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Abstract—The effects of two types of symmetry for linear polymers are considered: spatial symmetry with
respect to translations and rotation of the macromolecule as a whole in a homogeneous viscous medium, and
symmetry with respect to permutations of identical monomer units (or sections of the polymer chain with the
same chemical structure) in the chain. It is shown that, in a homogeneous viscous medium, for a macromol-
ecule with rigid bonds during relaxation folding, the conservation law is obeyed—the sum of the rotation
velocity vectors around torsion angles is equal to zero. Symmetry with respect to permutations of identical
monomer units in the polymer chain under certain conditions leads to the formation of energy funnels with
the minimal frustration which correspond to helical or multihelical 3D-structures of polymer chain. In this
case, there exist the deepest central funnel and less deep satellite funnels, which all are separated from each
other by energy barriers. This topography of the energy funnel corresponds to a number of effects that are
observed in the kinetics of protein folding (a volcano-like profile of the free energy surface, the sensitivity of
protein refolding to denaturing steps, etc.). When calculating the topography of the free energy surface, the
characteristic temperature parameter T0 arises and this is defined as potential energy gain due to chain folding
per one conformational degree of freedom. It is shown that at T > 0.26 T0, the spatial structure of the folded
polymer is destroyed. The parameter T0 and the denaturation temperature in the system under consideration
arise from the basic mathematical principles of the arrangement of energy landscapes in the configuration
space of torsion angles with the topology of a multidimensional torus and symmetry considerations regarding
the permutation of identical monomer units. At biopolymer denaturation temperatures, for example, on the
order of 60°C, this ratio leads to an estimate of the energy of nonvalent bonds of monomers on the order of
2.5 kcal/mol per one conformational degree of freedom, which is very similar to hydrogen bonds in aqueous
medium. The two types of symmetries under study and their influence on the dynamics of macromolecules
and the topography of the energy landscapes of linear polymers can occur simultaneously under certain con-
ditions. The effects that come with it may provide additional information about the prebiological physico-
chemical evolution of macromolecules in association with the formation of a pool of linear polymers with
unique spatial structures.
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ple for an energy funnel, problems of calibration of force fields, multidimensional Fourier series, free energy
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 The formation of the spatial structure and dynam-
ics of polymers and biopolymers have been the focus
of attention of researchers for many years and have
been studied using various experimental and theoreti-
cal methods (see, for example, [1–13]). Progress in
understanding the fundamental principles underlying
the formation of spatial structure and dynamic behav-
ior of biopolymers, is currently limited to rather sim-
ple phenomenological concepts (see, for example, [3–
5, 7–10, 12]) and the results of computer molecular

modeling of individual biopolymer structures using
various force fields and protocols [15–18]. A huge
amount of numerical experiments have been accumu-
lated on modeling various biopolymers. However a
critical understanding of these in terms of the funda-
mental physical laws underlying the structural and
dynamic organization of biopolymer systems is impos-
sible without further development of general theoreti-
cal ideas and corresponding mathematical tools. It
should also be noted that, until now, there is no phys-
ically meaningful statement of the problem for a num-
ber of fundamental questions underlying the origin
and functioning of living systems. For example, the

Abbreviations: PES, potential energy surface; IPES, ideal poten-
tial energy surface; FES, free energy surface.
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physical principles underlying the formation of strictly
defined (unique) spatial structures of linear polymers
(in particular, biopolymers) are not very clear. For
instance, are the observed spatial structures of pro-
teins a game of chance, when certain amino acid
sequences have a single global minimum of free energy
and the possibility of reaching it in a reasonable time,
or are there physical patterns which determine and
regulate this phenomenon? Approximately 30 years
ago, a hypothesis (or the principle) of minimal frus-
tration of the energy funnel [14] arose as applied to the
topography of the multidimensional energy surface of
polypeptides that form spatial protein structures.
However, until now, there were no physical or mathe-
matical arguments in favor of this smooth arrange-
ment of the energy surface (in particular, proteins).
Moreover, in the case of a completely random forma-
tion of macromolecules with smooth energy funnel
that can form unique spatial structures, the problem of
their origin in inanimate nature is absolutely incom-
prehensible. The ambiguity in the most fundamental
issues concerning the physical mechanisms of the ori-
gin of biopolymer prototypes at the prebiological stage
of evolution and in the physical foundations for the
formation of unique spatial structures of conforma-
tionally labile biomacromolecules in living systems
makes us look for and analyze the most basic princi-
ples that can be used by Nature to solve these struc-
tural problems.

 Earlier in a series of papers, we discussed the pat-
terns caused by the influence of the viscosity of a
medium on the dynamics of linear polymers [19], as
well as the role of the topology of the configuration
space of linear polymers in the formation of the poten-
tial energy surface and the free energy surface of mac-
romolecules [20–22]. Below, we consider these prob-
lems from the point of view of the symmetry of a poly-
mer (biopolymer) with respect to translations and
rotations of the macromolecule as a whole in a homo-
geneous viscous medium, and symmetry with respect
to permutations of identical links in a linear polymer
chain. Various kinds of symmetries are among the
most fundamental characteristics for understanding
the properties and physical structure of different
objects [23]. As far as we know, the symmetry effects
discussed in the article have not been considered
before. As we shall see, the both symmetries despite
being so different in nature but under certain condi-
tions can act together and turn out to be an important
factor in molecular physicochemical evolution
towards the formation of linear polymers with a
unique spatial structures.

EFFECTS OF SYMMETRY REGARDING 
TRANSLATIONS AND ROTATIONS OF 

MACROMOLECULES AS A WHOLE IN A 
HOMOGENEOUS VISCOUS MEDIUM

 It is known that a system of equations of motion of
atoms in a linear polymer chain (as well as practically
any system of interacting material points) in a homo-
BIOPHYSICS  Vol. 67  No. 3  2022
geneous viscous medium can be written in the follow-
ing form [24]:

(1)

where pi is the component of the momentum of the
ith atom in the chain, Γi is the decay equal to the ratio
of the coefficient γi of the viscous friction of the
ith atom to its mass mi, and Fi is the component of the
sum of the forces that act on the ith atom. A dot over a
variable means taking the total derivative with respect
to time. The solution of Eq. (1) can be represented in
the general form

(2)

The dependence of the force components on time
in Eq. (2) should be understood in such a way that, in
the function Fi, which determines the dependence of
forces on the coordinates of atoms, we substitute real
trajectories or dependences of coordinates on time
from the solution of the system of equations (1). The
time derivative of the force under the integral on the
right side of Eq. (2) is on the order of the ratio of the
magnitude of the force to the characteristic time of
change in the force or the characteristic time of change
in the interatomic distances τ. For conformational
motions in an aqueous medium, this time lies in the
nanosecond and longer time ranges [2–8]. The decay
time 1/Γi, as can be seen from the first term in Eq. (2),
is the characteristic relaxation time of the particle
velocity, which in a liquid (water) lies in the subpico-
second range [25]. Therefore, the order of magnitude
of the ratio of the last and first terms in the second part
of Eq. (2) will be 1/(τΓi) ~ 10–4. Thus, at times t >
1/Γi ~ 10–13 s, the solution of the system of equations (1)
with high accuracy becomes equivalent to the solution
of this system of equations without the first (inertial)
terms. It should be noted that, over a time of about
1/Γi ~ 10–13 s, the initial conformation of the macro-
molecule remains virtually unchanged. With an accu-
racy up to about 1/(τΓi) at times t ≫ 1/Γi ~ 10–13 s, we
obtain the equations of motion in the usual form:

(3)

where U is the potential energy, depending on the dis-
tances between the particles and their interaction with
the environment, and ri are the radius-vectors of the
positions of particles in space. System of equations of
motion (3) in highly viscous media is usually used
without specifying the asymptotic conditions for its
applicability. However, these conditions must be taken
into account when deriving various relations using
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solutions (3), seeing that the formulas obtained in this
way work with an accuracy of about 1/(τΓi).

 Earlier, we discussed the effects associated with
the addition of a stochastic force (thermal noise) and
rigid constraints to equations of type (3) [19]. These
additional factors do not fundamentally affect the
main conclusions, and in this paper we will not com-
plicate the text below.

If the medium in which the macromolecule is
located is homogeneous, then the potential energy and
the system of equations (3) are invariant with respect
to the displacement of the entire system as a whole by
the vector d. Assuming vector d is small, we write
change in potential energy during translation of the
system as a whole

or

(4)

 Equation (4) reflects the fact that the sum of all
forces inside the macromolecule is equal to 0. There-
fore, from the invariance of the system with respect to
translations as a whole in a homogeneous viscous
medium, we obtain the conservation law

(5)

or

(6)

where c is some number of dimensions of the coeffi-
cient of friction. Its physical meaning can be deter-
mined from the following considerations. Let us apply
a constant external force fi to each particle. In this case
the right side of (5) will contain the sum of external
forces f applied to the system of particles, and the
equation for the motion of the entire system in a vis-
cous medium will take the form

(7)
 It is clear from Eq. (7) that the coefficient c is the

total coefficient of friction:

(8)

In other words, during conformational motions in
the absence of external forces, the point R (condition-
ally, the dynamic center of the molecule) does not
shift. The position of this point is determined by the
initial configuration of the system. Physically, this can
be understood as the impossibility of giving the mole-
cule a directed motion only due to the forces of viscous
friction. If all coefficients of friction are the same, then
this point has the same meaning as the center of mass
of a system of particles with the same mass. In the case
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of the equal values Γi = Γ from the system of Eqs. (1)
we also obtain an equation for the change in the total
momentum of a macromolecule in a viscous medium:

(9)

 In other words, at times significantly longer than
the particle velocity relaxation time, the translational
motion of the molecule as a whole stops.

 Next, we vectorially multiply the right and left
parts of Eqs. (3) by the corresponding radius vectors
and sum the equations:

(10)

 Taking into account that in a homogeneous
medium the potential energy is invariant with respect
to rotations of the molecule as a whole, and introduc-
ing a rotation vector around some axis δφ so that the
direction of the vector coincides with the direction of
the axis and the length of the vector is equal to the
angle of rotation [24], we obtain the change in the
radius-vectors of particles for small angles:

(11)
 Then, for the change in the potential energy during
rotation, we obtain:

(12)

where we used the rule of cyclic permutation of vectors
in a mixed product. Since the vector δφ is arbitrary, we
obtain from Eqs. (10) and (12) that the sum of friction
force moments (as well as the sum of internal force
moments in a macromolecule) is equal to 0:

(13)

 Physically, this means that, due to the forces of
friction, it is impossible to twist the molecule as a
whole. In the simplest case of equal values Γi, from the
system of Eqs. (1) we obtain for the total angular
momentum of the system:

(14)

that is, for a time longer than the particle velocity
relaxation time, the rotation of the molecule as a
whole stops.

 Relations (5) and (13) are quite obvious; however,
they can be used to obtain another interesting integral
of motion for a linear polymer chain with rigid bonds
in a viscous medium.

 We consider a linear polymer chain (Fig. 1), in
which the lengths of valence bonds and valence angles
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Fig. 1. Rotations about the bonds in the polymer chain as
a result of the attractive force f of the side groups. In a vis-
cous medium, at a given angular velocity of rotation about
the bond between nodes і and і + 1, the friction forces will
increase as the distance between the chain nodes and the
axis of rotation increases. Thus, the friction forces in the
chain nodes will also cause rotations about other bonds.

i + N

i + 3

i + 2
i + 1

i

f

have almost no change during motion. Note that the
addition of rigid bonds, which fix the geometric
parameters of chemical bonds, to Eq. (1) does not
affect the sums of relations (5) or (13). At fixed bond
lengths and bond angles, the total shift of an arbitrary
ith node occurs in accordance with Eq. (3) only due to
rotations around the bonds between the nodes of the
chain.

 We introduce the vectors of angular velocities of
rotation about the torsion angle φi , which are directed
along the link from the ith node of the chain to the
(i + 1)th node:

The linear speed of motion of the ith node is deter-
mined as the sum of contributions from turns around
all bounds in accordance with Eq. (11):

(15)

 Note that, when considering the instantaneous values
of velocities, we do not have problems related to the
noncommutativity of rotations around bonds. Rota-
tions around the first and last bonds in the case of a
linear chain are equivalent to rotations of the macro-
molecule as a whole around the corresponding axes.
With the exception of terminal atoms, at least two
terms in sum (15) associated with rotations around
two bonds adjacent to the ith node are equal to 0.

 Let us then use the invariance of the system with
respect to translations in a homogeneous viscous
medium. Substituting expression (15) into relation (5),
we obtain

(16)
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 Introducing the vector of the sum of the vectors of
the angular velocities of turns around the bonds

(17)

in accordance with expressions (8) and (16) we obtain:

(18)

Note that Eq. (18) does not depend on the selection
of the origin.

 Then we use the isotropy of a homogeneous vis-
cous medium and substitute expression (15) into rela-
tions (13). Taking into account the properties of the
double-vector product and relation (18), as well as
Eqs. (6) and (8), we obtain:

(19)

 Separating the terms with the sum of the angular
velocity vectors, we obtain

(20)

 Note that relation (20), as well as relation (18),
does not depend on the selection of the origin of the
reference frame R0:

(21)

 Hence, selecting a fixed point with the vector R (6) as
the origin, we obtain:

(22)

Assuming the total angular velocity vector is not
equal to 0 and scalarly multiplying Eq. (22) by it, we
come to the relation

(23)

where αi are the angles between the total angular
velocity vector and the particle radius vectors relative
to the origin (points R). The factor at the square of the
total angular velocity can be equal to 0 only in the
exceptional case of a strictly linear configuration of the
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macromolecule. In any other case, we obtain a contra-
diction. Therefore, the sum of the angular velocity
vectors rotation around the bonds in a linear polymer
in a viscous medium must be equal to 0:

(24)

 For clarity, in Eq. (24) we also introduced the val-
ues of the angular velocities and the vector bk along the
bond between neighboring nodes of the chain. In real-
ity, the fulfillment of condition (24) means that,
during the relaxation folding of the polymer chain, the
process goes in such a way that the directions of rota-
tions around the bonds alternate in some way so as to
compensate each other in total (we intuitively felt this
when analyzing the situation in Fig. 1). As a result,
there is a tendency to form helical or helix-like struc-
tures. We observed this effect earlier when modeling
the folding dynamics of polypeptide chains [17, 18]
and some other linear polymers in a viscous medium
[16].

 Additional information about the conformational
motion characteristics of the chain can be obtained by
multiplying (24), for example, scalarly by specially
constructed vectors. For example, if we multiply (24)
by the l vector:

which connects the ends of the chain, we obtain

(24.1)

 Note that the discussed patterns of the polymer
chain dynamics in a homogeneous viscous medium
are most applicable to the conditions in which all
chain nodes are exposed to the solution, i.e., in the sit-
uation of an unfolded state or a sufficiently loose coil.
If the chain is in an unfolded state, then the scalar
products lk in the sum (24.1) are predominantly posi-
tive. Therefore, the angular velocities must often
change sign in order to fulfill condition (24.1). As the
chain undergoes folding, the orientation of the direc-
tion of the bond vectors relative to vector 1 will
change, and the alternation of the signs of the angular
velocities will become less pronounced. This situation
was observed earlier when modeling the folding of a
long polypeptide chain [17].

 Note that when fluctuations of the medium are
taken into account in the equations of motion and
when we proceed from Eq. (1) to the Langevin equa-
tions [19, 25], the relations obtained above hold only
on average over the ensemble. On the other hand, rela-
tions such as (24) can give ideas for performing numer-
ical and conventional experiments for additional elu-
cidation of the mechanisms of self-organization of the
spatial structure of macromolecules and their com-
plexes under various conditions. We also note that the
combination of the rules of motion of a representative
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point, obtained here and in [19], during conforma-
tional motions in a viscous medium and the features of
the topography of the energy landscapes of biopoly-
mers and similar structures [20–22] may be essential
for understanding the physical principles of the origin
of linear polymers with unique spatial structures (see
below).

 In the well-known paper [9] dedicated to the 50th
anniversary of the folding problem, unresolved issues
were noted, among which the following is also relevant
in this context: the practical absence of experimental
data on the structure of the energy landscape required
for folding and the absence of a quantitative micro-
scopic picture of understanding the physics and fold-
ing rules for arbitrary sequences. Below we will con-
sider what additionally can be done in these directions
proceeding from the topology of the configuration
space and symmetry considerations with respect to the
permutation of identical monomer links of a linear
polymer chain.

EFFECTS OF SYMMETRY REGARDING
THE PERMUTATION OF THE SAME UNITS 

IN A LINEAR POLYMER CHAIN
It is well known [26] that the spatial structure and

dynamics of linear polymers are determined by rota-
tions at dihedral (torsion) angles around single chem-
ical bonds with internal rotation barriers on the order
of several kcal/mol. Stretching vibrations do not con-
tribute significantly to the change in the spatial con-
figuration of the macromolecule. Bond angle defor-
mation may be of some importance in reducing the
barrier height in the case of steric restrictions during
rotation around the bonds [11]. For further consider-
ation, this effect is also of no significant importance.

 Thus, the potential energy of a linear polymer
chain (more precisely, its conformation-dependent
part) can be represented as a function of N torsion
angles φi. For a linear polymer, this is a function of a
large number of variables, each of which changes
cyclically from –π to +π. The area of definition of
each angle is the points of the circle. The domain of
definition of the set of N angles is a topological prod-
uct of circles or a multidimensional torus (hypertorus)
[27] (Fig. 2). In other words, the potential energy
function is definded in configuration space with the
topology of a multidimensional torus.

 A torus (and a hypertorus) can be unfolded by
making cells of the appropriate dimension in
Euclidean space with periodic boundary conditions
(Fig. 2b). Such a scan may be more convenient for the
perception of general geometric relations, and we will
use it by default below, paying attention to those
moments where the periodicity of the cells plays a sig-
nificant role.

 It is known that the topology of the space on which
functions are defined has a significant effect on the
BIOPHYSICS  Vol. 67  No. 3  2022
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Fig. 2. Schematic representation of: (a) topology of the configuration space of torsion angles (for two dimensions); (b) f lattening
of a torus in Euclidean space (an example of two-dimensional cells with periodic boundary conditions); and (c) vector space of
harmonic numbers (for three dimensions), a single cell is shown. 
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properties of these functions [27]. A function set on a
hypertorus can be expanded into a multidimensional
discrete Fourier series [28]:

(25)

where we introduced the algebraic vector of the set of
torsion angles

(26)
and the algebraic vector of the corresponding har-
monic numbers of the Fourier series

(27)

The scalar product of vectors is defined in the usual
way:

(28)

The expansion coefficients (25) are determined by
the integral

(29)

 Note that the familiar interatomic potentials have
a singularity at the zero point. However, this singular-
ity lies in the classically forbidden region and does not
prevent us from using the Fourier series expansion for
the potential energy surface (PES). This circumstance
is considered in more detail in [22]. Note also that
expansion, for example, in a three-dimensional Fou-
rier series is often used to calculate the contribution of
Coulomb interactions when simulating the dynamics
of systems with periodic boundary conditions (Ewald
sums).

 The expansion coefficients in expression (25) con-
tain all the information about the structure of the mul-
tidimensional PES, which is associated with the fea-
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tures of the chemical structure of the macromolecule,
its electronic state, and the properties of its environ-
ment. The complex form of the expansion representa-
tion was chosen for convenience. Since the potential
energy function is real, we have obvious relations for
the expansion coefficients (below in the text we show
multidimensional algebraic vectors in bold, and in the
formulas we keep the notation with an overline):

(30)
 The complex amplitude argument A(n) in expres-

sions (30) varies within

(31)
 Since the sum in expression (25) is real, we also

conclude that the amplitudes and phases of the expan-
sion coefficients are related by the conditions

(32)

  The phase relation θ can also be represented as the
scalar product of the vector of harmonic numbers n
(27) and some vector C(n), which is an even function
of the vectors of harmonic numbers:

(33)

Here, h(n) takes the value 0 if the phase θ lies in the
right complex half-plane (the real part of the ampli-
tude in expression (30) is positive) or 1 otherwise.

 These almost obvious relations will be very useful
for understanding the general properties of the energy
surface (25) set on a multidimensional torus of a set of
rotation angles about chemical bonds. Since in the
sum in expression (25) the terms for the vectors n and
–n always occur as a pair, we obtain

(34)
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Note that, in expression (34), we took into account
relations (32) and (33) and the fact that, when sum-
ming over all possible vectors n in expression (34),
each term in expansion (25) occurs twice. The expan-
sion coefficients A(n) and the phases θ(n) terms of the
series determine, generally speaking, a very complex
structure of the multidimensional potential energy
surface with a large number of critical points [29].

 It should be noted that such a representation of the
PES fundamentally differs from the PES calculation
methods that are commonly used in molecular mod-
eling using atom–atom potentials and slightly resem-
bles the use of Ewald sums [30, 31]. Careful calibration
of force field parameters for specific types of molecu-
lar structures often makes it possible to achieve good
results and a certain agreement between experimental
and calculated data. However, as already noted [20],
the calculation of the PES by summing the contribu-
tions of atom-atom potentials has an obvious internal
contradiction associated with the accuracy of calcula-
tions. For a system of, for example, 1000 atoms, we
have about one million terms, each of which has an
error of the order of a percent. Therefore, the accuracy
of calculating PES (and even more so, PES gradients)
is a big question in the general case. At the same time,
paradoxically, the molecular dynamics methods for
large molecules still work, despite the fact that the
accuracy of determining the entire PES and its gradi-
ents is poorly controlled. This paradox can be
explained by the fact that, according to the general
laws for conformational motions in a viscous medium
[19] and the results of the first part of the article, only
relatively small regions of the configuration space are
accessible, and for molecular modeling, PES approx-
imation is required only on very limited and relatively
smooth parts of PES [19]. Such an approximation
apparently becomes possible due to the calibration of
the force field parameters for certain types of systems.
(Note that, in many calculations, the thermostat
serves as a viscous medium). On the other hand, it is
clear that this variant of PES calculation is not suitable
for setting the problem in studying general issues
related to the formation of the spatial structure and
dynamic properties of macromolecules. In this case,
we must strictly adhere to an internally consistent
scheme for describing PES by using basic principles.
The use of the above multidimensional Fourier expan-
sions seems too complicated (and, in general, it is)
compared to the use the sum of point atom-atom
potentials. On the other hand, the representation of
the energy landscape as a sum of such potentials does
not make it possible to analyze the general patterns of
organization of ultra-multidimensional PES, which
are associated with the topology of the configuration
space, the symmetry of systems with respect to permu-
tations of identical links, possible chemical evolution
of the structures of linear polymers, etc. From the
standpoint of the commonly accepted methods of rep-
resenting PES as a sum of pair potentials, the appear-
ance of macromolecular structures with PES that have
a single global minimum and satisfy the folding condi-
tions in a reasonable time seems very strange or a game
of improbable chance. Moreover, there have been no
ideas about the topography of the PES in that case.
Below, using the analytical structure of PES described
by expression (25), we discuss the fundamental possi-
bility of realizing relatively smooth energy surfaces
with a clearly defined single global minimum during
the formation, selection, and evolution of linear poly-
mers.

 We note an important feature of PES defined by
Eq. (34) in the case of mirror-symmetric structures
(i.e., linear polymers without chiral units). Since, in
mirror reflection, the signs of the angles change to
opposite, for mirror-symmetrical structures we have

(35)

In this case, the expansion coefficients in expres-
sion (25) are real, and in formulas (33) and (34) we
must put

(36)

for all harmonic vectors of the multidimensional Fou-
rier expansion (25). In this case, the expansion for
PES is reduced to the form

(37)

 Among the many theoretically possible potential
surfaces described by expressions (25) or (34), a class
of surfaces for chiral linear polymers that may have a
single clear global minimum corresponding to a
unique spatial structure can be constructedd. For such
surfaces, the phase value θ(n) in the expansion terms
can be selected, for example, as follows [20]:

(38)

where  is the vector of torsion angles for the global
minimum position. In this case, relations (32) and
(33) for the phases θ(n) obviously hold. In this case,
the potential energy surface can be written as

(39)

A necessary condition for this analytical represen-
tation of the PES, as already noted, is the chirality of
the polymer molecule. If the molecule was mirror-
symmetric, then it should have at least a second sym-
metric minimum with coordinates at the point – .
We also note that, in the case of mirror reflection,
when the signs of all angular variables change and we
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proceed to a structure with a different chirality, the
value of potential energy (39) does not change due to
the fulfillment of condition (32) for the absolute value
of the expansion coefficients and the cosine parity.

 The analytical structure of the potential surface
(39) is optimal, among others, for describing a unique
spatial structure in terms of the phenomenon of fold-
ing, for example, polypeptide chains into unique spa-
tial protein structures. Below, the surfaces for which
there is an analytic representation (39) will be referred
to as ideal potential energy surfaces (IPES). Possible
causes for the formation and selection of such IPPEs
in molecular evolution will be discussed below. For
real systems, the sum of expression (39), of course,
may contain terms that do not fit into the ideal picture
of the structure of the phases of the expansion coeffi-
cients (38). However, the general structure of the PES
is preserved if the contribution of such terms is not
decisive.

 Previously we showed that under certain condi-
tions for the expansion coefficients in expression (39)
we can obtain a rational explanation for various exper-
imental facts that are observed during the folding pro-
cess and that, at first glance, are in no way related to
each other [20, 21]. An analysis of the general struc-
ture of the energy landscapes of linear polymers set by
expression (34) shows the conditions under which a
quite definite physical pattern leading to such energy
landscapes can arise. In terms of the general structure
of the energy surface, we could think that the physico-
chemical stage of the evolution of linear polymers led
to the maximum simplification of the dependences
h(n) and vectors C(n) and to the transformation of
these functions into constants for the most significant
terms of expansion (34):

(40)

 We will consider the possible causes for the forma-
tion of polymeric structures with energy landscapes
that could be precursors of PES with a structure of
type (39). We consider linear polymers whose struc-
ture is completely symmetrical with respect to the per-
mutation of monomer units in the chain. Obviously,
we are talking primarily about the cyclic homopoly-
mers of the following type:

(41)

 Together with these structures, very long almost
homopolymer chains can also be taken into consider-
ation. In this case, we can assume that the system is
completely symmetrical with respect to the permuta-
tion of identical monomeric units away from the ends
of the chain. As far as we know, this type of symmetry
has not been considered before in molecular biophys-
ics. Each monomer unit may also contain several
internal elements with corresponding conformational
degrees of freedom (as, for example, in amino acid res-

= =( ) ; ( ) 1.mC n C h n

− − − − −... ... .L L L
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idues or in identical sequences of amino acid resi-
dues). For a more compact presentation, we will
denote the set of k internal torsion angles in the mono-
mer Li by the algebraic vector

(42)

 The algebraic vector of harmonic numbers corre-
sponding to this set of torsion angles will be denoted as
follows:

(43)

 In this case, the algebraic vector of torsion angles
of the polymer chain is defined as

(44)

and, accordingly, the vector of harmonic numbers for
the Fourier expansion of the potential energy is
defined as

(45)
 In the case of a cyclic homopolymer, the potential

energy is symmetrical with respect to permutations of
the torsion angles of any monomer units:

(46)

In this case, the expansion coefficients of the
potential energy in a Fourier series are invariant with
respect to any permutation of harmonic numbers

(47)

 Note that, when condition (46) is satisfied, the
coordinates of the critical points [29] (local and global
minima, maxima, and saddle points of different indi-
ces) will correspond to different helical configura-
tions, since the corresponding angular variables at
these points take the same numerical values. Formulas
(46) and (47) also show that when the components in
the vector of harmonic numbers are permutated, the
values of the scalar product of the vectors nC(n) and
the values of h(n) in expression (33) do not change.

 We divide the entire set of vectors n into non-inter-
secting subsets Pi(n), which, for some vector n, unite
the type of vectors that differ from each other only by
permutation of components. Then we can rewrite
expansion (34) for homopolymers in the following
form:

(48)
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where ni is one of the vectors from the set Pi(n). The
elements of the set of vectors Pi(n) over which the
internal summation is carried out differ in the permu-
tation of the components of the given vector of har-
monics n. If all components of the vector of harmonics
n are different, then the number of such elements is
equal to N!. If there are matching numbers of harmon-
ics in the vector n, then the number of elements Ni is
obtained by dividing N! by the product of the factorials
of the number of corresponding identical components
ki of the vector n:

(49)

 The maximum possible number of groups of iden-
tical numbers of harmonics is N/2 different pairs of
identical numbers (if N is even). If N is odd, then it is
the integer part of N/2 pairs. If the given harmonic
number occurs in the vector only once, then ki = 1. If
the given harmonic number occurs N times (a vector
of the form (n, n, n,…, n)), then k1 = N, the rest ki = 0,
etc.

 The vector Ci(n) in Eq. (48) is arranged as follows.
When the components of the vector of the numbers of
harmonics n are permutated, the components of the
vector Ci(n) are also rearranged so that the scalar prod-
uct of these vectors does not change. For a cyclic
homopolymer built from nonchiral monomers, the
vector Ci(n) is just equal to 0. Note also that the inner
sum in Eq. (48) is symmetric with respect to the per-
mutation of the components of the torsion angle vec-
tor (44).

 In a general case, the inner sum in Eq. (48) con-
tains a very large number of oscillating terms with the
same amplitude whose phases are not correlated. This
sum does not allow clear extrema to be distinguished,
and a linear homopolymer built even from chiral
monomers can form a unique spatial structure only
under specific conditions. This condition can be
clearly seen from Eq. (48). To form a clear global min-
imum, it is necessary that the components of the vec-
tor Ci(n) be the same and do not depend on the per-
mutations of components in the vector n. In this case,
a phase correlation in the inner sum of Eq. (48)
occurs, and a sharp increase in the extremum (propor-
tional, maximum, by a factor of Ni! times) in the con-
figuration determined by the vectors Ci(n) with the
same set of distinct components is observed.

 Since these vectors in the space of angles have the
same (for each type of torsion angle) components, the
corresponding conformation is a helix. Thus, if the
chemical structure of the homopolymer chain is such
that the potential energy during the formation of the
helix decreases, then the internal sum in Eq. (48) gives
a clear minimum in PES. The appearance of this helix
can be very diverse, especially if the monomeric unit
contains many internal conformational degrees of
freedom. In addition, if the polymer chain gains some

=
1 2

! .
! !...i
NN

k k
energy when several types of helices are formed,
denoted below as α, β, etc. (coincidence of designa-
tions with the known types of helices in polypeptides
in this case does not carry any semantic load), then we
can represent the sum (48) in the form

(50)

Recall that the vector notation for the components
 is related to the fact that it reflects the set of values

of internal torsion angles in monomers. The first
group of terms is the contributions to the PES from
helical structures, each of which has a well-defined
phase in the conformation space and a negative sign.
The second group of terms does not have a clearly
defined phase and sign and is seen rather as noise. This
leads us to the conclusion that, due to the symmetry
with respect to the permutation of identical mono-
meric units, homopolymer chains create the back-
ground (at a certain chemical structure) for the forma-
tion of unique helical spatial structures. This effect
might be the first stage in the evolution of energy land-
scapes, which may be the cause for the abundance of
helical structures (as well as ring structures in the sim-
plest organisms) in the spatial organization of biopoly-
mers. We do not associate the discussed possible types
of protoforms of linear polymers with proteins or
nucleic acids in living systems. Modification and
adjustment of the chemical forms of monomers appar-
ently occurred over the course of long-term physico-
chemical evolution.

 Let us further consider what we can obtain from
the above symmetry considerations for understanding
the protein folding processes, which are still largely
mysterious.

 We proceed from the generally accepted concept
that, for a macromolecule that forms a unique spatial
structure, PES has a global minimum and the folding
process is designed so that a representative point has
the ability to reach a global energy minimum. We also
consider that the general analytical form of the multi-
dimensional PES is close to the structure that was
conditionally called ideal (IPES) and is described by
Eq. (39). Above, we expressed considerations in favor
of the selection of such forms of PES in physicochem-
ical evolution, which were based on symmetry consid-
erations with respect to the permutation of identical
(or almost identical) monomeric units. On the other
hand, it would be very strange if an extensive class of
linear biopolymers with a unique spatial structure (for
example, proteins that are synthesized according to
common physicochemical mechanisms) were repre-
sented by objects in which the global PES minimum is
formed randomly for each object. Previously, we
showed [20, 21] that, using the IPES structure
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described by Eq. (39), we can obtain results that allow
interpretation of the most diverse effects for protein
folding.

 Now we consider the dependence of the series
expansion coefficients in Eq. (39) on the harmonic
number vectors. Today, there are general consider-
ations only as to how these expansion coefficients
should be arranged. As we noted above, in the expan-
sions for PES (Eq. (48)) or in the regular part of the
expansion (50), due to the symmetry with respect to
the permutation of identical monomer units, the coef-
ficients of the series must be functions of some invari-
ants of the harmonic number vectors (i.e., functions
that do not change when the components of vectors n
for identical chain links are permutated). The simplest
invariants are the length of the vector or, for example,
the scalar product of the vector n and a vector propor-
tional to the unit vector. The last case in a more gen-
eral variant was discussed by us earlier in [20, 21].
Below, we consider a model of the Gaussian depen-
dence of the series expansion coefficients on the
length of the harmonic number vector, which gives
results qualitatively similar to those obtained in [20,
21] but allows more compact equations from which
interesting consequences can be seen.

 In the simplest case, when there is only one torsion
angle in the monomer, we will proceed from the fol-
lowing Gaussian form for the expansion coefficients:

(51)

 The expansion coefficients in Eq. (51) will be sym-
metrical with respect to permutations of the compo-
nents of the harmonic number vector if the multidi-
mensional algebraic vector a is equal to zero or pro-
portional to the unit vector. Below we will see that all
equations also work for some violation of ideal sym-
metry in the case of an arbitrary vector а. If there are k
torsion angles in monomeric links, then the formula
becomes somewhat more complicated in accordance
with the notation in Eqs. (42)–(45):

(52)

 Let us explain the meaning and capabilities of
these equations. First of all, the last factor reflects the
fact that, for a physically reasonable function, the
coefficients of the Fourier series decrease approxi-
mately exponentially with increasing numbers of har-
monics [22, 28]. The decay rate of the coefficients
with increasing harmonic number is determined by
the ε parameters. Below, in the final equations for the
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PES, we proceed to the limit ε → 0, and we do not care
about the differences in this parameter for different
degrees of freedom.

 The sum of two Gaussian exponents and the sign
of vector a in the argument of the second exponent are
introduced to ensure the symmetry of the expansion
coefficients when the sign of the harmonic number
vector changes in accordance with the general require-
ments for Eqs. (30) and (32). Note that series (39) is
summed over all values of harmonic numbers, both
positive and negative. Therefore, the addition of the
second Gaussian exponent in Eqs. (51) and (52) is
decorative. The λ parameters determine the scale of
acceptable deviations in values from 0 in Gaussian
exponents. When λ tends to 0, the Gaussian exponents
turn into delta functions. Despite the relative simplic-
ity of Eqs. (51) and (52), they make it possible to gen-
erate very diverse types of IPES by varying the values
of the introduced parameters. Importantly, such sur-
faces can be studied by analytical methods. Previously,
the capabilities of dependences similar to those
described by Eqs. (51) and (52) for characterizing the
topography of the PES and the topography of the free
energy surface were studied in detail [20–22]. The
variant proposed below is more convenient for dis-
cussing the general effects of symmetry on PES topog-
raphy with respect to rearrangement of monomer units
in the polymer chain.

 The convenience of equations such as (51) for
obtaining analytical results is based on the use of the
integral representation

(53)

and using the sum of the series

(54)

 If we substitute the coefficients from Eq. (51) into
Eq. (39), select the representation for the cosines in
Eq. (39) as a sum of complex exponents, represent the
Gaussian exponents in Eq. (51) as a product of factors
from Eq. (53), take into account that the sum of all
possible products is equal to the product of the sums,
and use Eq. (54), we obtain the following expression
for the PES:
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Fig. 3. Explanation for the fulfillment of the condition R >
Z: (a) the radius of the sphere is less than the distance to
the plane and there are no points of intersection of the
angular variables that satisfy Eq. (58); (b) the radius of the
sphere is greater than the distance to the plane and there is
a set of intersection points that satisfy Eq. (58), which is a
sphere with dimensionality smaller by 1 and radius r =
(R2 — Z2)1/2 . If R = Z, then there is a point of contact.

(a) (b)

Z
Z

R R

r

CC in Eq. (55) denotes the complex conjugate term.
For ε ≪ 1, the main contribution to the integrals
comes from the vicinity of zero for the argument of
function F0, and we obtain

(56)

 The structure of expression (56) shows that it is
advisable to introduce two generalized variables

(57)

 Geometrically, the first variable defines hyper-
spheres of radius R in the space of torsion angles
described around the global minimum point. The sec-
ond variable determines the hyperplanes perpendicu-
lar to the vector a and located at a distance Z (with
accuracy of up to a sign) from the global minimum
point.

 As a result, the PES described by Eq. (56) can be
rewritten in a simple form:

(58)

 Compliance with the nonstrict inequality R ≥ Z in
Eq. (58) is very important, since otherwise there is no
such set of angular variables that simultaneously sat-
isfy conditions (57). This is clearly seen from Fig. 3.

If we do the same with Eq. (52), we obtain a slightly
more complex formula:

(59)

The structure of Eq. (58) was retained, but the
parameters included in it took the following form:

(60)

 Here the index i numbers the monomers in the chain,
and the index j numbers the types of torsion angles in
the monomer. It can be seen that the general princi-
ples of the arrangement of the PES topography are
retained. Using scaling transformation of the angular
variables, we can proceed to the familiar situation of
section of a hypersphere of dimension N*k with a
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hyperplane located at a distance Z from the center (the
point of the global minimum of the PES), which is
perpendicular to a vector with components (aij/λj),
and obtain similar restrictions on the R values. The
designations are clear from the context. We can also
trace the main characteristics of the PES topography
on a simpler variant of the surface given by Eq. (58).

 Typical examples of PES topography in the case of
two angular variables are shown in Fig. 4. If the vector
a is equal to 0, then we just have a Gaussian funnel.
For a finite length of the vector a, the PES relief is a set
of funnels. There is the deepest central funnel, which
is surrounded by satellite funnels whose depth
decreases with distance from the central funnel. All
funnels are separated from each other by potential bar-
riers.

 The considered formulas have the following useful
property: even if there are more than two angular vari-
ables, we can still study the PES topography in terms
of the generalized variables R and Z.

 An example of the PES topography in terms of the
R and Z variables is shown in Fig. 5. We can see that,
at a finite length of the vector a, the space of configu-
rations of the polymer chain is cut into regions with
relatively low conformational energy, which are sepa-
rated from each other by potential barriers (Fig. 6).

 As in the case described in [20], the PES topogra-
phy is a system of energy funnels (Fig. 7). The gener-
alized variables R and Z have a central and deepest
funnel that leads to the global PES minimum. There
are also many satellite funnels whose depth decreases
with distance from the central funnel. Satellite funnels
in generalized variables, as well as in angular variables,
are separated from the central funnel and from each
other by potential barriers.

 Lets further discuss the role and value of the vector
a in terms of the considered Gaussian approximation.
If the polymer under consideration consists of abso-
lutely identical monomeric units and the surface is
BIOPHYSICS  Vol. 67  No. 3  2022



HIDDEN SYMMETRY EFFECTS IN THE DYNAMICS 397

Fig. 4. Characteristic PES topographies in the Gaussian approximation for two angular variables U( ) = –exp  ×
cos[||a||(φ1 + φ2)]: (a) – ||a|| = 0, (b) – ||a|| = 5. 
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symmetrical with respect to the permutation of torsion
angles of the same type, then, for symmetry causes,
this vector should either be equal to zero or be propor-
tional to the unit vector. In the first case, we have a
PES with a simple topography, as in Fig. 4a. This
topography of the PES fully complies with the princi-
ple of minimum frustration and is ideal for very fast
folding into a unique spatial structure (in this case,
helical) that is achievable from any initial chain con-
figuration. It should be noted that examples of very
fast folding of polypeptides over nanoseconds are
known [12]. If the vector a is nonzero, then the topog-
raphy of the set of nested energy funnels is formed
(Fig. 4b). In this case, certain features of the process of
BIOPHYSICS  Vol. 67  No. 3  2022

Fig. 5. PES topography according to Eq. (58) in general-
ized variables Z and R2 – Z2. Model PES of the form U(R,
Z) = –exp(–0.25R2)cos(10Z).
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polymer folding are manifested. Inside the central
funnel (as well as inside the satellite funnels), the
topography of the energy surface satisfies the principle
of minimum frustration. The coordinates and energy
value in the minimum of the satellite funnel are deter-
mined according to Eq. (58) by the following relation-
ship:
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Fig. 6. Spatial section of a three-dimensional PES. An
example of stratification of the configuration space into
energy-allowed (in the vicinity of local minima) and
energy-forbidden (not shaded in the figure) layers for a
PES of a model type (according to Fig. 5).
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Fig. 7. Energy funnels for PES (according to Fig. 5) in gen-
eralized variables R and Z. The Z axis is horizontal, R2 >
Z2. The deepest funnel is the central funnel, on the right
and on the left are satellite funnels of decreasing depth.
Funnels are separated from each other by barriers whose
heights decrease with distance from the global minimum
point.
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 The value of the R coordinate at the minimum
point is determined according to (58) by the value R =
Z (or R = –Z). Accordingly, the energy values in the
minima of satellite funnels are determined by the
equation

(62)

 The shifts of the coordinates of the positions of the
energy minima in satellite funnels relative to the posi-
tion of the global minimum are

(63)

 Note that the number of satellite funnels is limited
by obvious conditions:

(64)

 The energy values for the height of potential barri-
ers between the funnels k and k – 1 (we consider only
positive k ≥ 1, for negative k the situation is symmetri-
cal) are determined by the expressions

(65)

 Subtracting from the barrier height (65) the value
of the energy in the minimum of the satellite funnel
(62), we see that the possibility of a representative
point passing between adjacent funnels increases rap-
idly with an increase in the funnel number and the
value of the generalized coordinate R. An increase in
the length of the vector a contributes to a sharper PES
topography with more pronounced barriers and
deeper minima. An increase in the λ parameter, con-
versely, smoothes the PES topography without chang-
ing the central funnel depth.

  Thus, within the Gaussian model considered,
there is a vast range of parameter values for which the
transition of a representative point between energy
funnels is very difficult. This PES structure includes a
mechanism of connection between the initial chain
conformation, which arises in the course of synthesis,
and the final spatial structure obtained in the process
of folding for a reasonable time. From the standpoint
of the selection of linear polymers that form strictly
defined spatial structures, the advantage at the first
stage should be given to the macromolecules whose
PES is arranged as symmetrically and smoothly as
possible. In the framework of the considered Gaussian
model, these are structures with PES for which the
vector a is equal to zero. If the monomeric units of
such structures were further modified (e.g., in the
region of side groups), then this ideal symmetry for the
expansion coefficients and PES is violated. Within the
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 considered model, this is interpreted as the appear-

ance of a nonzero vector a and complication of the
PES topography. Observing the general symmetry
conditions for the expansion coefficients (32), in the
Gaussian model we describe these changes as a shift in
the distribution center of the expansion coefficients in
the space of harmonic numbers by the vectors а and
–а (Fig. 8). This is the minimum step in the compli-
cation of the PES topography, which is very similar to
removal of degeneracy of a multiply degenerate state
by including an additional perturbation. In this case,
as we saw above, the PES topography has the form of
a system of funnels separated by energy barriers. In this
case, the uniqueness of the result of polymer folding
for a reasonable time requires certain conditions for
the starting configurations of the chain. To success-
fully collapse and move a representative point to a
global minimum, these spatial configurations must
belong to a specific, though very broad, set of initial
states that are in the area of attraction of the central
energy funnel. From the standpoint of the ideas devel-
oped, in modern living systems this can apparently be
realized in the variant of co-translational folding,
when the starting set of configurations of the polypep-
tide chain is determined by the mechanisms of biosyn-
thesis. Apparently, a role in the formation of such
starting configurations is also played by chaperones,
which fix certain chain configurations [32] and
thereby direct the folding trajectory in the required
direction.
BIOPHYSICS  Vol. 67  No. 3  2022
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Fig. 8. Spread of contributions from regions of the space of harmonic numbers in the case of ideal symmetry a = 0 of the polymer
chain with respect to permutation of monomer units (a) and weak symmetry (b) in the Gaussian approximation.
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FREE ENERGY SURFACE OF A LINEAR 
POLYMER CHAIN

Now we proceed to the consideration of the free
energy surface (FES) of a linear polymer chain, which
forms a unique spatial structure. In real experiments
on folding at finite temperatures, the observed effects
are determined precisely by the free energy surface of
macromolecules. Within Gaussian models developed
for the PES, there is a just simple and logical transition
from the PES to the free energy surface (FES) of the
chain in terms of the generalized coordinates R and Z.
It is known that the free energy of the system in the
state of equilibrium under given conditions (R and Z
values) is defined through the sum over the states [33]:

(66)

The delta functions in the integral (66) cut out the
regions of the N-dimensional configuration space of
torsion angles, which are defined by equations (57),
and the Heaviside theta function cuts out the values of
the variables R and Z in accordance with condition
(58). Despite the complex form of integral (66), its
calculation within the Gaussian model for PES is not
difficult. The delta functions and the Heaviside func-
tion, for a given potential energy, cut out the volume of
a hypersphere with radius r = (R2 – Z2)1/2 from the
phase space (see Fig. 3), and for the sum over states,
respectively, for the free energy we obtain
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(67)

respectively, for the free energy we obtain

(68)

 The entropy of a state with fixed R and Z is propor-
tional to the logarithm of the phase volume of these
states:

(69)

We omitted the numerical factor in Eq. (67), since
after taking the logarithm, it affects only the origin of
the free energy in Eq. (68). There is a problem in
Eq. (68) at the point R2 = Z2, where the free energy
becomes minus infinity, since the phase volume of the
point of contact between the hypersphere R and the
hyperplane Z is equal to zero. In this case, we need to
take into account the quantum corrections due to zero
oscillations in torsion angles with a finite amplitude.
In this case, (R2 — Z2) cannot be less than some finite
value proportional to the square of the amplitude of
zero-point vibrations in torsion angles. Let us estimate
these values. We assume that the amplitudes of zero
oscillations are the same for all angles; according to
Eq. (57), we have:

(70)

− − −− =
≥

B B2 2 ( 1)/2 ( , )/ ( , )/( , ) ~ ( ) ;
| |.

N U R Z k T G R Z k TW R Z R Z e e
R Z

=

− − − ≥2 2
B

( , ) ( , )

( 1) ln ; .

G R Z U R Z

k T N R Z R Z

= − − ≥2 2
B( , ) ( 1) ln ; | |.S R Z k N R Z R Z

  =  φ − φ  = φ 

  =  φ − φ α φ − φ  = φ 

2 2
0 0 0

2 2 2 2
0 0 0

|| ||
1|| || cos [ ,( )] .
2

m

m m

R N

Z a N



400 SHAITAN

Fig. 9. Topography of the free energy surface (74) in the
space of generalized variables G = –exp(–0.25R2)cos10Z –

0.15ln(1 + ).
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 The angle α in Eqs. (70) is the angle between the
vectors; when averaging, the squared cosine is aver-
aged over all orientations. Thus, we obtain

(71)

 Now we estimate the squared amplitude of zero-
point oscillations over torsion angles following the
commonly used procedure [26]. Assuming that the
potential energy upon rotation near the minimum
takes the form

(72)

we obtain for the squared amplitude of zero oscilla-
tions:

(73)

where M is the mass of the side group that rotates
during zero torsion oscillations and l is the length of
the bond between the node and this group. Assuming
that the mass M is approximately 20 a.m.u., l is
approximately 1.5 Å, and u is approximately
3 kcal/mol, we obtain a value of approximately
0.01 square radians for the square of the amplitude of
zero-point oscillations.

 To eliminate the divergence in the expression for
entropy (69), we add to the value of the hypersphere
radius under the sign of the logarithm the contribution
of the amplitudes of zero oscillations in torsion angles,
which is determined from Eq. (71). As a result, we
obtain:

(74)

where we introduced the characteristic temperature
parameter

(75)
which is proportional to the specific decrease in
potential energy during folding per one degree of free-
dom. An example of a free energy surface is shown in
Fig. 9.

 From Eq. (74), taking into account Eq. (73), one
can estimate the temperature threshold at which the
free energy of the folded state will be lower than that of
the fully denatured state. Note that the limit value of
the parameter R2 is about Nπ2, and the limit value of
the quantity under the logarithm sign does not depend
on N(!) and is about 45. In other words, within the
considered Gaussian model, for the given parameter
values, the folded state becomes thermodynamically
favorable at T < 0.26T0 (Fig. 10). Note that this esti-
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mate at large N is almost independent of the length of
the chain and the parameter λ.

 Assuming, for example, that the temperature
threshold for protein denaturation is ~60°C (~333 K),
we estimate the parameter T0 at ~1280 K. Thus, this
model predicts, from the denaturation temperature,
the gain in the potential energy of the macromolecule
per one degree of freedom (in this particular case, it is
~2.56 kcal/mol). We obtain that the energy of non-
valent interactions of two monomer units during fold-
ing in this case is ~5 kcal/mol, or close to the hydrogen
bond energy in an aqueous medium. Naturally, these
are approximate values that show a reasonable order of
magnitude.

 Figure 10 also shows a characteristic volcano-type
free energy profile, which is observed in experiments
on protein folding in solutions [9, 10]. The region of
the energy funnel that leads to the folded state is sepa-
rated from the denatured state by a barrier with an
entropic nature. In principle, when comparing the
experimental value of the entropy barrier height and
the dependences in Fig. 10, the range of values of the
generalized coordinate R for the state of the denatured
protein in solution can be estimated.

POSSIBILITY AND CAUSES OF DIRECTED 
PHYSICOCHEMICAL MOLECULAR 

EVOLUTION TOWARDS THE FORMATION 
OF MACROMOLECULES WITH A UNIQUE 

SPATIAL STRUCTURE

 Further, we note an important circumstance that
combines all the above considerations on the topogra-
phy of PES and FES and the rules for the motion of a
representative point along the multidimensional
potential energy surface of a macromolecule in a vis-
cous medium, presented in the first part of this work
BIOPHYSICS  Vol. 67  No. 3  2022
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Fig. 10. Free energy profile (according to Fig. 9) in the
central funnel (Z = 0): (a) T/T0 = 0.15, (b) T/T0 = 0.23,
(c) T/T0 = 0.3. (a, b) The folded state is thermodynami-
cally favorable, (c) the folded state is thermodynamically
unfavorable. 
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and additionally in [19]. All the principles outlined
above can apparently work in combination and be
aimed at solving the problem of molecular evolution—
the selection of molecular structures that form unique
spatial structures in a specific range of environmental
parameters and the chemical composition of poly-
mers.
BIOPHYSICS  Vol. 67  No. 3  2022
 As noted above, the successful result of folding or
getting a representative point in the global minimum
of free (or potential) energy in a non-trivial situation,
when the vector a is not equal to zero, is largely deter-
mined by the starting position of the representative
point, which is very desirable to be in the region of
attraction of the central energy funnel. We see (for
example, in Fig. 9) that the FES, as well as the PES,
for denatured states far from the bottom of the energy
funnels (large R values) is rather smooth, and landing
into the central funnel (with the correct selection of
the starting configuration in the region of attraction of
this funnel) will be possible if the parameter Z does not
change too significantly when the representative point
moves. Consequently, an almost zero value of the time
derivative of the generalized variable Z (especially in
the region of large values of the generalized variable R,
where the initial configuration of the polymer is
formed during the synthesis, and it becomes possible
to select the “correct” starting configuration) is a very
useful condition for the correct folding process. This
means that, in the region of large R and in the zone of
attraction of the central funnel, the condition for the
start of proper folding is as follows:

(76)

 Recall that the point above the torsion angle
means differentiation with respect to time. Thus, a
variant of the folding process when a certain linear
combination of angular velocities of rotation around
torsion angles is close to zero is very favorable for cor-
rect folding. We encountered a similar situation in
Eq. (24.1) when discussing the correlation of confor-
mational motions of a polymer chain in a viscous
medium:

 Recall that l is a vector connecting the beginning
and end of the chain, and bk is the vector of bonds
between the nodes of the chain. For example, if all
components of the a vector have the same sign (as in
polymers that are symmetrical with respect to the per-
mutation of monomeric units), then a variant of an
elongated starting conformation, which leads to sign-
alternating directions of turns about dihedral angles in
accordance with Eq. (24.1) will also be favorable for
reaching the representative point to the global mini-
mum. We observed this variant of folding dynamics for
a polypeptide chain in a viscous medium [17]. Thus
when folding starts from the unfolded chain configu-
ration, polymers that fold in the central funnel into
helical structures will gain an advantage.

 Equations (76) and (24.1) show the possibility of
existence of the effect of a positive correlation between
the region of starting chain configurations (arising
during synthesis) and the energy surface topography
(in the Gaussian model considered, this is defined by
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the vector ai components), which is determined by the
chemical composition and sequence of monomers in
the chain. Apparently, favorable realization of this
correlation under certain conditions may lead to a ten-
dency for the formation of polymer molecules with
unique spatial structures.

CONCLUSIONS
 We considered the effects of two types of symmetry

that have a nontrivial effect on the dynamics of linear
polymers in a viscous medium and on the topography
of their energy landscapes.

 In the approximation of a homogeneous viscous
medium, the dynamics of a macromolecule is invari-
ant with respect to translations and rotations of the
object as a whole. This leads to the conservation laws
(5) and (13). A less obvious but useful result can be
obtained as a result of application of these formulas for
a polymer chain with rigid bonds and valent angles.
The sum of the vectors of angular velocities of turns
around the bonds (or rotations around torsion angles)
becomes equal to zero. In principle, this result is not
unexpected, since it follows from the equations of
motion in a highly viscous medium that the total
moment of rotation of the macromolecule must be
equal to zero. Equation (24) has additional interpreta-
tions if it is multiplied by a specially constructed vec-
tor, e.g., a vector connecting the start and end nodes of
a linear chain (24.1). The obtained relations clearly
show that, at the initial stage of folding of an unfolded
linear chain, clear effects of the correlation of turns
about dihedral angles with a rather regular change in
the sign of angular velocities should be observed. As a
result, there is a tendency to form helical structures if
such structures are allowed for energy causes. We have
previously observed effects of this type when simulat-
ing the folding of polypeptide [17, 18] and model poly-
mer [16, 34, 35] structures in a viscous medium using
molecular dynamics methods (in certain cases, the
role of viscosity can be played, for example, by ther-
mostats [37]). Note that taking into account thermal
fluctuations and changing the equations of mechanics
for particles in a viscous medium on the Langevin
equations [19] makes the chain folding dynamics less
deterministic, and the relations discussed are satisfied
only on average over the ensemble. However, far from
the equilibrium position, in areas with large potential
energy gradients, the effect described above may well
implement the role of guiding the trajectory of a rep-
resentative point, for example, towards the formation
of helical structures. Let us mention one more import-
ant circumstance associated with the rules of motion
of a representative point over ultrahigh-dimensional
energy surfaces. The restrictions that are imposed on
conformational motions in a viscous medium by rela-
tions such as (24) and (24.1), together with the restric-
tions on the distribution of energy dissipation rates
over chain nodes, which were described earlier in [19],
make most of the energy surface inaccessible to a rep-
resentative point, even in the absence of energy prohi-
bitions. This appears to greatly simplify the problem of
calibrating the force field parameters, which are used
in the calculations of trajectories in the molecular
dynamics of large systems. In this case, an acceptable
exact approximation of the entire ultra-multidimen-
sional and energetically accessible region of the poten-
tial energy surface is not required (in reality, this is
impossible), and it is sufficient to approximate only a
relatively small, smooth and dynamically accessible
regions of the PES by calibrating the potentials.

 As we know the problem of the topography of the
ultra-multidimensional energy surface of polymers
and biopolymers has several complex aspects.

 To date, the physical theory in this area has been
practically limited by phenomenological concepts of a
relatively smooth structure of a multidimensional
energy surface in the form of a potential funnel (the
principle of minimal frustration of an energy funnel
[14]). There are also no clear physical causes for which
some linear polymers fold into unique spatial struc-
tures, whereas others (even those very similar in
chemical composition) do not. Above, we briefly dis-
cussed why the problem of calculating the PES cannot
be solved by summing the commonly used atom-atom
potentials due to an uncontrollable error in summing a
huge number of terms. From a purely technical stand-
point, the calculation, for example, of a 100-dimen-
sional surface with acceptable accuracy (even deviat-
ing from the accuracy of setting the potentials) with a
step of, for example, 3.6° for each angle will require
calculating 10200 numbers. This is unrealistic even with
the most optimistic predictions about the develop-
ment of supercomputer performance. At the same
time, without understanding the basic principles of
such multidimensional PES properties, it is almost
impossible to further develop the physical theory of
the folding into the unique spatial structures of bio-
polymers and their complexes, for example, in chro-
matin. In this situation, in our opinion, attention
should be paid to establishing the analytical structure
of this type of multidimensional surfaces taking into
account the main features of the considered macro-
molecular objects.

It is known that valence bonds and valence angles
have almost no contribution to the change in the spa-
tial conformation of linear polymers and biopolymers,
and the change in their spatial structure occurs due to
rotations about single bonds. Thus, the topology of the
configuration space of such polymers corresponds to
the topology of a multidimensional torus, and the
potential energy function that is defined on this torus
must be represented as a multidimensional Fourier
series. When considering the general properties of a
multidimensional surface, we have to start from this
analytical representation of a multidimensional PES
and take into account various circumstances that
BIOPHYSICS  Vol. 67  No. 3  2022
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impose restrictions on the coefficients of the expan-
sion of the PES in a Fourier series. Previously, we
showed [20, 21] that certain restrictions on the expan-
sion coefficients lead to such types of free energy sur-
face topography that make it possible to interpret very
different kind of facts observed during the folding of
protein structures. In the second part of this article we
showed how the symmetry of linear polymers with
respect to the permutation of identical units limits the
possible form of the expansion coefficients of the PES
in the Fourier series. In the ideal variant of the
homopolymer, the expansion coefficients are invari-
ant with respect to permutation of harmonic numbers
for different angular variables. The most natural
invariants of harmonic vectors are the lengths and the
sums of the components of these vectors. Above, we
considered the dependences of the expansion coeffi-
cients on these invariants of the algebraic vectors of
harmonic numbers. The considered effects of symme-
try for homopolymer structures lead to the fact that
the global minima of potential energy (if any) corre-
spond to helical structures. When temperature effects
are taken into account and states with minimum free
energy are considered, the helical structures will be
deformed in a certain way. While studying possible
variants of the topography of multidimensional poten-
tial energy surfaces and free energy surfaces, we pro-
ceeded to the consideration of particular cases or
models that have the required symmetry properties.
The Gaussian dependence of the expansion coeffi-
cients on the length of the vector of harmonic num-
bers, adjusted for a possible shift of the distribution
maximum by some vector in the space of harmonic
numbers, was selected as the basic model. The Gauss-
ian dependence describes the situation when the space
of harmonic numbers contains a region of a certain
volume that makes the main contribution to the Fou-
rier series. Analytically, the Gaussian dependence is
convenient, because it makes it possible to obtain
compact equations from which the properties of the
corresponding macromolecular structures can be
clearly traced and can be compared with the available
general experimental facts (for example, for the pro-
cesses of protein folding and denaturation).

 It was found that, within the Gaussian model, PES
depends on two generalized variables (57) that have a
simple geometric meaning in the space of torsion
angles: the radius of the hypersphere around the global
minimum point and the distance from the global min-
imum point to the hyperplane that is perpendicular to
the vector drawn to the maximum point of the Gauss-
ian distribution in the space of harmonic numbers.
This successful parametrization of the PES in the
framework of the Gaussian model give a chance to
understand the possible causes that underlie the prin-
ciple of minimum frustration of the energy funnel dis-
cussed above [14]. The resulting topography of the
multidimensional PES satisfies this principle and,
under certain conditions, provides an opportunity for
BIOPHYSICS  Vol. 67  No. 3  2022
fast folding into a unique spatial structure. On the
other hand, the considered PES topographies gener-
ally show that the entire multidimensional configura-
tion space of a polymer in the general case is divided
into separate but very broad conformation regions that
are separated from each other by sufficiently high
potential barriers. As a result, the folding of a polymer
chain can be very sensitive to the region of the initial
configurations (conformations) of the chain, which is
obtained, for example, during the synthesis of a poly-
mer or biopolymer or its force denaturation. Such
effects were observed earlier when comparing the
results of protein refolding depending on the unfolding
way of the polypeptide chain. With the force method
of unfolding using atomic force microscopes, refold-
ing to the native state was prevented [38, 39]. Possibly,
the co-translational folding of the polypeptide chain
[36] is associated with the possibility of harmonizing
the configuration space regions, which, on the one
hand, are optimal for folding to the global energy min-
imum and, on the other hand, are the result of a spe-
cific mechanism of polypeptide synthesis on the ribo-
some.

 Accounting for entropy effects and the transition
to the free energy surface generally retains the main
features of the energy surface topography. In this case,
an important new aspect, the volcano-type profile of
the FES, appears, which is usually observed in folding
experiments [9, 10]. When we proceed to PES, a new
parameter also automatically appears, i.e., the charac-
teristic temperature of a macromolecule, which is pro-
portional to the specific gain in potential energy per
monomer (or per angular variable) upon the transition
to the global minimum point of PES. Here, we also
have relatively simple analytical expressions that allow
us to trace the possible effects in detail. In particular,
we can determine the temperature at which the folded
state becomes unstable. By selecting the denaturation
temperature inherent in protein structures, it is possi-
ble to estimate the required values of the energy of
interaction between monomer units, which is ~5
kcal/mol within the framework of the considered
approach, or of the order of the hydrogen bond energy
in an aqueous medium. Note that this estimate is
obtained automatically as a result that is based on the
topology of the configuration space of a linear poly-
mer, there is certain symmetry with respect to the per-
mutation of monomer units, the model hypothesis
that the space of harmonic vectors contains a region
that makes the main contribution to the Fourier series
but without additional physicochemical consider-
ations.

 Obviously, not all linear polymers can form the
unique spatial structures that are required for the
functioning of living systems. The above consider-
ations of the role of symmetry effects in the PES
topography and dynamic ordering of the conforma-
tional dynamics in a viscous medium lead to the idea
of the possible mechanisms of formation and selection
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during the physicochemical evolution of macromole-
cules, which tend to form unique spatial structures.
We proceed from the need for a prebiological stage of
molecular evolution, when, as a result of chemical
processes and physical laws, the macromolecules that
stably fold into unique spatial structures that could
later form supramolecular structures with certain
functions were selected. We emphasize that we do not
mean specific biopolymers in their modern form, the
mechanisms of formation and selection of which are
separate and not entirely clear, even in formulation.
The previous stage of the formation of molecular
“constructs” with a stable spatial structure and func-
tionality from some primordial soup is one of the pos-
sible variants of the evolutionary transition to the sim-
plest forms of macromolecular complexes with some
features characteristic of living systems. The funda-
mental issue is whether there are (and under what con-
ditions) objective physicochemical causes for the
directed evolution of macromolecules towards the for-
mation of macromolecules with a unique spatial struc-
ture? We propose that this issue should be considered
from the standpoint of the evolution of the energy
landscapes of linear polymers and the dynamics of
folding in the direction of unique spatial structures,
i.e., spatial structures with a single global minimum
that can be hit in a reasonable time and under achiev-
able conditions. In this regard, above we drew atten-
tion to the possible effect of the combined action of
two types of symmetry. The first is the formation of an
energy landscape with many energy funnels according
to Eq. (74). This type of FES may form, as shown
above, in the case of a linear homopolymer or a poly-
mer with similar side groups on the monomer units.
For folding such a polymer into a unique spatial struc-
ture, it is necessary that the representative point be in
the region of attraction of the central energy funnel.
The retention of a representative point in the region of
attraction of the central funnel can be facilitated by the
effects of partial ordering of conformational motions
in a viscous medium. This article presents two adja-
cent formulas (Eq. (76) and a repetition of Eq. (24.1))
showing how the conditions imposed on linear combi-
nations of angular velocities of turns around torsion
angles can be corresponded as a result of the effects of
the two discussed types of symmetry. Note that the
effects of viscosity in conformational dynamics, which
are described in [19] and lead to an approximately
equal distribution of the energy dissipation rates (as
well as the potential energy change rates) over the
chain nodes, make an additional contribution to the
dynamic ordering of the conformational degrees of
freedom of the macromolecule and make the rules for
the motion of a representative point along multidi-
mensional energy surfaces more stringent. Thus,
within theoretical concepts developed, we see certain
physical prerequisites for directed physicochemical
evolution towards the formation of polymeric macro-
molecules with unique spatial structures.
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