
ISSN 0010-5082, Combustion, Explosion, and Shock Waves, 2020, Vol. 56, No. 2, pp. 209–219. c© Pleiades Publishing, Ltd., 2020.

Original Russian Text c© S.A. Zhdan, A.I. Rybnikov, E.V. Simonov.

Modeling of Continuous Spin Detonation

of a Hydrogen–Air Mixture in an Annular

Cylindrical Combustor

UDC 534.222.2,544.454.3S. A. Zhdana, A. I. Rybnikova, and E. V. Simonova

Published in Fizika Goreniya i Vzryva, Vol. 56, No. 2, pp. 95–106, March–April, 2020.
Original article submitted March 18, 2019; revision submitted May 28, 2019; accepted for publication
May 29, 2019.

Abstract: A closed mathematical model of continuous spin detonation with the chemical kinet-
ics equation correlated with the second law of thermodynamics is developed for a hydrogen–air
mixture within the framework of the quasi-three-dimensional unsteady gas-dynamic formulation.
The model takes into account the reverse influence of the oscillation processes in the combustor
on the injection system of the mixture components. For comparisons with experimental data, the
numerical simulations are performed for the geometric parameters of the flow-type annular com-
bustor with an outer diameter of 306 mm used in the experiments. For the flow rates of the mixture
varied in the interval 73.1–171.3 kg/(s ·m2), the one-wave, two-wave, and three-wave regimes of
continuous spin detonation are calculated, the flow structure is analyzed, the specific impulses are
determined, and comparisons with experimental data are performed. It is shown that the use of a
simplified single-stage kinetic scheme of hydrogen oxidation, which was used in some investigations,
for simulating continuous spin detonation leads to results that differ from the experimental data
by several times.
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INTRODUCTION

A currently considered possible alternative to con-
ventional combustion of fuels in the turbulent flame
is the method of fuel burning in accordance with the
scheme proposed by Voitsekhovskii [1] in the regime
of continuous spin detonation (CSD) with transverse
detonation waves (TDWs) [2, 3]. Continuous spin det-
onation in a flow-type annular cylindrical combustor
306 mm in diameter (DK-300) was obtained for the
first time in an acetylene–air mixture in [4] and in a
hydrogen–air mixture in [5, 6]. The first numerical
studies of CSD in the rocket-type detonation combus-
tor were performed for hydrogen as a fuel in [7, 8] and
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for some hydrocarbon fuels in [9]. The current sta-
tus of two-dimensional and three-dimensional numeri-
cal investigations of CSD was reviewed in [10]. Three-
dimensional numerical simulations of CSD in a stoichio-
metric hydrogen–air mixture were performed in [11, 12]
with the use of a standard k–ε turbulence model with
simplified single-stage chemical kinetics. For compar-
isons with experimental data, the computational do-
main size was taken to be the same as that used in
the experiments [5]; the specific flow rate of the mix-
ture was gΣ ≈ 170 kg/(s ·m2). To simplify the prob-
lem, the computations [11] were performed with injec-
tion of a premixed mixture into the combustor, and
separate injection of the fuel and oxidizer were mod-
eled in [12]. In both cases, only one-wave CSD regimes
with the TDW rotation frequency f = 1.7 kHz [11]
and f = 2–2.1 kHz [12] were obtained, whereas a reg-
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Fig. 1. Schematic of the annular cylindrical combus-
tor model.

Fig. 2. Domain of the numerical solution of the prob-
lem.

ular three-wave CSD regime with the TDW frequency
f = 4.46 kHz was observed in the experiments in DK-
300 [5] at gΣ ≈ 135 kg/(s ·m2). The quantitative differ-
ences of the predictions [11, 12] from the experimental
results [5] (three-fold underestimation of the number
of TDWs) are apparently caused by using a simplified
single-stage kinetic scheme of hydrogen oxidation used
in the simulations. Therefore, further effort has to be
applied for the development of mathematical models of
CSD with more reliable kinetics equations for hydrogen
oxidation in air.

The goals of the present study are the develop-
ment of a closed mathematical model of CSD in a
flow-type combustor with the chemical kinetics equa-
tion [13] correlated with the second law of thermody-
namics in a quasi-three-dimensional gas-dynamic ap-
proximation, numerical investigation of the CSD regime
in the hydrogen–air mixture, and verification of the
mathematical model on the basis of the experimental
results [5].

MATHEMATICAL FORMULATION
OF THE PROBLEM

System of Equations

Let us consider the problem of mathematical mod-
eling of detonation combustion of a hydrogen–air mix-

ture in a flow-type annular cylindrical combustor with
exhaustion of the mixture from a manifold. For subse-
quent comparisons of the predicted parameters with the
experimental data [5], the scheme and geometric sizes
of the annular combustor were taken as close as pos-
sible to the combustor parameters used in [5, Fig. 1].
Thus, we assume that the mixture is injected from a
high-pressure receiver through injectors in the end face
of the annular manifold (total length Lm, width Hm,
and converging section length Lm/2), passes through
an annular slot of width δ, and enters the combustor
(Fig. 1). The diameter of the annular combustor is dc,
its total length is Lc, and the diverging section length
is LΔ (the combustor expands to a size Δ > δ).

As the inequalities δ < Δ < Hm � dc are valid
for the experimental combustors with annular geome-
try [5], the problem can be considered in a quasi-three-
dimensional approximation, similar to [3]. In the com-
bustor space with the boundaries Γ0 (end face of the
annular manifold), Γ1 (combustor entrance), and Γ2

(open end of the combustor where detonation products
leave the combustor), the annular domain can be cut
and unfolded into a rectangular domain of the prob-
lem solution Ω = Ω1 ∪ Ω2 shown in Fig. 2. Here
Ω1 = (−Lm < x < 0, 0 < y < l), Ω2 = (0 < x < Lc,
0 < y < l), x and y are the spatial variables of the or-
thogonal coordinate system, and l is the period of the
problem.

Let a certain amount of energy sufficient for deto-
nation initiation be released in the computational do-
main area Ω3 at a certain time instant after the reacting
mixture is supplied to the combustor entrance (bound-
ary Γ1). As a result of initiation, an unsteady detona-
tion wave propagates in the domain Ω2. The goal is to
determine its dynamics, structure, and also conditions
of reaching a self-sustained CSD regime for various val-
ues of the governing parameters of the problem.

An unsteady gas-dynamic flow of a hydrogen–air
mixture in the domain Ω is described by the follow-
ing system of equations of unsteady gas dynamics with
chemical transformations:

ρt + S−1(ρuS)x + (ρv)y = 0,

(ρu)t + S−1(ρu2S)x + (ρuv)y + px = 0,

(ρv)t + S−1(ρuvS)x + (ρv2)y + py = 0, (1)

(ρE)t + S−1[ρu(E + p/ρ)S]x + [ρv(E + p/ρ)]y = 0,

(ρY )t + S−1(ρuY S)x + (ρvY )y = ρf5,

(ρμ)t + S−1(ρuμS)x + (ρvμ)y = ρf6.

Here t is the time, ρ is the density, u and v are the
velocity vector components, p is the pressure, E = U +
(u2 + v2)/2, U(T, μ) is the total internal energy of the
gas, T is the temperature, μ is the current molar mass
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of the mixture, and Y is the fraction of the chemical
induction period.

The cross-sectional area of the manifold and com-
bustor channel S = S(x) along the x coordinate with
smooth sinusoidal convergence (−Lm/2 < x < 0) to
the width δ and subsequent smooth sinusoidal diver-
gence (0 < x < LΔ) to the combustor channel width Δ
is defined in the form

S(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hml, −Lm < x < −Lm/2,

[(Hm − δ) sin(−πx/Lm) + δ]l,

−Lm/2 < x < 0,

[(Δ− δ) sin(πx/2LΔ) + δ]l,

0 < x < LΔ,

Δl, x � LΔ.

(2)

The energy release is described within the frame-
work of the two-stage kinetic model [14]: induction
stage (0 < Y � 1, f5 = −1/tind , f6 = 0) where the
energy release is absent and chemical transformation
stage (Y = 0, f5 = 0, f6 �= 0), where the energy release
rate is determined by the chemical reaction rates.

According to the experiments [15], the chemical de-
lay of ignition of the hydrogen–air mixture in the induc-
tion region (0 < Y � 1) has the form

tind =
KaμO2

ρz
exp

(
εa
RT

)
, (3)

where εa = 17.15 kcal/mol is the activation energy,
Ka = 5.38 · 10−11 mol · s/l is the pre-exponent, R is the
universal gas constant, μO2 is the molar mass of oxygen,
z = μO2/(μO2 + 2φμH2 + αμin) is the mass fraction of
oxygen in the hydrogen–air mixture, μH2 is the molar
mass of hydrogen, φ is the fuel-to-oxidizer equivalence
ratio, α = 3.772, and μin = 28.144 kg/kmol. The in-
ert component of air included nitrogen (N2) and argon
(Ar). Then the structural formula for the hydrogen–air
mixture can be presented as 2φH2 + O2 + 3.7275N2 +
0.0445Ar, and μin = 0.988μN2 + 0.012μAr. Here μN2

and μAr are the molar masses of nitrogen and argon.
System (1) is supplemented with the equations

of state

p = ρRT/μ, U = Uth + Uch, (4)

where Uth and Uch are the thermodynamic and chemi-
cal components of internal energy. The internal energy
of the gas U(T, μ) is counted from the ultimately disso-
ciated composition at zero temperature.

In the induction region (Y > 0), the molar fraction
of the mixture is μ = μ0 = const and energy release is
absent; therefore, the following expressions are valid:

Uth =
p

(γ − 1)ρ
, Uch = −E0

2z

μO2

− φE0
1z

8μH2

. (5)

where γ is the ratio of specific heats of the gas in the
chemical induction region, E0

1 and E0
2 are the dissocia-

tion energies of the H2 and O2 molecules, respectively.
According to [13, 16], the thermodynamic and

chemical components of the internal energy of the gas
in the region of chemical transformations have the form

Uth = A(μ, T )
RT

μ
, Uch = Ed

(
1

μ
− 1

μmin

)
,

(6)

A(μ, T ) =
μ

μa
+

1− σ

2
+

(
μ

μa
+ σ − 1

)
θ/T

exp(θ/T )− 1
,

where σ = σmax(μ/μmin − 1)/(μmax/μmin − 1), μa,
μmin, and μmax are the molar masses of the gas in the
atomic, ultimately dissociated, and ultimately recom-
bined states, σmax is the molar fraction of triatomic
molecules in the ultimately recombined state, θ is the ef-
fective temperature of excitation of vibrational degrees
of freedom of molecules, Ed is the mean energy of dis-
sociation of reaction products, and γ = 1+ 1/A(μ0, T ).
All parameters are uniquely determined by the atomic
composition of the original mixture (mass fraction of
oxygen z). For the hydrogen–air mixture, we have

μ−1
0 =

z(1 + 2φ)

μO2

+Xin,

μ−1
min =

2z(1 + 2φ)

μO2

+Xin, Ed ≈ E0
1 ≈ E0

2 ;

in the case of oxygen deficit z � zst (φ � 1),

μ−1
max =

2φz

μO2

+Xin, σmax =
2zμmax

μO2

,

θ = 3000 + 500σmax;

in the case of oxygen excess z > zst (φ < 1),

μ−1
max =

(1 + φ)z

μO2

+Xin, σmax =
2φzμmax

μO2

,

θ = 1500 + (2000 + 750 · 3.7275/φ)σmax.

Here Xin = [1 − (1 + 2φμH2/μO2)z]/μin, and zst =
μO2/(μO2 + 2μH2 + αμin) is the mass fraction of oxygen
in the hydrogen–air mixture with a stoichiometric ratio
of the oxidizer and the fuel (φ = 1).

The composition (molar mass μ) of the gas phase
behind the ignition front changes in accordance with the
chemical kinetics equation [13] correlated with the sec-
ond law of thermodynamics; for the refined description
of the thermodynamic part of the internal energy (6),
it has the form
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f6 = 4K+[W1(μ)ρ
2 −W2(T, μ)ρ],

W1(μ) =
(1− μ/μmax)

2

μ
,

(7)

W2(T, μ) = K−

(
μ

μmin
− 1

)(
T

T0

)β/2

×
[
1− exp

(−θ

T

)]β
exp

(
− Ed

RT

)
,

where K+ is the constant of the generalized recom-
bination rate, K− is the equilibrium constant, T0 is
the initial temperature of the mixture, and β = 1 +
σmax/(μmax/μmin − 1).

System (1)–(7) is closed and completely defines the
unsteady motion of the reacting hydrogen–air mixture
with variable heat release in the reaction region of the
detonation wave.

Boundary Conditions

Condition 1. On the boundary Γ0 (x = −Lm,
0 � y � l), fuel and oxidizer injection into the man-
ifold is modeled by the inflow of the combustible mix-
ture through a system of the Laval micronozzles uni-
formly distributed along Γ0. The ratio of the cross-
sectional areas of the micronozzle throat and micronoz-
zle exit is assumed to be equal to the ratio of the total
cross-sectional area of the orifices S∗ to the total cross-
sectional area of the manifold Sm. The gas-dynamic
parameters at the micronozzle exit are determined by
the initial parameters of the mixture in the receiver and
by the pressure in the manifold p(−Lm, y, t) [7]. Then
the following relations are valid on the boundary Γ0:

p = p(−Lm, y, t)

if p′ � p(−Lm, y, t) < pr;

u = umax[1− (p/pr)
(γ−1)/γ ]1/2, ρ = ρr(p/pr)

1/γ

if p′′ � p(−Lm, y, t) < pr; (8)

ρuSm = ρ∗u∗S∗, γ/(γ − 1)p/ρ+ u2/2 = u2
max/2

if p(−Lm, y, t) < p′′.

Here pr, ρr, and Tr = prμ0/(ρrR) are the pressure, den-
sity, and temperature of the mixture in the receiver; ρ∗,
u∗, and umax are the critical density, critical velocity,
and maximum possible velocity, which are known func-
tions of γ, pr, and ρr; Sm and S∗ are the cross-sectional
areas of the micronozzle exit and throat; finally, p′ and
p′′ are the calculated pressures of the supersonic and
subsonic exhaustion modes satisfying the equation

(p/pr)
1/γ [1− (p/pr)

(γ−1)/γ ]1/2

= [2/(γ + 1)]1/(γ−1)[(γ − 1)/(γ + 1)]1/2S∗/Sm.

Condition 2. The following condition is imposed on
the boundary Γ1 (x = 0, 0 � y � l), where the transi-
tion from the manifold through the annular slot to the
combustor occurs:

Y = 1, μ = μ0. (9)

This condition ensures the inert character of the gas
flow in the manifold (−Lm � x � 0), because H2 was in-
jected at the combustor entrance in the experiments [5].

Condition 3. The left and right boundaries of
the domain Ω are subjected to the condition of solu-
tion periodicity. By virtue of periodicity (with the pe-
riod l) along the x coordinate, all gas-dynamic functions
F (x, y, t) satisfy the condition

F (x, 0, t) = F (x, l, t), −Lm � x � Lc. (10)

Condition 4. At the combustor exit (boundary Γ2:
x = Lc; 0 � y � l) with exhaustion of the combustion
products into the ambient state with the ambient pres-
sure p = pa, the combustor-exit values of the pressure
Pex, density Rex, velocity vector component uex and
vex, and, correspondingly, the mass, momentum, and
energy fluxes on the boundary Γ2

Mex = Rexuex, Jex = Pex + uexMex,

(11)
Eex = (U + u2/2 + v2/2)exMex + Pexuex

are determined by the method [17, § 15] of solving the
Riemann problem with setting the ambient pressure pa
in the finite difference grid cell outside the computa-
tional domain contour. The initial data in the com-
bustor imply a motionless stoichiometric hydrogen–air
mixture at p = pa.

Initial Constants of the Model

For the numerical solution of the formulated
problem (1)–(11), it is necessary to set all ini-
tial constants of the model and the basic thermo-
dynamic properties of the mixture with the chosen
composition and its combustion products, as well
as the constant involved into the chemical kinet-
ics equation (7). The basic constants are μH2 =
2 kg/kmol, μO2 = 32 kg/kmol, μin = 28.144 kg/kmol,
α = 3.772, R = 8.3144 · 103 J/(kmol ·K), E0

1 =
104.2 kcal/mol, E0

2 = 117.9 kcal/mol, Ed = 110
kcal/mol, K+ = 6 · 108 m6/(kmol2 · s), T0 = 300 K, and
p0 = 1.013 · 105 Pa.

For a specified value of the equivalence ratio φ, we
determine the mass fraction of oxygen in the mixture
z = μO2/(μO2 + 2φμH2 + αμin), initial molar mass of
the mixture μ0(z), and other constants included into
the description of the thermodynamic properties of the
gas and its combustion products: μmin(z), μmax(z),
σmax(z), θ(z), β(z), and K−(z).
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The values of these constants for the stoichiomet-
ric (φ = 1) hydrogen–air mixture are zst = 0.2251,
μ0 = 20.992 kg/kmol, μmin = 14.5483, μmax = 24.6304,
σmax = 0.3492, θ = 3175 K, β = 1.5, and K− =
3529 kmol/m3.

It should be noted that the chemical equilibrium
constant K− is determined from the chemical kinet-
ics equation (7) by substituting the parameters of the
Chapman–Jouguet detonation at f6 = 0 calculated
in [18].

For comparisons with the experiments [5], the nu-
merical simulations are performed for the same geomet-
ric parameters of the manifold and combustor channel:

Lm = 7.5 cm, Hm = 4.2 cm,

Lδ = Lm/2, δ = 0.2 cm, (12)

Lc = 66.5 cm, LΔ = 4 cm, Δ = 2.3 cm.

Governing Parameters of the Problem

For fixed geometric parameters of the manifold and
combustor (12), the solution of the unsteady problem
of CSD depends on the governing parameters

pr, Tr, S∗, φ, pa, l. (13)

The first four parameters are those in the injection sys-
tem: the pressure pr and stagnation temperature Tr in
the receiver, the total cross-sectional area of the mi-
cronozzle throat S∗ at the manifold entrance, and the
equivalence ratio φ, which define the initial flow rate of
the mixture in the manifold and combustor:

GΣ0 =

(
2

γ + 1

)0.5(γ+1)/(γ−1)

pr

√
γμ0

RTr
S∗. (14)

The parameter pa is the ambient pressure, and l is the
period of the problem along the y axis.

COMPUTATION RESULTS

Problem (1)–(11) is solved numerically. The so-
lution domains Ω1 (manifold) and Ω2 (combustor) are
covered by a motionless grid with uniform cells in the y
direction and nonuniform cells in the x direction. The
number of cells is 50 × 400 in the domain Ω1 and
200 × 400 in the domain Ω2. Equations (1) are inte-
grated by the Godunov–Kolgan second-order finite dif-
ference scheme [17, 19].

The dynamics of CSD formation in the stoichiomet-
ric hydrogen–air mixture was calculated for the geomet-
ric parameters of the manifold and combustor channel
given in Eqs. (12) and for the parameters in the injec-
tion system and ambient pressure corresponding to the
experimental data [5]:

Fig. 3. Current (solid curve) and period-averaged
(dashed curve) static pressure versus time at the
combustor point with the coordinates (x = 1.5 cm,
y = 0).

pr
p0

= 6.4,
Tr

T0
= 0.757,

S∗
Sm

= 0.027,

(15)

φ = 1,
pa
p0

= 1,

with the specific flow rate of the mixture gΣ0 =
GΣ0/SΔ = 73.1 kg/(s ·m2). For finding the periodic
solution with TDWs, there is only one free parameter
left, i.e., the problem period l. For comparisons of the
flow pattern with the one-wave (n = 1) CSD regime [5],
the parameter l is assumed to be equal to the combustor
perimeter calculated on the basis of the mean diameter
of the annular gap: Π = π(dc −Δ) = 88.907 cm.

A certain amount of energy sufficient for detonation
initiation is instantaneously released at the initial time
(t = 0) in the domain Ω3 (see Fig. 2) shaped as a quarter
of an ellipse. As a result, a TDW propagates over the
combustor.

The calculated dimensionless static pressure
P (t) = p(t)/p0 (solid curve) and the period-averaged
static pressure 〈P (t)〉 = 〈p(t)〉/p0 (dashed curve) at
the combustor point with the coordinates (x = 1.5 cm,
y = 0) as functions of time t are shown in Fig. 3. Here

〈p(t)〉 =
1

l

l∫
0

p(x, y, t)dy. It is seen that the pressure

behaves nonmonotonically (fluctuates with time) as the
TDW propagates over the combustor. The computa-
tions show that the pressure at the early stage of the
process (within 5 ms) experiences irregular fluctuations
with decreasing amplitude, and then the fluctuations
become almost periodic (with the period Δt ≈ 0.47 ms).
The mean pressure reaches a constant value 〈P 〉 ≈ 1.1
with time. It should be noted that the static pressure
sensor mounted at a distance x = 1.5 cm from the end
face of the combustor showed 〈P 〉 ≈ 1.2 in the experi-
ments [5] at φ = 1 and gΣ = 73.1 kg/(s ·m2).
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Knowing the time period Δt, one can find the TDW
rotation frequency f = 1/Δt = 2.13 kHz, the period-
averaged velocity D = l/Δt ≈ 1.9 km/s, and the ratio
D/DCJ = 0.96. Here DCJ = 1.966 km/s is the velocity
of the ideal Chapman–Jouguet detonation in a stoichio-
metric hydrogen–air mixture [18]. Thus, a TDW prop-
agates continuously over the layer of the hydrogen–air
mixture injected from the manifold through the bound-
ary Γ1; this wave propagates with a velocity D that is
smaller than the Chapman–Jouguet detonation veloc-
ity.

To check whether the periodic solution reaches the
quasi-steady detonation mode, the following quantities
averaged over the period l at the combustor exit are
additionally calculated at each time instant:

gΣ(Lc, t) =
1

l

l∫
0

ρudy;

〈p0(Lc, t)〉 = 1

l

l∫
0

(p(L, y, t) + ρu2(L, y, t))dy; (16)

Isp = (〈p0〉 − pa) · SΔ/(Gfg).

Here gΣ(Lc, t) is the mean specific flow rate of the mix-
ture, 〈p0(Lc, t)〉 is the mean total pressure at the com-
bustor exit, Isp is the mean specific impulse per unit
mass of the fuel, SΔ = π(dc − Δ)Δ is the free cross-
sectional area of the combustor, Gf is the fuel flow rate,
and g is the acceleration due to gravity.

The computed results show that the parameters
gΣ(Lc, t) and Isp reach constant values at t > 8 ms
since the instant of CSD initiation; for the variant under
consideration, these values are

gΣ(Lc, t) ≈ gΣ0 = 73.1 kg/(s ·m2), Isp ≈ 2680 s.

TDW Structure

Figure 4 shows the two-dimensional structure of the
flow in the case of TDW propagation in the combustor
with the geometric parameters (12) at l = 88.91 cm at
the time t = 10.8 ms. The TDW front height for the in-
jection parameters (15) is h = 10 cm. The upper part of
the figures (x > 0) shows the flow structure in the mani-
fold (Ω1), and the lower part of the figures (x < 0) shows
the flow structure in the combustor (Ω2). The TDW
moves from left to right with the velocity D = 1.9 km/s
over the triangular low-temperature region of the origi-
nal mixture injected through the upper boundary from
the manifold. The pressure contours (Fig. 4a) display
a rapid decrease in pressure behind the TDW front.
When the pressure behind the TDW front becomes

Fig. 4. Calculated two-dimensional struc-
ture of CSD in the hydrogen–air mixture for
gΣ = 73.1 kg/(s ·m2), φ = 1, and n = 1: (a) pres-
sure contours p/p0; (b) temperature contours T/T0;
(c) Mach number contours Mx = u/c.
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Fig. 5. Static pressure versus time at the combustor
point with the coordinates (x = 0, y = 0) for pr/p0 =
10 at l = 44.45 cm (solid curve) and l = 29.63 cm
(dashed curve).

smaller than that in the manifold, the detonation prod-
ucts are displaced downstream by the new portions of
the mixture from the manifold. It is seen that the TDW
forms an oblique shock wave (SW) (Fig. 4a) penetrating
upstream through the slot to the manifold; as a result,
the mean pressure in the manifold increases with time
and reaches the constant value 〈P (−Lm, t)〉 ≈ 4.34 (in
the present computation). An oblique SW (tail) departs
downstream from the TDW and moves over the hot det-
onation products (T ≈ 1600–1800 K, Fig. 4b). The tem-
perature behind the oblique SW front reaches the val-
ues T ≈ 2200–2800 K in the upper part of the tail; the
temperature and degree of inhomogeneity of this wave
decrease at the combustor exit (T = 1950–2350 K).
The Mach number contours for the projection of the
velocity vector onto the x axis (Fig. 4c) show that the
values of Mx ahead of the SW front monotonically in-
crease from 0.55 to 1.17 with distance from the combus-
tor entrance (boundary Γ1), whereas the velocity in the
detonation products behind the TDW front is subsonic.
The attempt to continue the computation for this vari-
ant with gΣ = 73.1 kg/(s ·m2) by reducing the problem
period to l = Π/2 = 44.45 cm (n = 2) resulted in TDW
failure and decay. This means that the above-described
numerical solution for one-wave CSD in the combustor
with parameters (12) is the only possible solution.

Increase in the Injection Pressure

For the geometric parameters of the manifold and
combustor (12), the influence of the injection pres-
sure of the mixture in the receiver pr on the param-
eters and flow structure with TDWs is considered. For
fixed values Tr/T0 = 0.757, S∗/Sm = 0.027, φ = 1,
and pa/p0 = 1, CSD computations are performed
with variations of the injection pressure in the interval
pr/p0 = 6.4–15 and, correspondingly, specific flow rate
of the mixture gΣ0 = 73.1–171.3 kg/(s ·m2). The com-
puted data are summarized in Table 1, where 〈p〉 is the
mean static pressure at the combustor entrance, n is
the number of TDWs accommodated over the combus-
tor perimeter, and h is the TDW height.

Figure 5 shows the calculated dimensionless static
pressure as a function of time P (t) = p(t)/p0 at the
combustor point with the coordinates (x = 0, y = 0)
for pr/p0 = 10 (gΣ0 = 114.2 kg/(s ·m2)) for the prob-
lem periods l = Π/2 (solid curve) and l = Π/3 (dashed
curve). It is seen that there are periodic oscillations of
pressure with the period Δt = 0.244 ms (f = 4.1 kHz
and D = 1.82 km/s) at l = Π/2 (n = 2), i.e., the wave
reaches the CSD regime. As the period decreases to
l = Π/3 (n = 3), the pressure experiences two oscilla-
tions (dashed curve) with variable amplitude, followed
by its monotonic decrease; finally, at t > 3.4 ms, the
pressure reaches an almost constant value P (t) ≈ 3.15.
The analysis of the solution shows that the rotat-
ing TDW fails and the combustion front and combustion
products are entrained downstream toward the combus-
tor exit. After that, the flow of the non-reacting mixture
entering the combustor through the upper boundary Γ1

and leaving the combustor through the lower boundary
Γ2 is formed in the solution domain. According to the
classification [3], the one-wave CSD regime in this case
is a “parasitic” periodic solution, which is physically
meaningless. Thus, as the injection pressure increases
to pr/p0 = 10 (gΣ = 114.2 kg/(s ·m2)), the only periodic
solution in the combustor with parameters (12) is the
two-wave CSD regime. Its two-dimensional structure
(temperature field) is shown in Fig. 6a.

The series of CSD computations performed for
pr/p0 = 15 (gΣ0 = 171.3 kg/(s ·m2)) with consecutive
reduction of the problem period to l = Π/4 = 22.2 cm
and rejection, as was noted above, of parasitic solutions
made it possible to obtain a unique solution for the
combustor with parameters (12); three-wave (n = 3)
CSD regime propagating with the velocity D = 1.77
km/s. Its two-dimensional structure (temperature field)
is shown in Fig. 6b.
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Table 1. Calculated parameters of CSD in the hydrogen–air mixture in the combustor
with parameters (12)

pr/pa gΣ, kg/(s ·m2) 〈p〉/pa 〈p0〉/pa n h, cm D, km/s f , kHz Isp, s

6.4 73.1 2.45 1.55 1 10 1.9 2.13 2 680

7.5 85.7 2.63 1.69 1 9.4 1.93 2.17 2720

8.5 97.1 2.68 1.75 2 8.0 1.81 4.07 2740

10 114.2 3.73 1.93 2 7.1 1.82 4.1 2995

11 125.6 4.3 2.1 2 6.6 1.86 4.2 3200

12 137.0 4.71 2.23 3 6.2 1.7 5.74 3360

15 171.3 6.0 2.80 3 5.6 1.77 5.97 3860

Fig. 6. Temperature field T/T0 in the combustor with CSD in the hydrogen–air mixture (φ = 1):
(a) gΣ = 114.2 kg/(s ·m2), n = 2, and D = 1.82 km/s; (b) gΣ = 171.3 kg/(s ·m2), n = 3, and
D = 1.77 km/s.

According to the data of Table 1, an increase in
the injection pressure pr leads to a monotonic increase
in the mean static pressure 〈p〉 at the combustor en-
trance (from 2.5 to 6 atm), the mean total pressure 〈p0〉
at the combustor exit (from 1.5 to 2.8 atm), the num-
ber of TDWs (from 1 to 3), and the specific impulse
(from 2680 to 3860 s), whereas the TDW front height h
monotonically decreases (from 10 to 5.6 cm).

Reduction of the Combustor Length

The influence of the combustor length Lc on the pa-
rameters and two-dimensional structure of the CSD gas-
dynamic flow is considered for fixed values of the govern-
ing parameters (13) φ = 1, pr/p0 = 15, Tr/T0 = 0.757,
S∗/Sm = 0.027, pa/p0 = 1, and l = Π/3 = 29.6 cm.
The combustor length was gradually reduced in the
computations as Lc = 66.5 → 10 cm. Some results

of these computations are listed in Table 2 (p2/p1 and
T2/T1 are the ratios of the pressures and temperatures
on the oblique SW front at the combustor exit), and the
two-dimensional CSD structures (temperature field) in
combustors of different lengths are shown in Fig. 7.

It is seen that the flow structure in the vicinity of
the TDW, the height of the TDW front (h ≈ 5.6 cm),
and the slope of the oblique SW adjacent to the TDW
with respect to the abscissa axis (≈65◦) remain al-
most unchanged as the combustor length decreases to
Lc = 10–20 cm. According to the data of Table 2, a de-
crease in the combustor length leads to minor changes in
the problem parameters (〈p〉, 〈p0〉, and D), whereas the
degree of inhomogeneity of the gas-dynamic parameters
at the combustor exit monotonically increases. Thus,
for Lc = 66.5 cm, jumps of pressure (p2 − p1)/p1 ≈
0.61 and temperature (T2−T1)/T1 ≈ 0.11 are obtained
at the combustor exit. For Lc = 10 cm, the jumps of
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Table 2. Calculated CSD parameters (pr/pa = 15 and l = 29.63 cm)
in combustors of different lengths

Lc, cm 〈p〉/pa 〈p0〉/pa p2/p1 T2/T1 h, cm D, km/s Isp, s

66.5 6.0 2.8 1.61 1.11 5.6 1.77 3860

40 5.95 2.78 2.07 1.24 5.6 1.78 3850

30 5.95 2.79 2.23 1.27 5.6 1.79 3910

20 5.94 2.81 3.25 1.32 5.6 1.79 3940

10 5.94 2.89 3.79 1.47 5.6 1.8 4160

Fig. 7. Calculated two-dimensional TDW structure (temperature contours T/T0) in combustors of
different lengths: Lc = 40 (a), 20 (b), and 10 cm (c).

these parameters increase by more than a factor of 4:
(p2 − p1)/p1 ≈ 2.79 and (T2 − T1)/T1 ≈ 0.47.

It is of interest to note (see Table 2) that the
specific impulse of CSD Isp starts to increase with
reduction of the combustor length at Lc < 30 cm
(h/Lc > 0.2); it increases approximately by 6% at
Lc = 10 cm (h/Lc ≈ 0.56). The analysis of the solution
(see Fig. 7c) shows that only some part of the deto-
nation products passes through the oblique SW front,
which increases their entropy, in the combustor with
the length Lc = 10 cm, while the remaining part of

the products immediately escapes from the combus-
tor. As the combustor length increases, the fraction
of the products passing through the oblique SW front
gradually increases until this flow includes all the prod-
ucts (see Figs. 7a and 7b); correspondingly, the irre-
versible entropy losses in the products also increase.
It is known [3] that the increase in entropy behind the
TDW front in the CSD case is smaller than that in the
case of combustion. Naturally, additional entropy losses
behind the oblique SW front slightly decrease the det-
onation combustion efficiency.
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The results of computations with variations of
the parameter Lc show (see Table 2) that the CSD
regime persists as the combustor length decreases to
Lc = 10 cm. Moreover, the entropy losses in the
detonation products become smaller, which leads to
an increase in the specific impulse at Lc = 10 cm
(h/Lc ≈ 0.56) approximately by 6% to Isp ≈ 4160 s.

ANALYSIS OF RESULTS

Numerical simulations of CSD in the flow-type an-
nular combustor [5] in the range of the injection pres-
sure of the hydrogen–air mixture pr = (6.4–15)pa show
that an increase in the specific flow rate of the mix-
ture gΣ leads to an increase in the number of TDWs
and their rotation frequency, the mean static pressure
at the combustor entrance 〈p〉, the mean total pressure
at the combustor exit 〈p0〉, and the specific impulse Isp,
whereas the CSD velocity decreases from D = 1.9 to
1.77 km/s. The calculated velocities of CSD propaga-
tion (see Table 1) are greater by 20–30% than the ex-
perimental results [5], and the predicted TDW size is
smaller by a factor of 1.5–2.5. This is explained by the
condition of instantaneous mixing of the mixture com-
ponents in the mathematical model, whereas this factor
produced a significant effect in the experiments: on the
one hand, it reduced the detonability of the mixture
and the TDW propagation velocity; on the other hand,
it increased the TDW front height.

A comparison of the number of TDWs accommo-
dated over the DK-300 perimeter for identical specific
flow rates in the computations and experiments reveals
almost complete coincidence. Thus, one TDW is ob-
served at gΣ = 73 kg/(s ·m2), two TDWs are observed
at gΣ = 97 kg/(s ·m2), and three TDWs are observed at
gΣ = 137 kg/(s ·m2). An exception is the intermediate
variant with gΣ = 114 kg/(s ·m2) for which the compu-
tations predict two TDWs, whereas the experiments [5]
reveal three TDWs.

The calculated TDW rotation frequency as a func-
tion of the specific flow rate of the mixture is shown
in Fig. 8. The experimental data [5] and computa-
tions [11, 12] are presented for comparison. The ex-
perimental data [5] (points 1) and the present compu-
tations (points 2) show that the number of TDWs in-
creases with an increase in the specific flow rate and
that the TDW velocity and rotation frequency increase
at a fixed number of TDWs. Our computations corre-
late with the experimental data, exceeding the latter
in terms of frequency by 30%. For comparison, the
results of the three-dimensional computations [11, 12]
(points 3) where only the one-wave CSD regime was

Fig. 8. TDW rotation frequency versus the spe-
cific flow rate of the mixture: experimental
data [5] (points 1), present computations (points 2),
and computations [11, 12] (points 3).

obtained are also presented. It is seen that the compu-
tations [11, 12] for the hydrogen–air mixture differ from
the experiments [5] and present computations (points 2)
by a factor of 3 in terms of the number of TDWs and by
a factor of 2 in terms of the TDW rotation frequency. As
the computations [11] for the premixed mixture and the
computations [12] for separate injection of the fuel and
oxidizer yield identically wrong results (one-wave CSD
regimes), the discrepancy with the experiments [5] can
be attributed to the use of the simplified single-stage
kinetic scheme of hydrogen oxidation in those studies.
Thus, the reliability of the chemical kinetics equations
is the governing factor in CSD modeling.

CONCLUSIONS

A closed mathematical model of continuous spin
detonation for a hydrogen–air mixture in a flow-type
annular combustor with the chemical kinetics equa-
tion [13] is formulated within the framework of quasi-
three-dimensional unsteady gas-dynamic formulation.
The TDW dynamics and its two-dimensional struc-
ture is numerically studied for the geometric parameters
used in the experiments [5] and varied flow rates of the
hydrogen–oxygen mixture. The one-wave, two-wave,
and three-wave CSD regimes are calculated in the range
of the flow rates of the mixture 73–171 kg/(s ·m2), the
flow structure is analyzed, and comparisons are per-
formed with the experiments [5] and computations [11,
12]. As the combustor length decreases to Lc = 10 cm,
the CSD regime persists and the specific impulse in-
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creases owing to reduction of the entropy losses in the
detonation products. It is demonstrated that the use of
the simplified single-stage kinetic scheme of hydrogen
oxidation, such as that used in [11], for CSD modeling
in the hydrogen–air mixture leads to results that differ
from the experimental data by several times.

This work was partly supported by the Rus-
sian Foundation for Basic Research (Grant No. 16-01-
00102a).
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