � is the similar value at the current time
instant. In system (23) the integral of motion is given
by the relation z10 = const. From the tenth equation,
which is not written here, it follows that z10 is the
“ideal” constant. Therefore, for equitable comparison
based on the found values of variables zi, we will find
the values of variables ξi, ηi and then calculate the rel�
ative value of the integral by formula (25). The corre�
sponding value is denoted by δ�*. Now we consider
the hypothetical satellite with the initial values

n
γm1 1 k+( )

l3k
���������������������,=

δ� � 0( ) �–
�

�����������������������,=

ξ1 = .0122 = 4689.68 km, ξ2 = .0171 = 6573.24 km,

= ⎯10.6455 = –10.90683 km/s,  = .0 = .0 km/s. 
The distance to the center of the Earth at the initial
time instant is equal to ρ1 = 6573.27 km.

The results of numerical integration of systems (6)
and (23) are given in Table 1. All computations were
performed with double precision (real*8). The second
column presents approximate values of the length of
intervals of physical time t (in days), over which the
numerical integration of systems was carried out. The
other columns present, for the end of the integration
interval, the values of relative errors for the integral con�
stant δ�, δ�* and the number of addresses to the sub�
routine of calculation of the right�hand side for both
systems: N6 for system (6), and N23 for system (23).

The satellite under consideration undergoes multi�
ple close encounters with attracting centers. Figure 2,
implemented in the Maple system, depicts its orbit in
the interval t ≈ 101.38 days.

It is seen from presented data that, with increasing
integration interval, relative errors and the number of
addresses to the subroutine for calculation of system’s
right�hand side increase. The computational expenses
(numbers N6, N23) are almost twice as much as the
classical equations (6). In addition, the relative error
of the integral of motion δ�* in the regular case is less
than that of the irregular one.

It was noted above that system (23) contains two
arbitrary parameters ψ,  In particular, in calcula�
tions of Table 1 for matrices L1, L2 we applied the val�
ues ψ = 0,  = π/2, respectively. Of interest is the com�
parison of the results of integration of system (23) with
different parameters ψ,  for the same orbit.

We consider the satellite with initial values
ξ1 = .0090 = 3459.60 km, ξ2 = .0169 = 6496.36 km,

 = –10.6180 = –10.87865 km/s,  = .0 = .0 km/s.
The distance to the Earth center at the initial time

instant is equal to ρ1 = 6608.29 km. The orbit of this

ξ· 1 ξ· 2

ψ̃.

ψ̃

ψ̃

ξ· 1 ξ· 2

0.5

1.00.5–0.5–1.0 0

1.0
ξ2

ξ1

M1

M2

Fig. 2. Particle orbit on the interval t ≈ 101.38 days.

0.5

1.00.5–0.5–1.0 0

1.0

ξ2

ξ1

M1
M2

Fig. 3. Particle orbit on the interval t ≈ 70.25 days.

Table 1. Comparative analysis

n t (days) δ� ⋅ 10–14 δ�* ⋅ 10–14 N6 N23

1 101.38 9.79 0.52 37358 18054

2 230.33 37.74 0.22 72397 36864

3 404.56 39.00 11.55 101112 56901
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satellite is presented in Fig. 3. Integration results
(Table 2) show the nonequivalence of various systems
of regular coordinates: the relative errors in the con�
stant of the integral of motion and the volumes of cal�
culations of the vector of accelerations are different for
different parameters ψ, 

CONCLUSION

The regular equations of the planar circular
restricted three�body problem are obtained in the
paper. In the regularization procedure we used two
L�matrices of the second order. The equations contain
two arbitrary parameters and are invariant with respect
to orthogonal transformations of regular coordinates.
Numerical calculations demonstrated the efficiency of
the obtained equations for the orbits undergoing close
encounters with the attracting centers.
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Table 2. Integration with different parameters ψ, 

n ψ δ�* ⋅ 10–14 N23

1 0 0 1.15 14261

2 p/2 0 0.38 14569

3 0 p/2 0.08 14455

4 p/2 p/2 1.17 14312
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