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Abstract: Four detailed chemical mechanisms used to describe detonation combustion of hydrogen
in oxygen are considered. Ignition delays for various temperatures and pressures are found, the
Chapman–Jouguet velocity is determined, and the Zel’dovich–von Neumann–Döring solution for
different models is obtained. The effect of dilution of the stoichiometric mixture of hydrogen and
oxygen by an inert gas is estimated. Direct numerical simulation of detonation wave propagation
in a channel is performed. The emergence of instability of the plane wave and formation of a
cellular (multifront) structure are studied. The results predicted by different chemical models are
analyzed and compared with each other and with available experimental data.
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INTRODUCTION

At the moment, there are many kinetic mechanisms
to describe hydrogen combustion in oxygen. Some of
them include more than a hundred reactions and sev-
eral tens of chemical species; others may contain only
several tens of reactions and 5–10 species. Two-stage
mechanisms, where the induction period and the stage
of chemical transformations are distinguished, have be-
come very popular [1, 2]. However, it is not always
possible to use these models in practice because of vari-
ous problem such as determining the constants in a wide
range of parameters and quantitative comparisons with
experiments.

The choice of the chemical model to be used in
numerical simulations of detonation wave (DW) prop-
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agation is an important and urgent issue. For exam-
ple, Bedarev et al. [3, 4] studied various mechanisms for
the description of hydrogen combustion in oxygen and
noted that detailed mechanisms adequately reproduce
the ignition delay and ensure good agreement with ex-
perimental data on the DW propagation velocity and
(in mixtures strongly diluted by argon) detonation cell
size. Nevertheless, the chemical model may significantly
affect the computed results: the profiles of gas-dynamic
quantities and the parameters of the cellular structure
of the detonation wave computed by different models
may be noticeably different. The reasons are the differ-
ence in the choice of chemical reactions included into the
model and in the values of the coefficients determining
the rates of these reactions.

In the present paper, we compare four detailed
models of chemical kinetics, which describe hydrogen
combustion in oxygen. The ignition delays for dif-
ferent initial temperatures and pressures are deter-
mined by solving the problem of an explosion in a
constant volume. The one-dimensional DW structure
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[the Zel’dovich–von Neumann–Döring (ZND) solution]
is obtained for different chemical models. The influ-
ence of nitrogen addition on the ignition delay and one-
dimensional DW structure is estimated. Direct numer-
ical simulations of DW propagation in a plane chan-
nel filled with hydrogen–oxygen and hydrogen–oxygen–
nitrogen mixtures are performed.

1. GOVERNING EQUATIONS

Detonation in a gas mixture can be described by
the Euler equations coupled with equations that de-
scribe the kinetics of chemical transformations:

∂ρYi

∂t
+

∂

∂x
(ρuYi) +

∂

∂y
(ρvYi) +

∂
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(ρwYi) = Wiω̇i,

(1)

i = 1, . . . , N − 1.

Here t, x, y, and z are the time and the spatial coor-
dinates, respectively, ρ is the density of the mixture,
u is its velocity, N is the number of chemical species of
the mixture, Yi is the mass fraction of the ith species,
Wi is the molecular weight, and ω̇i is the molar rate
of production/destruction of the ith species in chemical
reactions. The number of independent equations (1) is
N − 1 because the sum of the partial densities of differ-
ent species is equal to the total density of the mixture.

In the constant-volume explosion problem, the fol-
lowing equations were integrated for determining the
ignition delay:

dYi

dt
=
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ρ
, i = 1, . . . , N − 1, (2)
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[ei(T ) is the internal energy of an individual chemical
component of the mixture].

The integration was performed with the use of the
RADAU5 code [5] with the time step chosen automati-
cally. The ignition delay τign was determined as the time
period from the computation start to the instant when
the highest temperature growth rate was achieved.

The ZND solution can be obtained for the DW with
the velocity equal to or greater than the Chapman–
Jouguet (CJ) velocity: D � DCJ; the conditions D =
DCJ and D > DCJ correspond to the CJ and over-
driven detonations, respectively. The CJ velocity was
determined using the SDTools software package [6].

After finding the DW velocity, the following system
of conservation laws and equations for concentrations of
the mixture components written in a coordinate system
where the DW is at rest is solved:

d

dx
(ρu) = 0 → ρu ≡ m = const; (4)

d

dx
(ρu2 + p) = 0

→ ρu2 + p = mu+ p ≡ Fu = const; (5)
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i = 1, . . . , N − 1, YN = 1−
N−1∑
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u
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R
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Here p is the pressure, T is the temperature, R is the
universal gas constant, H ≡ h + u2/2 is the total en-
thalpy of the mixture, and h is the specific enthalpy of
the mixture.

Equations (5) and (6) yield

u+ R̃
T

u
=

Fu

m
, u2 = 2(H − h),

(9)
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2
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2
+
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Yihi(T ) = H,

where hi is the enthalpy of the corresponding chemical
species. Expressing R̃T from Eq. (9) and eliminating
the velocity, we obtain the following equation for the
temperature:

f(T ) ≡ [2(H − h) + R̃T ]2

− 2(Fu/m)2(H − h) = 0. (10)

In calculating the one-dimensional DW structure,
Eqs. (7) are integrated numerically. Knowing the con-
centrations of the mixture components at a new point
and, hence, the specific enthalpy of the mixture h, one
can solve the nonlinear equation (10) by this or that it-
erative method and find the temperature; after that, the
velocity and all other gas-dynamic quantities are deter-
mined. In our computations, we used the fourth-order
Runge–Kutta scheme for integrating Eq. (7), and the
temperature was obtained using the Newton iterations.
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2. DESCRIPTION
OF THE CHEMICAL MODELS

In the present paper, we consider four chemical
models, which describe hydrogen combustion in oxy-
gen. Each model allows the presence of an inert gas,
e.g., nitrogen or argon, as the third species, which does
not directly participate in chemical reactions, but af-
fects the reaction rates. The models include up to 20
forward and reverse chemical reactions. The reaction
rates are determined from the Arrhenius law

k(T ) = AT β exp(−Ea/RT ). (11)

Here the constants A and β, as well as the activation
energy Ea are defined by the chemical model. More
detailed descriptions of the models under consideration
are provided in Appendix.

The simplest model in the study is the ONERA
model [7], which was specially developed to describe
supersonic combustion. It includes 7 chemical species
(H, O, H2, O2, OH, H2O, and N2) and 7 reactions.

In three other models, there are 9 chemical species:
the species used in the ONERA model plus HO2 and
H2O2. The Deiterding–Westbrook model described in
[8] is an adapted version of the earlier Westbrook model
[9], which was developed for detonation in carbon–
hydrogen mixtures. The model includes 17 reactions.

The Wilson–MacCormack model [10] is a variation
of the Jachimowski model [11] modified to describe su-
personic combustion. The model includes 19 reactions,
which is greater than that in the previous model by 2.

The last model considered is the Petersen–Hanson
model [12], and it should be noted that its was specially
developed to take into account the dependence of the
chemical reaction rate on pressure. Although this de-
pendence is present only in one reaction, it significantly
affects the results. The model includes 20 chemical re-
actions.

In the first two models, the coefficients are explic-
itly specified for both forward and reverse reactions. In
two other models, the coefficients for the reverse re-
actions are calculated using the chemical equilibrium
constants. Generally speaking, this approach is more
correct because it prevents possible inconsistency of the
rates of forward and reverse reactions with thermody-
namic data. In the present study, the data [13] were
used in all cases for calculating the thermodynamic pa-
rameters of the mixture components.

3. RESULTS

3.1. Explosion in a Constant Volume

For each chemical model, we calculated the ignition
delay τign as a function of the initial temperature for

stoichiometric mixtures 2H2 + O2 and 2H2 + O2 +
3N2 for the initial pressures pini = 1, 10, and 50 atm.
The results are shown in Fig. 1.

First of all, it should be noted that the depen-
dence of τign on temperature in the ONERA model
is much simpler than those in three other models:
in fact, it is an exponential dependence for all pres-
sures. Nevertheless, at high temperatures the ONERA
model agrees well with the Deiterding–Westbrook and
Petersen–Hanson models; at pressures of 1 and 10 atm,
the ONERA model is in good agreement with the
Wilson–MacCormack model as well. With a further in-
crease in pressure, the ignition delay τign in the Wilson–
MacCormack model in the high-temperature region de-
creases more slowly than that in other models. As a re-
sult, the value of τign at pini = 50 atm and T ≈ 2000 K
calculated by the Wilson–MacCormack model is higher
than the predictions of other models by 4–6 times.

As the temperature decreases, the results predicted
by the ONERA model become more and more differ-
ent from those of other models because of the simpli-
fied character of the dependence of τign on tempera-
ture in this model. In the middle range of tempera-
ture (T ≈ 1000 K), the differences reach three orders of
magnitude. The remaining three models demonstrate
good qualitative and, to a certain degree, quantitative
agreement with each other in this temperature range.
With a further decrease in temperature, the Petersen–
Hanson model starts to display some differences because
it includes a reaction with a pressure-dependent rate.
Apparently, if this dependence is taken into account,
the results calculated by this model for different values
of pini in the low-temperature range are closer to each
other as compared to the data obtained with the use
of other chemical mechanisms.

In experimental studies of DW propagation, a cer-
tain amount of an inert gas is often added to the mix-
ture to obtain a more regular cellular pattern and en-
sure more precise measurements of the detonation cell
size, which increases due to dilution of the hydrogen–
oxygen mixture. To study the influence of dilution of
the mixture with an inert gas, we computed the igni-
tion delays in a stoichiometric mixture of hydrogen and
oxygen with addition of an identical number of nitrogen
moles (2H2 + O2 + 3N2).

The dilution of the mixture produces a common ef-
fect in all models: addition of nitrogen usually increases
the ignition delay (see Fig. 1). However, in the Wilson–
MacCormack and Petersen–Hanson models, there are
temperature ranges (near the inflection corresponding
to the drastic change in the slope of the curve of τign as
a function of temperature) where the ignition delay in
the mixture without nitrogen is longer.
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Fig. 1. Ignition delays in the 2H2 + O2 mixture (solid curves) and 2H2 + O2 + 3N2 mixture
(dashed curves) versus temperature calculated by the four models under study.

Thus, the Deiterding–Westbrook, Wilson–
MacCormack, and Petersen–Hanson models are in
good overall agreement with each other in terms of
ignition delay predictions. The ONERA model, which
includes a smaller number of chemical species and a
significantly reduced set of chemical reactions, yields
an essentially different dependence of the ignition delay
on temperature, and its predictions at moderate and
low temperatures are significantly different from those
of other models. However, being specially developed for
supersonic flow simulations, this model ensures reason-
able results at high temperatures. Simultaneously, in

the range of high pressures and high temperatures, i.e.,
at parameters most typical for detonation combustion,
the ONERA model is inconsistent with the Wilson–
MacCormack model: the ignition delays predicted by
the ONERA model are several times higher.

3.2. Zel’dovich–von Neumann–Döring Solution

The problem of the one-dimensional structure of a
plane detonation wave was used for comparisons of the
detailed chemical models under study. The first param-
eter used for comparisons was the detonation propaga-
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Table 1. Velocity of detonation wave propagation in the Chapman–Jouguet regime

Chemical model

DW velocity in the mixture [m/s]

2H2 + O2 2H2 + O2 + 3N

pini = 1 atm pini = 0.1 atm pini = 1 atm pini = 0.1 atm

ONERA 2835.19 2710.32 2055.65 1990.87

Deiterding–Westbrook
Wilson–MacCormack
Petersen–Hanson

2834.97 2710.25 2055.61 1990.86

Fig. 2. Pressure and temperature versus the distance in the ZND solution for all models under
study. Stoichiometric mixture 2H2 + O2.

tion velocity in the CJ regime DCJ. As mentioned be-
fore, it was determined using the SDTools free soft-
ware [6]. The results are summarized in Table 1.

As is seen from Table 1, it is only the ONERA
model that predicts a slightly different CJ velocity; the
values obtained by other models agree with high accu-
racy. It is an expected result because the equilibrium
composition of the mixture at the given pressure and
temperature corresponds to the minimum value of the
thermodynamic Gibbs potential. Thus, for models with
an identical set of chemical components, the equilibrium
composition at the CJ point and, hence, the velocity are
identical if the same dependences of the thermodynamic
functions of individual species on temperature are used.

After that, we computed the one-dimensional DW
structure (ZND solution) in the case of the CJ detona-
tion for all chemical models and two types of stoichio-

metric mixtures: hydrogen–oxygen mixture (2H2 + O2)
and hydrogen–oxygen–nitrogen mixture (2H2 + O2 +
3N2) with the initial pressure of 1 atm and initial tem-
perature of 300 K. The pressure and temperature are
plotted in Fig. 2 as functions of the distance from the
shock wave front.

It is seen that the smallest distance between the
shock wave front and the point where the combus-
tion process begins is predicted by the ONERA model,
whereas the Deiterding–Westbrook and Petersen–
Hanson models yield a slightly greater distance. At the
beginning, the curves constructed by these two mod-
els almost coincide; however, further downstream, the
pressure and temperature predicted by the Petersen–
Hanson model change more slowly and reach their equi-
librium values at a greater distance from the shock
wave.
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Fig. 3. Pressure and temperature versus the distance in the ZND solution for all models under
study. Stoichiometric hydrogen–oxygen mixture diluted by 50% of nitrogen: 2H2 + O2 + 3N2.

The behaviors of the pressure and temperature pro-
files in the Wilson–MacCormack model are significantly
different. Although the chemical reactions start approx-
imately at the same distance from the shock wave, the
combustion region is several times longer and the point
with the maximum heat release is located noticeably
farther from the shock wave front. This behavior is con-
sistent with the calculated ignition delay in the previ-
ous Section. Indeed, the temperature behind the shock
wave front is 1769 K, and the pressure is approximately
33 atm. These values correspond to the high-pressure
and high-temperature region in Fig. 1, where the
ignition delay predicted by this model is several times
higher than the values predicted by the other chemical
mechanisms.

Addition of 50% of nitrogen to the stoichiomet-
ric mixture of hydrogen and oxygen causes significant
changes in the DW structure (Fig. 3). The values of
the main parameters behind the shock wave become
smaller: the pressure decreases from 33 to 29 atm,
and the temperature decreases from 1760 to 1590 K.
The distance between the wave front and the ignition
point significantly increases, and the heat release region
proper becomes more extended. The value far down-
stream (near the CJ point) also change: the pressure
decreases from 19 to 16.7 atm, and the temperature de-
creases from 3680 to 3100 K. We can say that addition
of an inert gas makes the detonation less violent, and it
occurs at greater scales in space and time.

It should be expected that larger and more regular
detonation cells would appear in numerical simulations
of propagation of the multifront DW, as it is observed
in real physical experiments.

3.3. Direct Numerical Simulation
of Detonation Wave Propagation

in a Plane Channel

It is well known that the DW front is unstable to
transverse perturbations. Two-dimensional direct nu-
merical simulations allow one to study the influence of
the chemical model on the evolution of this instability
and on the formation of the cellular structure of the det-
onation wave. Such simulations were performed by the
numerical code developed by the authors for solving the
Euler equations for a chemically reacting gas [14]. The
code involves a third-order TVD scheme for approxi-
mation of convective terms and a semi-implicit Runge–
Kutta scheme ASIRK-2C for integrating the equations
with respect to time. Owing to the use of the semi-
implicit scheme, it is possible to attenuate the con-
straints on the time step, which follow from the stability
conditions for stiff chemical source terms. The code is
written in the C++ language and is parallelized with
the MPI, OpenMP, and CUDA technologies. It allows
computations to be performed both on usual multipro-
cessor and multicore computers and also on computers
with a hybrid architecture including graphics processing
units (GPUs) or Xeon Phi co-processors.
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All computations were performed for the initial
temperature of the mixture equal to 300 K. Figure 4
illustrates the onset of instability of the propagating
plane wave to transverse perturbations. The figure
shows the time evolution of the DW front coordinate ob-
tained in computing the wave propagation in a channel
1 cm wide filled with a stoichiometric hydrogen–oxygen
mixture at the initial pressure of 1 atm. The compu-
tations were performed with the ONERA and Wilson–
MacCormack models for a DW with the overdrive ratio
f = 1.4 and theoretical velocity D(f) = DCJ

√
f .

The case with an overdriven DW was chosen to
avoid the emergence of one-dimensional fluctuations,
which complicate the pattern of instability develop-
ment. It is well known that overdriven DWs are more
stable (see, e.g., [15, 16]). In particular, as can be seen
from the one-dimensional computations [17], an increase
in the overdrive ratio up to f = 1.4 guarantees suppres-
sion of instability to streamwise perturbations. More-
over, in the overdriven regime, the oscillations of the
front velocity have a more “ordered” character, so that
it is easier to trace the changes in the front position
with time in one figure.

The ZND solution for the overdriven wave was used
as the initial flow field. The computation was performed
in a coordinate system moving with the velocity D(f),
i.e., in theory, the DW position is unchanged during
the computation. The computational domain length
was 1.5 cm, which was much greater than the reaction
region width. Uniform free-stream conditions were im-
posed at the inflow boundary, and the parameters corre-
sponding to the equilibrium values far downstream from
the DW front were set at the outflow boundary. The
computation was performed on a grid with 600 × 400
cells.

As is seen from Fig. 4, after a certain small shift at
the very beginning of the computation, the DW front
position does remain unchanged for a long time. How-
ever, transverse perturbations appear on the wave front
afterwards.

Figure 4 shows both the front position near one
of the channel walls and the front position averaged
over the channel width. Their difference clearly indi-
cates that the leading front of the DW is far from being
plane. It should be noted that the DW velocity after the
emergence of transverse waves becomes slightly higher
than D(f) predicted by the one-dimensional theory;
therefore, in the coordinate system used here, it slowly
moves in the upstream direction. For the ONERA
model, this excess of velocity is approximately 3.25 m/s,
which is smaller than 0.1% of the DW propagation ve-
locity.

Fig. 4. Time evolution of the DW front averaged
over the channel width (curve 1) and near one of the
walls (curve 2).

In the computation with the Wilson–MacCormack
model, the transverse perturbations at the wave front
arise noticeably earlier than in the case with the
ONERA model. After that, the DW also starts to move
upstream, and its velocity is higher than the theoretical
velocity by 12.3 m/s. However, the velocity decreases at
a certain instant, which is manifested in the lower part
of Fig. 4 as an inflection on the corresponding curve at
t ≈ 47.5 μs. Since that instant and up to the end of
the computation, the velocity is higher than the value
predicted by the one-dimensional theory approximately
by 6.15 m/s.

It should be noted that the fact that the multifront
DW velocity can be greater than the value calculated
in the absence of transverse fluctuations was mentioned
back in the classical monographs [18, 19]. Detonation
propagation with a velocity slightly higher than the CJ
velocity was also observed in physical experiments.

The emergence and growth of transverse waves
rapidly lead to the formation of an unsteady two-
dimensional cellular structure. The detonation cells are
rather small at first, but they merge with time, and
their size increases. For the ONERA model, the time
instant t ≈ 50 μs, when large cells start to prevail, cor-
responds to certain changes in the character of oscilla-
tions of the front position (see Fig. 4). For the Wilson–
MacCormack model, it coincides with the instant of the
DW velocity reduction mentioned above.
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Fig. 5. Linear and nonlinear stages of formation of the cellular DW structure. Petersen–Hanson
model (pini = 0.1 atm and f = 1).

Numerical simulations of all stages of the develop-
ment of the multifront structure were performed for the
CJ detonation (f = 1) with the use of all four models
of chemical kinetics under study for the initial pressure
pini = 0.1 atm. As was mentioned above, the compu-
tations were performed for a stoichiometric mixture of
hydrogen and oxygen (2H2 + O2) and for a mixture
of hydrogen, oxygen, and nitrogen (2H2 + O2 + 3N2).
The channel height was 2 cm, and its length was varied
in the interval from 6 to 30 cm depending on the model
and composition of the mixture. The resolution in each
case was chosen to provide 24 computational cells be-
tween the shock wave and the point with the maximum
heat release. Thus, the final resolution was up to 400
cells in 1 cm and up to 2 000 000 cells in the entire com-

putational domain. Figure 5 shows the pressure fields
at different time instants for the two mixtures obtained
with the use of the Petersen–Hanson model.

The upper row of Fig. 5 shows typical patterns of
multifront detonation in the 2H2 + O2 mixture at two
stages of the cellular structure formation. The early,
linear, stage at which the growth of instability leads
to the formation of numerous small cells is presented
on the left. The right part of the figure illustrates the
second, essentially nonlinear, stage at which small cells
merge until their mean size exceeds the initial size by
several times. The lower row shows the same stages
for the 2H2 + O2 + 3N2 mixture. It is clearly seen
that the size of the cells being formed depends on the
composition of the mixture. If the mixture is diluted



278 Borisov et al.

Table 2. Number of detonation cells depending on the model
and initial composition of the mixture

Chemical model

Number of detonation cells

2H2 + O2 2H2 + O2 + 3N2

linear stage nonlinear linear stage nonlinear

ONERA 12.5−13.5 1.5−2 6 0.5

Deiterding–Westbrook 5−6 0.5−v1.5 6.5−9.5 0.5

Wilson–MacCormack 19−21 1−2 6−9.5 0.5

Petersen–Hanson 12−14 1.5 4.5−5 0.5

Fig. 6. Number of detonation cells versus time in
the computation with the Petersen–Hanson model.

by nitrogen, the cell size increases approximately by a
factor of 3: 5 cells emerge at the linear stage instead
of 14, which transform to one half-cell at the end of the
nonlinear stage, while the non-diluted mixture yields
1.5 cells. As in the case with the ZND solution, the
maximum pressure and other parameters are noticeably
different as well.

Thus, addition of an inert gas leads to enhance-
ment of the spatial and temperature scales of detona-
tion. This effect has been well known long ago from ex-
periments. This is quantitatively illustrated in Fig. 6,
which shows the change in the number of detonation
cells with time. The number of cells was calculated by
applying the Fourier transform to the DW front shape.

It is clearly seen from Fig. 6 that the cellular struc-
ture in the mixture without nitrogen starts to form
much earlier (≈15 μs as compared to ≈60 μs). The
transition to the second stage with a drastic increase in
the cell size also occurs earlier.

Dilution with nitrogen exerts an identical qualita-
tive effect on the cellular structure of the DW for all
chemical models. The quantitative results are summa-

rized in Table 2. It should be noted that the number
and, hence, the size of cells formed at the initial stage of
the cellular structure formation depend to a large extent
on the model used. It was demonstrated earlier [20–22]
that the initial cell size for the simplest chemical model
with one irreversible reaction is equal to the wave length
of the transverse perturbation, which has the maximum
growth rate in accordance with the linear theory of sta-
bility. It may be assumed that this statement is also
valid for situations with detailed chemical mechanisms.
Therefore, the differences observed at the initial stage
of the cellular structure formation can be attributed to
the differences in the characteristics of stability of the
ZND solution for these mechanisms. Unfortunately, it
is impossible to verify this assumption because there
are no publications that describe computations of lin-
ear stability of the DW with detailed chemical models.

The growth and merging of detonation cells at later
stages are obviously associated with nonlinear interac-
tions activated when the perturbations reach noticeable
amplitudes. The exact mechanism that controls these
processes is currently unknown. In computations per-
formed with the simplest model, the size of fully de-
veloped detonation cells is approximately twice the cell
size at the linear stage [21].

It follows from Table 2 that this feature is not ob-
served in computations with detailed chemical mech-
anisms. Indeed, despite significant differences in the
number of cells at the initial stage, all models yield an
approximately identical number of cells at the end of the
computation. It should be mentioned, however, that it
is desirable to repeat the computations for a wider chan-
nel in order to be absolutely sure that this conclusion
is valid.

The results of Table 2 can be used to compare the
predicted transverse size of fully developed detonation
cells with experimental data. The following results were
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obtained for the non-diluted stoichiometric mixture
of hydrogen and oxygen: 1–13 cm (ONERA model),
1.3–1.4 cm (Deiterding–Westbrook model), 1–2 cm
(Wilson–MacCormack model), and 1.3 cm (Petersen–
Hanson model). The experimental data [23] for the
same parameters yield the cell size of 1.5–1.6 cm.

For the stoichiometric hydrogen–oxygen mixture
diluted with nitrogen, all models predict the same det-
onation cell size: 4 cm. We could not find experimental
data for such parameters. However, with extrapolation
of data for the closest conditions available [24], the det-
onation cell size at the pressure of 0.1 atm can be ex-
pected to be 5–8 cm, which is also fairly close to the
computed values.

CONCLUSIONS

Four models of hydrogen combustion in oxygen
were compared. The computation of the ignition de-
lay showed that the dependence of the ignition delay
on temperature in the ONERA model has a much sim-
pler, exponential, character as compared to other mod-
els. Nevertheless, these differences are manifested to
the major extent at moderate and low temperatures,
whereas the ignition delays predicted by this model
agree well with the data obtained by the Deiterding–
Westbrook and Petersen–Hanson models. At the same
time, the Wilson–MacCormack model predicts several-
fold higher ignition delays in the range of high temper-
atures and high pressures (most typical for detonation
combustion), which differ from the results of other mod-
els.

The differences are also observed in computations
of the one-dimensional DW structure. For the initial
pressure of 1 atm, the distance from the wave front
to the point of ignition and the combustion region
length computed with the Wilson–MacCormack model
are much greater than the corresponding values pre-
dicted by other models.

Dilution of the mixture with inert nitrogen pro-
duced a qualitatively identical effect for all models. Ad-
dition of nitrogen resulted in an increase in the ignition
delay and made the detonation less violent by reduc-
ing the maximum pressure and temperature behind the
DW front and extending the profile of the ZND solution
in space. Despite the presence of a pressure-dependent
reaction in the Petersen–Hanson model, the results pre-
dicted by this model do not differ much from those of
other models.

All the models under consideration were verified
by their authors with the use of more detailed mod-
els, which, in turn, were designed so that they ensured
a consistent description of available experimental data.
However, the computations show that the models pre-
dict different values of parameters in some ranges of
temperature and pressure, even of such a basic pa-
rameter as the ignition delay. It also seems that the
Wilson–MacCormack model is not able to provide an
accurate description of detonation combustion at initial
pressures close to the atmospheric value. Nevertheless,
this model has been often used recently for modeling
one-dimensional pulsed instability [25–27].

Direct numerical simulations of DW propagation
in a channel performed with different models revealed
significant differences in the sizes of detonation cells
formed at the initial, linear, stage of the cellular struc-
ture formation. It can be assumed that the reason is
the differences in the characteristics of linear stability
of the ZND solution in situations with different models,
namely, different wave length of transverse perturba-
tions with the maximum growth rate. Unfortunately,
the available computations of stability characteristics
are confined to the simplest model with one irreversible
reaction. There are no computations with detailed mod-
els, apparently, because the corresponding linearized
equations are too cumbersome.

The sizes of fully developed detonation cells formed
at the second, nonlinear, stage of the cellular structure
formation are in good agreement with each other (in
computations with different models) and with available
experimental data. However, it should be noted that
more precise comparisons require computations in sig-
nificantly wider channels accommodating a large num-
ber of detonation cells because the cell size in nar-
row channels may significantly change and adapt to the
channel width so that the channel could accommodate
an integer number of half-cells.

The earliest stages of the formation of a cellular
structure from an initially plane DW are demonstrated
in more detail by an example of propagation of an over-
driven DW. It is shown that the multifront structure
starts to form as a result of gradual growth of small
transverse perturbations, which most probably appear
in computations due to accumulation of rounding er-
rors. It was found that the mean velocity of the DW
after the cellular structure formation is slightly higher
than the velocity predicted by the one-dimensional the-
ory. This observation is consistent with experimental
data.

This work was supported by the Russian Founda-
tion for Basic Research (Grant Nos. 16-57-48007, 18-08-
01442, and 18-33-00740).
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APPENDIX

ONERA Model

ELEMENTS

H O N

SPECIES

H O H2 O2 OH H2O N2

No. Reaction A, mol, cm3, s β Ea/R, K

1 H2 + O2 → 2OH 1.700 · 1013 0 24 043.8

H2 + O2 ← 2OH 4.032 · 1010 0.3168 14 553.8

2 H + O2 → OH + O 1.987 · 1014 0 8455.6

H + O2 ← OH + O 8.930 · 1011 0.3383 −117
3 H2 + OH → H2O + H 1.024 · 1008 1.6 1659.8

H2 + OH ← H2O + H 7.964 · 1008 1.528 9300

4 H2 + O → OH + H 5.119 · 1004 2.67 3163.3

H2 + O ← OH + H 2.701 · 1004 2.649 2239.6

5 2OH → H2O + O 1.506 · 1009 1.14 49.8

2OH ← H2O + O 2.22 · 1010 1.089 8613.2

6 H + OH + M → H2O + M 2.212 · 1022 −2.0 0

H + OH + M ← H2O + M 8.936 · 1022 −1.835 59 742.6

H2O/6.5/O2/0.4/N2/1.0/

7 2H + M → H2 + M 9.791 · 1016 −0.6 0

2H + M ← H2 + M 5.086 · 1016 −0.3624 52 104.9

H2/2.5/H2O/12.0/N2/1.0/

Deiterding–Westbrook Model

ELEMENTS

H O N

SPECIES

H O H2 O2 OH H2O HO2 H2O2 N2

No. Reaction A, mol, cm3, s β Ea, cal/mol

1 H + O2 → O + OH 1.86 · 1014 0 16 790

H + O2 ← O + OH 1.48 · 1013 0 680

2 H2 + O → H + OH 1.82 · 1010 1.0 8900

H2 + O ← H + OH 8.32 · 1009 1.0 6950

3 H2O + O → 2OH 3.39 · 1013 0 18 350

H2O + O ← 2OH 3.16 · 1012 0 1100

4 H2O + H → H2 + OH 9.55 · 1013 0 20 300

H2O + H ← H2 + OH 2.19 · 1013 0 5150
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Deiterding–Westbrook Model (continued)

No. Reaction A, mol, cm3, s β Ea, cal/mol

5 H2O2 + OH → H2O + HO2 1.00 · 1013 0 1800

H2O2 + OH ← H2O + HO2 2.82 · 1013 0 32 790

6 HO2 + O → OH + O2 5.01 · 1013 0 1000

HO2 + O ← OH + O2 6.46 · 1013 0 56 160

7 HO2 + H → 2OH 2.51 · 1014 0 1900

HO2 + H ← 2OH 1.20 · 1013 0 40 100

8 HO2 + H → H2 + O2 2.51 · 1013 0 700

HO2 + H ← H2 + O2 5.50 · 1013 0 57 800

9 HO2 + OH → H2O + O2 5.01 · 1013 0 1000

HO2 + OH ← H2O + O2 6.31 · 1014 0 73 860

10 H2O2 + O2 → 2HO2 3.98 · 1013 0 42 640

H2O2 + O2 ← 2HO2 1.00 · 1013 0 1000

11 H2O2 + H → HO2 + H2 1.70 · 1012 0 3750

H2O2 + H ← HO2 + H2 7.24 · 1011 0 18 700

12 H2O + M → H + OH + M 2.19 · 1016 0 105 000

H2O + M ← H + OH + M 1.41 · 1023 −2.0 0

H2O/6.5/O2/0.4/N2/1.0/

13 H + O2 + M → HO2 + M 1.66 · 1015 0 −1000
H + O2 + M ← HO2 + M 2.29 · 1015 0 45 900

H2O/6.5/O2/0.4/N2/1.0/

14 H2O2 + M → 2OH + M 1.20 · 1017 0 45 500

H2O2 + M ← 2OH + M 9.12 · 1014 0 −5070
H2O/6.5/O2/0.4/N2/1.0/

15 O + H + M → OH + M 1.00 · 1016 0 0

O + H + M ← OH + M 7.94 · 1019 −1.0 103 720

H2O/6.5/O2/0.4/N2/1.0/

16 O2 + M → 2O + M 5.13 · 1015 0 115 000

O2 + M ← 2O + M 4.68 · 1015 −0.28 0

H2O/6.5/O2/0.4/N2/1.0/

17 H2 + M → 2H + M 2.19 · 1014 0 96 000

H2 + M ← 2H + M 3.02 · 1015 0 0

H2O/6.5/O2/0.4/N2/1.0/



282 Borisov et al.

Wilson–MacCormack Model

ELEMENTS

H O N

SPECIES

H O H2 O2 OH H2O HO2 H2O2 N2

No. Reaction A, mol, cm3, s β Ea, cal/mol

1 H2 + O2 ↔ HO2 + H 1.0 · 1014 0 56 000

2 H + O2 ↔ OH + O 2.6 · 1014 0 16 800

3 O + H2 ↔ OH + H 1.8 · 1010 1.0 8900

4 OH + H2 ↔ H + H2O 2.2 · 1013 0 5150

5 2OH ↔ O + H2O 6.3 · 1012 −2.0 1090

6 H + OH + M ↔ H2O + M 2.2 · 1022 −1.0 0

H2O/6.0/N2/1.0/

7 2H + M ↔ H2 + M 6.4 · 1017 −0.6 0

H2/2.0/H2O/6.0/N2/1.0/

8 H + O + M ↔ OH + M 6.0 · 1016 0 0

H2O/5.0/N2/1.0/

9 H + O2 + M ↔ HO2 + M 2.1 · 1015 0 −1000
H2/2.0/H2O/16.0/N2/1.0/

10 2O + M ↔ O2 + M 6.0 · 1013 0 −1800
11 HO2 + H ↔ 2OH 1.4 · 1014 0 1080

12 HO2 + H ↔ H2O + O 1.0 · 1013 0 1080

13 HO2 + O ↔ O2 + OH 1.5 · 1013 0 950

14 HO2 + OH ↔ H2O + O2 8.0 · 1012 0 0

15 2HO2 ↔ H2O2 + O2 2.0 · 1012 0 0

16 H + H2O2 ↔ H2 + HO2 1.4 · 1012 0 3600

17 O + H2O2 ↔ OH + HO2 1.4 · 1013 0 6400

18 OH + H2O2 ↔ H2O + HO2 6.1 · 1012 0 1430

19 H2O2 + M ↔ 2OH + M 1.2 · 1017 0 45 500

H2O/15.0/N2/1.0/
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Petersen–Hanson Model

ELEMENTS

H O N

SPECIES

H O H2 O2 OH H2O HO2 H2O2 N2

No. Reaction A, mol, cm3, s β Ea, cal/mol

1 O + H2 ↔ H + OH 5.00 · 1004 2.7 6290

2 H + O2 + M ↔ HO2 + M 2.80 · 1018 −0.9 0

O2/0/H2O/0/N2/0/

3 H + 2O2 ↔ HO2 + O2 3.00 · 1020 −1.7 0

4 H + O2 + H2O ↔ HO2 + H2O 9.38 · 1018 −0.8 0

5 H + O2 ↔ O + OH 8.30 · 1013 0 14 413

6 H + HO2 ↔ O2 + H2 2.80 · 1013 0 1068

7 H + HO2 ↔ 2OH 1.34 · 1014 0 635

8 H + H2O2 ↔ HO2 + H2 1.21 · 1007 2.0 5200

9 OH + H2 ↔ H2O + H 2.16 · 1008 1.5 3430

10 2OH( + M) ↔ H2O2( + M) 7.40 · 1013 −0.4 0

LOW / 2.30 · 1018 −0.9 −1 700 /

TROE / 0.7346, 94.0, 1 756.0, 5 182.0 /

H2/2.0/H2O/6.0/N2/1.0/

11 OH + HO2 ↔ O2 + H2O 2.90 · 1013 0 −500
12 OH + H2O2 ↔ HO2 + H2O 1.75 · 1012 0 320

13 OH + H2O2 ↔ HO2 + H2O 5.80 · 1014 0 9560

14 2HO2 ↔ O2 + H2O2 1.30 · 1011 0 −1630
15 2HO2 ↔ O2 + H2O2 4.20 · 1014 0 12 000

16 2O + M ↔ O2 + M 1.20 · 1017 −1.0 0

H2/2.4/H2O/15.4/N2/1.0/

17 O + H + M ↔ OH + M 5.00 · 1017 −1.0 0

H2/2.0/H2O/6.0/N2/1.0/

18 H + OH + M ↔ H2O + M 2.20 · 1022 −2.0 0

H2/0.73/H2O/3.65/N2/1.0/

19 2H + M ↔ H2 + M 1.00 · 1018 −1.0 0

H2/1.7/H2O/7.0/N2/1.0/

20 H + O2 + N2 ↔ HO2 + N2 2.60 · 1019 −1.2 0
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