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1. EQUATIONS OF MOTION

The spacecraft (SC) is considered as a material
point В of variable mass m = m(t). SC motion is con�
sidered in the coordinate system ОХ1Х2Х3 (X) with the
origin at the center О of attraction (at the center of
masses of the Sun) and with the coordinate axes paral�
lel to the axes of the inertial coordinate system. The
controllable motion of a SC in a Newtonian central
field of gravitation forces is described by the vector
equation [7, 8]

(1.1)

Here, r is the SC radius�vector drawn from the center
of attraction, f is the gravitational constant, М is the
mass of the attracting body, р is the SC acceleration
vector produced by a low�thrust engine (the thrust
vector of this engine related to the unit mass of SC),
psol is the thrust vector of a solar sail related to the
SC mass unit, defined by the relations [9]

 n is the unit vec�
tor of the normal to sail’s plane facing from the Sun,
θ is the angle between the vectors r and n, d is the
coefficient characterizing the sail area.

Now we introduce into consideration the coordi�
nate system η1η2η3 (η) with the origin at point В.

r·· fMr 3– r+ p psol, r+ r .= =

psol dr 2– 2θncos dr 4– r n⋅( )
2
n,= =

Axis η1 of this coordinate system is directed along the
radius�vector r. The angular position of the coordinate
system η in the reference system X is specified by the
normalized quaternion [10, 11]

where i1, i2, i3 are unit vectors (orts) of the hypercom�

plex space (imaginary Hamilton units); λj (j = ) are
components of the orientation quaternion λ (the Rod�
rigues–Hamilton (Euler) parameters), which are
identical in the X and η bases. We assume that the non�
holonomic relation

(1.2)

is imposed on the motion of the trihedron η, where
ω1 is the projection of the vector of absolute angular
velocity ω of the trihedron η on the direction of radius
vector r (axis η1); the upper dot means the derivative
with respect to time t. We will write the equations of
SC motion in a rotating coordinate system η using the
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Kustaanheimo–Stiefel variables uj [12] associated
with parameters λj by relations [6, 13]

(1.3)

These equations are similar to the regular Kustaan�
heimo–Stiefel equations of the two�body problem [12]
and have, in scalar recording, the form

(1.4)

(1.5)

In these equations τ is a new independent variable,
рk and psolk are projections of vectors р and psol on the
axis Хk, and h is the total mechanical energy of SC’s
unit mass, defined by the equations

(1.6)

With variables uj equation (1.6) takes the form

(1.7)

The equations of SC motion (1.4), (1.5) form a sys�
tem of differential equations of the tenth order with

respect to the variables uj, duj/dτ (j = ), h and t.

Variables uj and their derivatives  are associated
with the Cartesian coordinates of SC xk and their
derivatives  by the nonlinear relations

(1.8)

(1.9)
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x2 2r λ1λ2 λ0λ3+( ) 2 u1u2 u0u3–( ),= =
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Note that the projections psolk of the acceleration
from solar sail’s thrust, appearing in (1.5), are deter�
mined by the relations

where nk is the projection of the unit vector of the nor�
mal n on the axis ОХk of the inertial coordinate system.

Equations (1.4), (1.5) possess the well�known
advantages of regular Kustaanheimo–Stiefel equa�
tions [6, 12]: they (1) are regular for SC motions in the
Newtonian gravitational field (not degenerated for
r = 0), which is important in the study of SC motion
over elongated orbits; (2) assume the form of linear
differential equations with constant coefficients for
the undisturbed Keplerian motions of SC; (3) are
close to the linear form for small рk and psolk.

In the quaternion recording the equations and rela�
tions (1.3)–(l.5), (1.8), (1.9) assume the form [6, 14, 15]

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

Here, u = u0 + u1i1 + u2i2 + u3i3 is the quaternionic
variable associated with the radius vector r and
quaternion λ by relations (1.13), (l.14); px, psolx, rх, vx
are mappings of vectors р, psol, r, v on the basis X
defined as the quaternions

symbol � denotes quaternion multiplication, the
upper dash means the conjugated quaternion, so that

= u0 – u1i1 – u2i2 – u3i3, scal(⋅) is the scalar part of
quaternion (⋅).

The equations of motion of SC (1.10)–(1.11) rep�
resent a closed system of differential equations with
respect to variables u, du/dτ, h, t, which contains the
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oscillatory quaternion equation (1.10). We write the
equations of SC motion in the normal Cauchy form.
Designating

we get

(1.15)

For the velocity vector mapping on the basis X we

have:  In the matrix�vector form
the equations of SC motion are as follows:

where u, s, q, λ are four�dimensional vector�columns

with components uj, sj, qj, λj (j = ) , respectively (so,
u = (u0, u1, u2, u3)); rх = (0, x1, x2, x3), vx = (0,  

), pх = (0, p1, p2, p3);  = (u0, –u1, –u2, –u3), =
(λ0, –λ1, –λ2, –λ3); K(u), K(i1) are quaternion matri�
ces, which match the quaternions u and i1 and have the
form [11]:

The equations of SC motion in variables uj (1.15)
have the first integrals:

(1.16)

(1.17)

s du/dτ=
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h u 2 2 s 2– Ψ1 const,= =

u 2 u � u u0
2 u1

2 u2
2 u3

2
,+ + += =

 s 2 s � s s0
2 s1

2 s2
2 s3

2
,+ + += =

scal u � i1 � s( ) u1s0 u0s1– u3s2 u2s3–+=

=  Ψ2 const.=

In order that integrals (1.16) and (1.17) respond to
the problem of SC motion, it is necessary that con�
stants Ψ1 and Ψ2 have strictly defined values. In accor�
dance with expression (1.7) for the energy of motion,
constant Ψ1 = –fМ, and, in accordance with the non�
holonomic constraint equation (1.2), constant Ψ2 = 0
(relation (1.17)) for Ψ2 = 0 coincides with the bilinear
relation introduced in [12] when constructing the reg�
ular equations of the two�body problem; this bilinear
equation is equivalent [6, 13] to the condition (1.2)).

2. STATEMENT OF THE PROBLEM 

Let us state the following problem: one should con�
struct controls n and р subject to the limitations

(2.1)

which transfer the SC, whose motion is described by
equations (1.10)–(1.13) or (1.15), (1.12):

(2.2)

and by relations (1.12), (1.13), from the initial state

(2.3)

that satisfies the relations

(2.4)

into the final state

(2.5)

that satisfies the relations

(2.6)

and minimizes the quality functional

(2.7)

n 1, p pmax,≤=
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,= = =
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2 u 0( ) 2– u 0( ) � i1 � s 0( ) vx 0( ),=
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J α1 α2p2+ t( )( )dt
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tk
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0

τk

∫

α1 α2, const 0.≥–
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The final values tk and τk of variables t and τ are not
specified in advance and have to be found. Variables u*,
s* satisfy differential equations

(2.8)

(2.9)

and describe the motion of the phase point (u*, s*),
which must coincide, at time instant tk, with the phase
point (u, s) characterizing the state of SC.

Equation (2.8), (2.9) can be interpreted as the dif�
ferential equations of motion in the Newtonian gravi�
tational field of the uncontrollable SC, which should
meet the controllable SC, or as the differential equa�
tions of programmed (undisturbed) motion of the
controllable SC.

We suppose that the initial position of the phase
point (u*, s*) (for t = 0, τ* = 0) satisfy the relations:

(2.10)

where r*(0), v*(0) are specified initial values of the
radius vector and velocity vector of an uncontrollable
SC or programmed motion of SC. In equations (2.8)
h* is the known constant Keplerian energy of an
uncontrollable SC, which is determined by the relation

(2.11)

The general solution of the system (2.8), (2.9) can
be represented by means of the Stumpf function and
has the form [6, 12]:

(2.12)

where сj(z) and сj(4z), j =  are the Stumpf functions
of arguments z and 4z.

In the case of motion of an uncontrollable SC over
an elliptical orbit h* < 0 and equations (2.8) assume
the form of the equations of motion of a single�fre�
quency four�dimensional harmonic oscillator. Vari�

du*/dτ* s*, ds*/dτ* h*/2( )u*,= =

h* const;=

dt/dτ* r* u*
2 u* � u*= = =

u* 0( ) � i1 � u* 0( ) rx* 0( )=

=  x1* 0( )i1 x2* 0( )i2 x3* 0( )i3,+ +

2 u* 0( ) 2– u* 0( ) � i1 � s* 0( ) = vx* 0( ) drx*/dt( )t 0= ,=

h* 1/2( ) v* 0( )( )2 fM/r* 0( ).–=

u* τ*( ) c0 z( )u* 0( ) τ*c1 z( )s* 0( ),+=

s* τ*( ) c1 z( ) h*/2( )τ*u* 0( ) s* 0( )+[ ]=

+ z c3 z( ) c2 z( )–[ ]s* 0( );

t τ*( ) u* 0( ) 2τ*c1 4z( ) fMτ*
3c3 4z( )+=

+ 2τ*
2 scal s* 0( ) � u* 0( )( )[ ]c2 4z( ),

z h*/2–( )τ*
2
,=

0.3

ables u* and s* in this case repesent harmonic func�
tions of variable τ* determined by the relations [6, 12]

(2.13)

Thus, the final state of the phase point (u*, s*) is
determined by relations (2.12) or (2.13) for τ* =  =
τ*(τk). Further we will consider the motion of an
uncontrollable SC over an elliptical orbit. Therefore,
the final state of the phase point (u*, s*) will be deter�
mined by relations (2.13). The relationship between
the independent variables τ and τ* can be presented on
the basis of (1.11) and (2.9) in the differential form

(2.14)

For this reason we will include equation (2.14) into
the set of differential equations of controllable SC
motion. Note that the fourth equality (2.5) is automat�
ically met when meeting conditions (2.6), in virtue of
integral (1.16) and equality Ψ1 = –fМ.

The quality functional (2.7) in the problem under
consideration characterizes the energy consumption
for SC transition from the initial to the final state and
the time spent for this transition. In the case when
α1 = 1, α2 = 0, the functional J = tk, and in this case
the stated problem represents the problem of optimum
fast response.

The stated problem represents the problem of
“soft” rendezvous (docking) of controllable and
uncontrollable SCs. Further we will consider also
another problem—the problem of a “hard” rendez�
vous of SCs, in which the final state of a controllable
SC should satisfy not relations (2.5), (2.6), but
relations

(2.15)

Note that the initial values u(0), s(0), and u*(0),
s*(0) of variables u, s and u*, s*, satisfying relations (2.4)
and (2.10), can be uniquely defined in terms of r(0),

u* k 1– s* 0( ) kτ*( )sin u* 0( ) kτ*( ),cos+=

s* s* 0( ) kτ*( ) ku* 0( ) kτ*( );sin–cos=

t u* τ*( ) 2 τ*d

0

τk

∫=

=  – fM
2h*
�������τ* 1

2k
����� u* 0( ) 2 fM

2h*
�������+ 2kτ*( )sin+

– 1
h*
����� scal s* 0( ) � u* 0( )( )[ ] 1 2kτ*( )cos–( ),

k 0.5h*–( )1/2
, h* const 0.<= =

τk*

dτ*
dτ

������� r τ( )
r* τ*( )
������������� u τ( ) 2

u* τ*( ) 2
�������������������.= =

τ τk,=

u τk( ) � i1 � u τk( ) u* τk* τk( )( ) � i1 � u* τk* τk( )( ).=
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v(0) and r*(0), v*(0) using the algorithm described in
[6, 16].

3. NECESSARY OPTIMALITY CONDITIONS 
AND TRANSVERSALITY CONDITIONS 

We will solve the stated problem by means of the
Pontryagin maximum principle. We introduce the con�
jugated variables: quaternion conjugated variables μ, ν,
corresponding to quaternion phase variables u, s, and
the scalar conjugated variables η, ϑ*, corresponding to
the Keplerian energy h and “time” τ*. We compose the
Hamilton function

(3.1)

where

and quantities qj are defined by (1.5) and (1.12).

The system of equations for the conjugated vari�
ables has the form:

(3.2)

H –r α1 α2p2+( ) μjsj

j 0=

3

∑+=

+ νj h/2( )uj r/2( )qj+[ ]
j 0=

3

∑

+ 2η sjqj

j 0=

3

∑ ϑ*r r* τ*( )( ) 1–+

=  μjsj

j 0=

3

∑ h/2( ) νjuj

j 0=

3

∑ ϑ* r* τ*( )( ) 1– α1–( )r+ +

– α2rp2 χjqj,

j 0=

3

∑+

r uj
2 r*,

j 0=

3

∑ uj
*2

, χj

j 0=

3

∑ r/2( )νj 2ηsj,+= = =

dμ/dτ – h/2( )ν= 2 α1 α2p2+( )u+

– 2ϑ r* τ*( )( ) 1– u ν qp,( )u i1 � χ � px+–

+ dr 4– r n,( ) r n,( ) –8r 1–
χ qn,( ) ν qn,( )+( )u  [{

– i1 � χ � nx ]+ 4 χ qn,( )qn},

dν/dτ –μ 2ηq,–=

dη/dτ – 1/2( ) ν u,( ),=

dϑ*/dτ 2ϑ*rr*
2– u* s*,( );=

(3.3)

where (а, b) is the scalar product of four�dimensional
vectors а and b that is equal to the scalar part of the

quaternion product  It follows from equation (3.2)
that

 (3.4)

where Q is the arbitrary constant.
According to the condition of maximum for the

Hamilton–Pontryagin function, the optimum control
for the unit vector of normal n to solar sail’s plane is
determined by the relation

(3.5)

and for low thrust the optimum control is determined
by the formula

(3.6)

where  = vectκ is the vector part of the quaternion

κ = κ0 +  = κ0 + κ1i1 + κ2i2 + κ3i3; ( , r) is the sca�

lar product of three�dimensional vectors  and r.

Note that formula (3.5) follows from vector rela�

tionship  which
was obtained from solution of the problem on the con�
ventional extremum for the Hamilton–Pontryagin
function, with regard to the fact that |n | = 1, by the
method of undefined Lagrange’s multipliers. In the
case of α1 = 1, α2 = 0 (the problem of fast response) the
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,=

κ
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κ
v
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⎧
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optimum control for the low thrust is determined by
the relation

(3.7)

So, the problem of construction of optimum con�
trols and trajectories of SC motion in the Newtonian
gravitational field is reduced to the integration of dif�
ferential equations (2.2), (3.2), (3.3), (3.5), (3.6) in
the case of α2 > 0, or (3.7)—in the case of α2 = 0. The
equations form a closed system of differential equa�
tions of the twentieth order with respect to the vari�

ables uj, sj, h, τ*, μj, νj, η, ϑ*, j = . The boundary
conditions, which are necessary for solving the prob�
lem, are determined by the conditions indicated in
Section 2 and by the transversality conditions.

The transversality conditions for the “soft” rendez�
vous have the form

(3.8)

as those for the “hard” rendezvous have the form

(3.9)

The transversality conditions (3.8), (3.9) are
obtained, respectively, from (2.6) and (2.15) by the
method of undefined Lagrange multipliers with their
subsequent elimination.

In addition, because τk is not specified in advance,
for the optimum process at τ = τk, the condition for the
Hamilton–Pontryagin function should be met:

(3.10)

In the case of solution of the problem on SC inser�
tion into the specified orbit, the initial value of τ* is
not specified in advance. By this reason, the left end of
the trajectory for the controllable system (1.15) occurs
to be movable, and, on it, for τ = 0 the transversality
condition ϑ* = 0 should be met. In this case, it follows
from (3.4) that ϑ* = 0.

px pmax κv

1–
κ
v
,=

κ
v

vectκ, κ u � i1 � χ, χ 2ηs r/2( )ν,+= = =

r u � u.=

0.3

scal u τk( ) � i1 � ν τk( )( ) 0,=

scal u τk( ) � i1 � μ τk( )( ) scal s τk( ) � i1 � ν τk( )( )+ = 0,

ϑ* τk( ) –scal μ τk( ) � s τk( )( )=

– h/2( )scal ν τk( ) � u τk( )( ),

η τk( ) 0,=

scal u τk( ) � i1 � μ τk( )( ) 0,=

ϑ* τk( )

=  –r 1– scal[ u τk( ) � i1 � μ τk( )( ) � 

 � u* τk*( ) � i1 � s* τk*( )( ) ],

ν τk( ) 0, η τk( ) 0.= =

Hopt
τk

0.=

4. ANALYSIS OF THE PROBLEM 

The problem of construction of optimum controls
and trajectories of SC motion in the Newtonian grav�
itational field was reduced to the to the boundary value
problem described by the differential equations (2.2),
(3.2), (3.5), (3.6) in the case of α2 > 0, or (3.5), (3.7),
in the case of α2 = 0. The boundary conditions, which
are necessary for solving the problem, are determined
in the case of “soft” rendezvous by the relations (2.3)–
(2.6), (2.10), (2.11), (2.13) (for τ* =  = τ*(τk)),
(3.8), (3.10). In the case of a “hard” rendezvous in the
aforementioned conditions, instead of (2.5), (2.6) and
(3.8) it is necessary to take (2.15) and (3.9), respec�
tively. The obtained equations form the system of dif�
ferential equations of the twentieth order with respect

to variables uj, sj, h, τ*, μj, νj, η, ϑ*, j = . In their
integration twenty arbitrary constants will appear; the
twenty�first unknown constant will be τk. For deter�
mining the constants we have twenty one conditions,
and in the case of a “soft” rendezvous, sixteen bound�
ary conditions (2.3), (2.6), four transversality condi�
tions (3.8), and condition (3.10); and in the case of a
“hard” rendezvous, we have thirteen boundary condi�
tions (2.3), (2.15) and eight transversality conditions
(3.9). In the case of solving the problem of optimum
SC insertion into the specified orbit is necessary to
solve the boundary value problem for the same system
of equations with initial conditions (2.3) with τ = 0,
and, here, the specified initial condition for τ* should
be replaced by the transversality condition ϑ* = 0 for
τ = 0 and by the boundary conditions (2.6), (3.8),
(3.10), for τ = τk.

Equations (2.2), (3.2), in addition to integrals (1.16),
(1.17), have the integrals

(4.1)

(4.2)

(4.3)

Besides, these equations have three scalar first integral

which in the quaternion form are as follows:

(4.4)

τk*

0.3

Hopt τ( ) 0,=

scal s � i1 � ν( ) scal+ u � i1 � μ( ) Ψ const,= =

ϑ*/r* Q const.= =

u0μ1 u1μ0– u2μ3– u3μ2 s0ν1 s1ν0– s2ν3–+ +

+ s3ν2 c1 const,= =

u0μ2 u1μ3 u2μ0– u3μ1– s0ν2 s1ν3 s2ν0–+ + +

– s3ν1 c2 const,= =

u0μ3 u1μ2– u2μ1 u3μ0– s0ν3 s1ν2–+ +

+ s2ν1 s3ν0– c3 const,= =

vect u  � μ s  � ν+( ) c const,= =

u u0 u
v
, μ– μ0 μ

v
, s+ s0 s

v
,–= = =

ν ν0 ν
v
,+=
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and in the vector form they are:

The integral (4.1) takes place in virtue of stationarity
(with respect to the independent variable τ) of the sys�
tem of equations for the phase and conjugated variables
and in virtue of (3.10). One can be convinced in the
validity of integrals (4.2), (4.4) by direct checking. In
virtue of the second of transversality conditions (3.8), in
the integral (4.2) in the case of “soft” rendezvous the
constant Ψ = 0.

An analytical solution of the system of equations (2.2),
(3.2), (3.5), (3.6) or (3.5), (3.7) is hardly possible in the
general case. Therefore, in constructing the optimum
controls and trajectories of SC motion, in the general
case one has to rely upon the numerical solution of
mentioned equations only, with using well�known tech�
niques of solution of boundary value problems and inte�
grals (1.16), (1.17), (4.1)–(4.4). The integrals (4.1)–
(4.4), in which the conjugated variables are present, can
be used for transferring the boundary conditions from
the right end to the left one, which is important for
numerical solution of the boundary�value problem.
Note that the use of regular equations of the two�body
problem (2.2) in the Kustaanheimo–Stiefel variables
for numerical construction of optimum controls and
trajectories of SC motion allows one to use the numer�
ical integration techniques, which are superior to classi�
cal methods both in the accuracy, and in the volume of
calculations on computers [12, 17].

5. EXAMPLES OF NUMERICAL 
SOLUTION OF THE PROBLEM 

For numerical solution of the boundary�value
problem, to which the Pontryagin maximum princi�
ple reduces the solution of the stated optimum con�
trol problem, one uses the combination of Newton’s
and gradient descent methods. The system of differ�
ential equations for determining the phase and con�
jugated variables is integrated by the Runge–Kutta
method of the fourth order of accuracy. The use of
KS�variables results in improving the convergence of
the iterative process when solving the boundary�
value optimum control problem. This is due to the
fact that, in case of low thrust, the nonlinear terms in
the system of differential equations (2.2), (3.2) occur
to be small quantities.

u0μv
s0νv – μ0u

v
ν0s

v
– u

v
–+ μ

v
× s

v
– ν

v
×

=  c const.=

For numerical solution of the problem, the transi�
tion to dimensionless variables was accomplished in
the equations in accordance with the relations

In these relations the dimensionless quantities are
marked by the upper symbol “b”; R denotes the char�
acteristic scale of length, such as the radius of the
Earth’s orbit, on which the controllable spacecraft is
located at the initial time instant.

Note that the form of equations in dimensional and
dimensionless variables is the same.

Below we present the results of numerical solution
of two optimum control problems on a soft rendezvous
of controllable and uncontrollable spacecrafts. For
each problem three versions are considered, which
differ in the values of phase coordinates (position and
velocity) of an uncontrollable spacecraft at the initial
time instant.

In the first problem the case is considered, where
the controllable spacecraft does not undergo a low
thrust effect (р = 0), i.e., the spacecraft is controllable
by means of the solar sail only, and the quality of con�
trol process is determined by the spent time (the prob�
lem of fast response in flight with a solar sail). In solv�
ing the first problem, in the Hamilton–Pontryagin
function (3.1) and in the equations for conjugated
variables (3.2) it is supposed that

(5.1)

At the initial time instant the controllable space�
craft is located on the Earth orbit. Its position and
velocity in the Cartesian coordinate system ОХ1Х2Х3,
whose origin lies at the center of the Sun, and the
ОХ1Х2 plane coincides with the plane of Earth’s orbit,
in the dimensionless variables is determined by the
quantities: x1 = 1.0, х2 = 0.0, x3 = 0.0, ν1 = 0.0, ν2 = 1.0,
ν3 = 0.0.

The uncontrollable spacecraft is located near the
orbit of Mars. The plane of orbit of an uncontrollable
spacecraft is inclined to the ОХ1Х2 plane. At the initial
time instant the elongation between uncontrollable and
controllable spacecrafts is determined by the angle ϕ0.
Table 1 gives the initial state of an uncontrollable space�
craft for three values of elongation.

The dimensionless quantity that characterizes the
size of a sail and the mass of a spacecraft, is d = 0.1.

u R1/2ub
, s fM( )1/2sb

,= =

h fM/R( )hb
, τ R/ fM( )( )1/2τb

,= =

t R R/ fM( )( )1/2tb
, d fMdb

, r Rrb
,= = =

v fM/R( )1/2vb
,=

p fM/R2( )pb
, pmax fM/R2( )pmax

b
.= =

α1 1 α2, 0 p, 0.= = =
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Table 2, for the solution of the problem of fast response
for three values of angle ϕ0, indicates the intervals of
dimensionless time of motion till the soft rendezvous
and the time in earth years, as well as the dimension�
less coordinates of the place of rendezvous.

Figures 2–5, for the solution of the first problem,
in the case when ϕ0 = 90°, presents the plots of varia�
tion of dimensionless Cartesian coordinates and pro�
jections of the velocity vector of a controllable space�

craft (solid lines) and uncontrollable one (dotted
lines). Figure 1, for the same case, presents the plots of
variation of projections of a unit vector of the normal
to the plane of a solar sail.

In the second problem the controllable spacecraft
is moving under the effect of a solar sail and low�thrust
engine. In this case it is supposed that α1 = 0.5, α2 =
0.75, d = 0.1, рmах = 0.1.
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The initial states of controllable and uncontrollable
spacecrafts, as in the first problem, are determined by
relations (5.1) and by the data of Table 1, respectively.
Table 3, for the solution of the second problem with
the quality functional (2.7), indicates, for three values
of angle ϕ0, the intervals of time of motion till the soft
rendezvous in dimensionless coordinates and in earth
years, as well as the dimensionless coordinates of the
place of rendezvous.

The time of motion in solution of the second prob�
lem is almost two times less than in the first one,
because in the second problem the controllable space�

craft is moving not only under an effect of solar sail,
but under an effect of low thrust as well.

Figures 8–11, for the solution of the second prob�
lem, in the case when ϕ0 = 90°, presents the plots of
variation of dimensionless Cartesian coordinates and
projections of the velocity vector of a controllable
spacecraft (solid lines) and uncontrollable one (dotted
lines). Figures 6 and 7, for the same case, present the
plots of variation of projections of a unit vector of the
normal to solar sail’s plane and the projections of the
low�thrust vector in dimensionless variables. Figure 12
shows the trajectories of motion of a controllable (solid
line) and uncontrollable (dotted line) spacecrafts.

Since the orbit of an uncontrollable SC has small
angle of inclination to the plane of Earth’s orbit, the
dimensionless projections х3 and v3 of the radius�vec�
tor r and velocity vector v for controllable and uncon�
trollable SCs have small values. For this reason, in
Figs. 4, 5, and 10, 11 the plots of variation of these
quantities have been presented at a smaller scale.

It is seen from the plots for projections of a unit
vector of the normal to solar sail’s plane (the control
vector n) (Figs. 1 and 6), that the projection n3 of the
control varies within a wide range, whereas the projec�
tion х3 and v3 of the radius�vector and velocity vector
of SC assume small values as compared to the other
projections of these vectors.

For checking the accuracy of solution of the
boundary�value optimum control problem, the first
integrals (1.16), (1.17), (4.1)–(4.4) of the system of
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Flight time Flight time in Earth years x1 x2 x3
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0.1073
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Table 3

Flight time Flight time in Earth years x1 x2 x3

75 4.6695 0.7431 –1.1952 –0.9325 –0.1061

90 5.0228 0.7994 –0.6698 –1.3609 –0.1015

120 5.5563 0.8843 0.5225 –1.4260 –0.0878

ϕ0
0
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differential equations (2.2), (3.2) have been calcu�
lated. Calculations have shown that the first twelve
digits after the comma keep constant values in the
integrals, which indicates the high accuracy of per�
formed calculations.
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