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The tidal evolution of the “planet–satellite” sys�
tem has been investigated by many authors [1–3]. This
work uses the methods of the analytical mechanics of
systems with an infinite number of degrees of freedom
[4]. This approach has been applied earlier, in partic�
ular, to a series of problems on the translational–rota�
tional motion of a viscoelastic sphere [5–7].

1. STATEMENT OF THE PROBLEM. 
EQUATIONS OF MOTION

Consider the problem of the translational�rota�
tional motion of a “planet–satellite system” in a grav�
itational field of mutual attraction forces. The satellite
will be modeled by the material point P with mass μ.
The planet will be modeled by a body consisting of a
solid core and a viscoelastic shell, which occupies the
region  in three�dimensional Euclidean
space in the absence of deformations. Here  =

 Let ρ0, ρ1 be densities of a core
and viscoelastic shell, respectively, and m0, m1 be their
masses. The material of planet’s shell is assumed to be
homogeneous and isotropic.

We introduce the inertial coordinate system OXYZ
with the origin at the center of masses of the “planet–
satellite” system. To describe the rotational motion of a
planet we introduce a movable coordinate system
Cx1x2x3, rigidly connected with the core and the Koenig
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system of axes Cξ1ξ2ξ3, where C is the center of mass of
a planet in its natural undeformed state (Fig. 1).

The position of point M of a planet in the inertial
coordinate system is determined by the vector field

(1)

where Γ is the operator of transition from the movable
coordinate system Cx1x2x3 to the Koenig system of
axes Cξ1ξ2ξ3; u(r, t) is the elastic displacement vector,
which is zero for the points of the solid core V0. Since
O is the center of mass of the considered mechanical
system, then

(2)

where 

Here we introduce into consideration vector
 Then from (1) and (2) we obtain

(3)

Here m is the mass of a planet, m = m0 + m1.
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The potential energy of the gravitational field is
determined by the functional

(4)

where f is the universal gravitational constant.

We will specify the functional of the potential
energy of elastic deformation in accordance with the
linear model of the elasticity theory:

(5)

where E is the Young modulus of elasticity, ν is the
Poisson coefficient of a viscoelastic shell of the planet,
and IE and IIE are invariants of the tensor of small
deformations.

The dissipative properties of a viscoelastic shell will
be described by the dissipative functional

  which corresponds

to the Kelvin–Voigt model (here χ > 0 is the coeffi�
cient of internal viscous friction).
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We let  The equations of motion of the
“planet–satellite” system are obtained from the varia�
tional d’Alembert–Lagrange principle:

(6)

According to equalities (1) and (3), we have:

(7)

Here ω is the angular velocity vector of the planet, and
δα is the vector arising in varying the orthogonal oper�
ator Γ:

Substituting expressions (7) for    
into equality (6) and equating the coefficients for
independent variations δR, δα, δu, we obtain the
equations of motion of the “planet–satellite” system
in the form

(8)
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(10)

2. DISTURBED SYSTEM OF THE EQUATIONS 
OF MOTION. DEFORMATIONS 
OF THE VISCOELASTIC SHELL 

OF THE PLANET

We assume that the rigidity of the viscoelastic shell
of the planet is great, i.e., the dimensionless parameter

 =  is small, where ω0 is the value of the
magnitude of the initial angular velocity of a planet.
Having chosen the scales of dimensional units in the
appropriate manner, we can introduce the small
parameter ε = E–1. For ε = 0, the elastic displacement
vector u is assumed to be zero. In this case we will
obtain the problem of the motion of a mechanical sys�
tem consisting of an absolutely rigid body of spherical
shape and of a material point in the field of forces of
mutual attraction. The undisturbed system of the
equations of motion has the form:

(11)

where A is the moment of inertia of a planet in an
undeformed state with respect to the diameter.

For ε ≠ 0, according to the method of separation of
motions [4], we determine from equation (10) the vis�
coelastic shell deformations caused by the field of exter�
nal forces and forces of inertia of the translational
motion. We will search for the solution of equation (10)
in the form of expansion in powers of the small param�

eter ε:  +  The boundary�value prob�
lem for determining the function u1 of the first approx�
imation has the form [8]:

(12)
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Boundary conditions (13) imply zeroing of the
elastic displacement vector for the points of the inter�
nal surface of a spherical shell attached to a solid core,
and zeroing of stresses on the external surface of a
spherical shell.

The solution of the boundary�value problem (12)–
(13) has the form [8]:

(14)
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Note that, according to the method of separation of
motions [4], the time dependence of the vector�func�
tion u120 is accomplished in terms of quantities R and ξ
in accordance with the undisturbed problem (11).

We introduce the movable coordinate system
Cx1x2x3, fixed with the planet. We place the origin  at
the center of the solid core and direct the Cx3 axis along
the vector ω. Then the surface of a rotating deformed
planet without allowance for tidal deformations can be
described by the parametric vector equation:

(16)

Surface (16) is the surface of rotation. We will
obtain a parametric equations of the curve appearing
at intersection of this surface by the plane passing
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through the Cx3 axis, for example, by the plane Cx2x3.
We insert ϕ = π/2 into (16). 

(17)

Then di =  i = 1, 2, 3,

(18)

Using formulas (17), we can obtain the values of
the polar and equatorial radii for the chosen model of
the planet with the core:

The value of the tidal bulge generated on a plane�
tary surface by a satellite, is determined by the expres�
sion  Substituting r = r1ξ in (15), we
obtain:

(19)

where function  is defined by formula (18).
Figure 2 shows a plot of function  for ν = 0.2.

As an example, we consider the system Earth–
Moon. The amplitude of equilibrium lunar tide on the
Earth is equal to 0.36 m [9]. Substituting into (19) the
values of  = 0.36 m, r1 = 6.378 ⋅ 106 m,
μ = 7.349 ⋅ 1022 kg, R = 3.844 ⋅ 108 m, E = 1.2 ×
1011 N/m2, f = 6.67 ⋅ 10–11 N m2/kg2, we obtain

 = 3.216 ⋅ 102 (kg/m3). Taking into account
that the density of upper layers of the Earth equals 2.6–
3 (g/cm3) [10], we obtain the range of variation of func�
tion  0.107 <  < 0.124. In particular, if
we let ρ1 = 3 g/cm3, ν = 0.2, then for the considered
two�layer model of the Earth we will have the following
relation of internal and external radii of the viscoelastic
layer: x = 0.17.

For constructing the disturbed system of the equa�
tions of motion of the mechanical “planet–satellite”
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system we will linearize equations (8)–(9) over the
components of vector u:

(20)

(21)

Here L is the vector of the angular momentum of a
planet relative to the center of mass:

(22)

Substituting into equations (20) and (21) the quan�
tity u = εu1, where u1 is defined by equality (14), and
calculating triple integrals over the region V1, we
obtain the vector system of differential equations
describing the translational�rotational motion of the
“planet–satellite” system with allowance for distur�
bances caused by the elasticity and dissipation:

(23)

(24)

The system of equations (23)–(24) has a first inte�
gral law of conservation of the angular momentum of
the “planet–satellite” system relative to the common
center of masses:
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where mr = μm/(m + μ), G0 is the constant vector.

3. EVOLUTION OF THE ORBITAL MOTION 
OF A SATELLITE

The angular momentum of a planet, defined by
equality (22), can be represented in the form:
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Γω, Γξ, 

Then we obtain the vector differential equation of
the orbital motion of a satellite in the form of:
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To obtain the evolution system of the equations of
motion of a satellite we will transfer to the canonical
Delaunay variables L, G, H, l, g, h [9, 11]. The undis�
turbed Hamiltonian of the problem of satellite motion
under the effect of force F0 has the form: H0 =
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variables:
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The canonical equations of a disturbed motion of a
satellite in the Delaunay variables have the form:

(26)

Here n is the mean motion of a satellite on its orbit,
and the generalized forces  are determined
from the expression for elementary work:

Calculating the generalized forces and averaging
the right�hand sides of the system of equations (26)
over the fast angular variable l, we can obtain the
closed system of ordinary differential equations with
respect to the “action” variables L, G, H and slow
angular variables g, h. We write the evolution system of
equations of the orbital motion of a satellite in dimen�

sionless variables n0, e, i, g, h, where  This
system of equations has the form:

(27)
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Here

We consider two partial cases of satellite motion.

Case 1: i ≡ 0. Then the first two equations of sys�
tem (27) form a closed system of differential equa�
tions:

(28)

The stationary solutions of system (28) are: e = 0,
 where the value of  is a root of the equation

(29)

If p > 3 ⋅ 4–4/3, then equation (29) has no solutions.
For p = 3 ⋅ 4–4/3 equation (29) has one solution n0 =
1/4. If p < 3 ⋅ 4–4/3, then equation (29) has two solutions
n01 and n02: 

In the case of existence of two stationary solutions
we investigate their stability on the basis of the equations
in variations. We let   
Then
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The solution of equations (30) will be sought in the
form:
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where B1, B2 are arbitrary constants. The characteristic
equation for the quantity λ has the form:

(31)

With allowance for equality (29) we obtain the follow�
ing values of the roots of equation (31):

Because λ1 < 0 for j = 1 and λ1 > 0 for j = 2, the sta�
tionary solution e = 0, n0 = n01 is asymptotically stable,
and the stationary solution e = 0, n0 = n02 is unstable.
Figure 3 shows the phase portrait of the system of
equations (28) for p = 0.375.
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Case 2: e ≡ 0. In this case we obtain the closed sys�
tem of differential equations of the second order with
respect to variables n0, i:

(32)

The stationary solutions of system (32) are:
 i = 0, where  is the root of equation (29).

Depending on the value of parameter p, equation (29)
either has no solutions, has one solution, or has two
solutions n01 and n02. As in the case 1, the stationary
solution n0 = n01, i = 0 is asymptotically stable, and the
stationary solution n0 = n02, i = 0 is unstable. The
phase portrait of the system of equations (32) for the
value of parameter p = 0.375 is shown in Fig. 4.

The table presents the numerical values of parame�
ter p, the stationary values of n01, n02 and the value of
quantity n0 = n0(0) at the present time for various
“planet–satellite” systems. The dimensionless vari�
able n0 is proportional to the mean motion of a satellite
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Table

Planet–satellite p n0(0) n01 n02

Earth–Moon

Mars–Phobos

Mars–Deimos

Jupiter–Io

Jupiter–Europa

Jupiter–Ganymede

Jupiter–Callisto

0.15535 37.2589 10−

×
33.7922 10−

×
0.83503

61.5235 10−

× 3.2171 183.5358 10−

×
61 1.5235 10−

− ×

72.5391 10−

×

18.1268 10−

×
201.6369 10−

×
71 2.5391 10−

− ×

45.8980 10−

×
0.2335 102.0517 10−

× 0.9994

43.1685 10−

× 0.1163 113.1811 10−

× 0.9997

49.7643 10−

×

25.7650 10−

×
109.3093 10−

× 0.9990

47.0902 10−

×

22.4717 10−

×
103.5644 10−

× 0.9993
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on its orbit and is related with the semimajor axis a of

satellite’s orbit by the equation: a = 

For all presented examples, except the Mars–Pho�
bos system, a double inequality takes place:

 According to the first equation of
system (28), the value of variable n0 decreases during
the motion. This implies that the semimajor axes of
satellite orbits increase, tending to asymptotically sta�
ble stationary values. For satellites of Jupiter and for
the Martian satellite Deimos the current value of n0(0)
is closer to the unstable stationary value , and for
the Earth–Moon system it is closer to the asymptoti�
cally stable value n01. For the Mars–Phobos system

 The value of variable n0 increases.
This implies that Phobos is approaching Mars.
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