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Abstract—We model the interaction of two populations based on evolutionary equations that consider diffu-
sion, taxis, and logistic growth. Scenarios of biological invasion are under study, considering the heterogene-
ity of the environment. We develop the approach based on the cosymmetry of the model. Here, multistability
arises - a family of stable stationary distributions of species. Population scenarios with violations of cosym-
metry were studied using a computational experiment. For the diffusion and growth parameters that satisfy
the cosymmetry conditions, the structure of the plane of taxis parameters divides into six zones correspond-
ing to different scenarios (survival of individual species and their coexistence). When one of the growth
parameters changes, the structure of the partitions is kept, but the boundaries of the zones deform. With a
significant deviation of the growth parameter, additional zones of species coexistence may arise.
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INTRODUCTION
The problem of invasion of biological species is of

great socio-economic importance. Invading species
can significantly affect the ecological balance by com-
peting with native species and displacing them [1–4].
To study the threats of unwanted invasions and control
the processes of invasion, it is necessary to develop
tools for predicting the dynamics of ecosystems [5, 6].
Field experiments in this case are difficult and some-
times dangerous, which makes the development and
study of models of population dynamics relevant. At
the same time, both studies focused on the description
of specific ecosystems and the construction and anal-
ysis of models that take the key processes of popula-
tion dynamics are important into account.

It is topical to study problems in which the effects
of diffusion, taxis (directed migration), and competi-
tion for resources are significant [7–9]. The systems of
equations used in this case are, as a rule, nonlinear and
contain many parameters. At the same time, natural
questions arise about determining the areas of param-
eters for which various population scenarios can be
implemented, and a qualitative analysis of the pro-
cesses leading to the coexistence and extinction of spe-
cies.

In this paper, a system of nonlinear equations that
describes the dynamics of two populations competing
for a heterogeneously distributed resource is consid-

ered. One population is an aboriginal or resident pop-
ulation that occupies an ecological niche and the other
is an invader. The model takes the diffusion distribu-
tion of species, directed migration due to the heteroge-
neity of the resource (environment capacity), and
local growth of the logistic type into account. Particu-
lar attention is paid to the study of multistability, that
is, the possibility of implementing various scenarios of
population dynamics, including the form of a family of
stable stationary distributions of coexisting species
[10–12].

MATHEMATICAL
AND COMPUTATIONAL MODELS

The space–time interaction of two species on a
one-dimensional area of length a: Ω = [0, a] is consid-
ered. The population density balance equations u(x, t)
and v(x, t) are written similarly to [11, 12], using
migration f lows qi and local interaction:
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Migration flows q1 and q2 consider diffusion prop-
agation and directed migration, that is, taxis, which is
determined by the uneven distribution of the carrying
capacity p(x).

Relative densities and carrying capacity are also
called resource in modern literature [2].

In formulas (1) and (2), k1 and k2 are diffusion
coefficients, and α1 and α2 are directional migration
coefficients. The change in population density is
determined by the logistic law with growth parame-
ters η1 and η2. Further, u(x, t) is aboriginal population
and v(x, t) is an invader population.

At the boundary of the range Ω = [0, a], the condi-
tions for the absence of f lows are set:

(3)
The system of equations (1)–(3) is supplemented

with the initial distributions of population densities:

(4)

For the numerical solution of problem (1)–(4), the
method of lines with discretization based on shifted
grids is used similarly to that described in [12]. A uni-
form grid is introduced for the variable x: +1, h = a/n.
The distribution densities of populations at the node xr
are further denoted by ur and vr. To calculate f lows qi,
a shifted grid is used: xr + 1/2 = –h/2 + rh, r = 1, 2, …, n.

In terms of spatial variables, a first-order difference
operator on a two-point template and an average cal-
culation operator are introduced:

As a result of the approximation of equations (1), (2)
based on the integro-interpolation method [13], the
following system of ordinary differential equations is
obtained:
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Flows qi, r–1/2 (r = 1, …, n) are calculated from the
following formulas:

(8)

Discrete analogues of the boundary conditions are
made with the use of contour nodes:
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Equation (4) yields the initial conditions for
expressions (5)–(9):

(10)

COSYMMETRY AND MULTISTABILITY

The Gause principle [14] states that stable coexis-
tence of two populations is impossible if growth is lim-
ited to one vital resource. However, it was shown in
[11] that, under certain relations for the parameters of
system (1)–(4), there is a strong nonuniqueness of
solutions of coexisting species.

In this case, the model itself belongs to the class of
cosymmetric dynamical systems [15], for which con-
tinuous families of stationary states may arise. For an
equation , cosymmetry L is a nontrivial
operator that is orthogonal to F at every point in the
phase space [16]. It was proved in [11] that a vector
function 

will be a cosymmetry of system (1)–(4) if the follow-
ing relations on the parameters are satisfied:

(11)

In this case, the problem has a continuum family of
stable stationary solutions, which can be parametrized
as follows:

(12)

where w is the solution of the boundary value problem

(13)

This fact is established by substituting expres-
sions (12) into the original system of equations (1)–(3)
taking into account relations (11) and (13). At the
same time, each member of the cosymmetric family,
characterized by an individual ratio of species densities
in the range, has its own area of initial data, from
which this solution is implemented.

The fulfillment of all conditions (11) is a rather rare
occurrence in modeling real processes. This means an
ideal situation of coexistence of species in any of their
combinations. An analysis of the conditions under
which family breakup occurs allows a better under-
standing of the dynamics of the system. For this, an
approach based on the theory of a cosymmetric defect
and the concept of a selective function is used [15]. For
a differential equation Y = F(Y) + Q(Y, ε) in a Hilbert

0 0( ), ( ).r r r ru u x x= =v v

( )Y F Y=�

2 2( , ) , exp( )TL M u M a p k= γ − = −v

2 2 2

1 1 1

.k
k

α η= = = γ
α η

(1 ) , , [0,1],u w w= − θ = θ θ ∈v

2 2 2

2 2 0,

0 [ ' ']' 1 ,

' ' 0.x a

wk w wp w
p

k w wp =

 = − α + η − 
 

− α =



148 BUDYANSKY, TSYBULIN
space H, the cosymmetric defect is defined by the for-
mula S(Y) = –(Q(Y, ε)), L(Y)), where L is the cosym-
metry of the vector field F, and Q(Y, ε) is a perturba-
tion of the system, and Q(Y, ε) = 0. The selective equa-
tion on the family Y(θ) ∈ [0, 1] is given by the equality
S(Y(θ)) = 0 and automatically holds for ε = 0.

Hypothesis. For system (1)–(4), there are sets of
parameters that do not satisfy the cosymmetry condi-
tions (11), at which multistability is observed.

To analyze this assumption, a computational
experiment and an approach based on [15] are used.
Two perturbation parameters are used: population
growth and migration coefficients v, violating condi-
tions (11):

(14)

The asterisks denote the parameters considering
perturbations. The cosymmetric defect is then given
by the formula

As a result of integration by parts and taking the
boundary conditions into account, the defect D is
written as:

(15)

Taking into account the conditions on the coeffi-
cients (11),

(16)

After substituting the parametrized family of solu-
tions (12), we obtain a selective function depending on
the parameters ε and δ:

(17)

The zeros of the selective function are θ = 0 and
θ = 1, corresponding to the survival of one of the pop-
ulations. If the parameters ε and δ are related by the
relation δ = με, then a selective function with one
parameter ε is obtained. Then, for ε = 0, we also obtain
S(θ) = 0. Formally, the vanishing of function (17) cor-
responds to the transformation into a new family of
solutions, at least for

(18)

In computational experiments, it was found that

there are sets of values of ε and δ  for which dis-
tributions of coexisting populations are realized.

THE RESULTS OF THE COMPUTATIONAL 
EXPERIMENT

Below are the results of calculations of population
dynamics in the range Ω = [0, 2], (a = 2).

Calculations were carried out for different values of
migration parameters α1 and α2, growth coefficient η2,
and for the following fixed parameters: diffusion coef-
ficients k1 = 0.03, k2 = 0.04, and growth coefficients
η1 = 3. Thus, in relation (11) γ = k1/k2 = 3/4, and the
resource function is given by the formula correspond-
ing to the case of an area with one favorable zone:

The initial distribution of the population u (resi-
dent) corresponds to the complete filling of the eco-
logical niche in the absence of directed migration
(α1 = 0) and in its presence (α1 = 0.06), see Fig. 1.
It was shown in [17] that migration caused by the
unevenness of the resource affects the occupancy of
the area, and it was established that there is an optimal
value of the migration parameter, at which the highest
density is observed in the area. The initial distributions
of population v (invader) were localized and differed
in the invasion concentration:

(19)

It is worth noting that for any combination of initial
distributions u and v, the inequality is satisfied
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Fig. 1. The initial distributions of u at α1 = 0 (curve 1) and
α1 = 0.06 (curve 2); initial distributions v (curves 3 and 4);
resource function (curve 5).
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Fig. 2. A map of migration parameters α1 and α2 with areas
corresponding to the coexistence of species (III) and the
survival of the population u (I) or v (II) at η2 = 4.0 and
4.5 (a); at η2 = 1.0 (b).
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between species at the initial stage of the dynamic pro-
cess.

Figure 2 shows maps of parameters α1 and α2 with
zones corresponding to the coexistence of species (III)
and the survival of one of the populations (I and II).
The dotted line in Fig. 2a shows the boundaries of the
zones according to the results of calculations at η2 = 4,
and straight line 1 (α2 = γα1) corresponds to the exis-
tence of a cosymmetric family of equilibria (12),
whose members are stationary distributions of each
type and their various combinations.

In the case of cosymmetry, the coexistence of spe-
cies is observed, and the stability spectrum for the
final stationary distributions has almost zero eigen-
values.

The remaining eigenvalues are in the left half-
plane, which means stability in the transversal direc-
tion to the family.

Figure 2a also shows the results of calculations for
the growth factor η2 = 4.5, which does not satisfy rela-
tions (11). In this case, there is a shift in the line corre-
sponding to the existence of a family of stationary dis-
tributions (straight line 2). The stability spectrum of
these solutions contains practically zero eigenvalues
(σ ≈ 10–6). This fact demonstrates the validity of the
hypothesis formulated in the Cosymmetry and mul-
tistability section.

Formula (18) gives a good estimate for determining
the perturbation parameters ε and δ (see formula (14)).
For example, for given k1 = 0.03, η1 = 3, γ = 3/4, and
α1 = 0.06, a numerical solution of problem (13) was
found, integrals (18) were calculated using quadrature
formulas, and  ≈ 90.7 was obtained.

In computational experiments with system (1)–(4)

at α1 = 0.06, multistability was obtained for  = 4.5
and  = 0.08536.
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2
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Thus, the perturbation parameters turned out to be
ε = 0.5 and δ = 0.00536, and their ratio was δ/ε ≈ 93.5,
which is close to 

Calculations have shown that an increase in η2
compared to the value that satisfies relations (11) gives
an expansion of regions II at the expense of regions I.
This means that the provider has more opportunities
to compete with the resident. It should be noted that
lines 1 and 2 in Fig. 2a intersect at the point ( )
where the areas corresponding to different population
distribution scenarios touch.

Figure 2b shows a map of migration parameters
corresponding to the case η2 = 1. It can be seen that a
sufficiently large deviation of η2 from the value η2 = 4
corresponding to condition (11) leads to a deformation
of the structure of areas for different modes of popula-
tion survival. In this case, an area of coexistence of
species appears between zones I and II (zone III).

Various invasion scenarios are shown in Fig. 3. The
calculations were carried out for the sets of parameters
corresponding to points A and B in Figs. 2a, the resi-
dent had no resource-directed migration (α1 = 0). The
dynamics of displacement of the aborigine population
is given in Fig. 3a, while Fig. 3b illustrates the species
coexistence scenario. At a low value of the invader
migration coefficient (α2 = 0.02), the resident is dis-

*I

1 2ˆ ˆ,α α
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Fig. 3. The establishment of stationary distributions α2 = 0.02 (a) and α2 = 0.08 (b); α1 = 0, η2 = 4.0.
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Fig. 4. The establishment of equilibria (A, B, Cj, Dj) from
initial distributions (Sj, Qj) for different α1 and α2 (see
Table 1 and Fig. 1); lines 1 and 2 correspond, respectively,
to families of equilibria at α1 = α2 = 0 and α1 = 0.06, α2 =
0.08; η2 = 4.0.
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placed, and when it increases (α2 = 0.08), the range is
divided: the invader concentrates in a favorable zone,
displacing the resident to the borders of the range.

Figure 4 shows the trajectories of establishment to
stable stationary states (points A, B, C1, C2, D1, D2)
from various initial distributions marked in Fig. 1. The
curves are given on the plane of standard deviations of
distributions σu and σv:

Figure 4 shows the possible strategies of the invader
depending on the value of the migration parameter of
the resident α1. For α1 = 0 and α2 = 0, η2 = 4, the
cosymmetric relation for the parameters of system (11)
is satisfied. In this case, stationary solutions corre-
sponding to the coexistence of populations (points C1,
C2) are realized from various initial distributions
(points S1, S2). These solutions are included in the
continuous family of stationary states (line 1 in Fig. 4).
The calculations show that in the absence of directed
migration in an resident, the invader can use a strategy
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based on choosing an appropriate taxis coefficient α2.
In this case, both the displacement of the resident
(point A in Fig. 4) and the solution corresponding to
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Fig. 5. Equilibrium establishment Cj (Dj) from initial dis-
tributions Sj (Qj) at α1 = 0, α2 = 0.0029 and α1 = 0.06,
α2 = 0.0746; lines 1 and 2 correspond to families of equi-
libria (see Fig. 4); η2 = 3.5.
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the coexistence of species (point B in Fig. 4) are pos-
sible. We note that the initial distribution affects the
trajectory of the establishment to the final state.

A cosymmetric family of stationary distributions of
coexisting populations also arises for α1, α2 ≠ 0. Line 2 in
Fig. 4 corresponds to a family of stationary states
BIOPHYSICS  Vol. 67  No. 1  2022

Table 1. Migration parameters and evolution from initial d
B, Cj, Dj)

The numbers u0 and v0 correspond to the curves in Fig. 1.

α1 α2 t = 0

0.00 0.00 S1(S2)

0.00 0.02 S1(S2)

0.00 0.08 S1(S2)

0.06 0.08 Q1(Q2)

Table 2. The main elements of the spectrum of stability of sta

α1 = 0.06, α2 = 0.0746, η2 = 3.5.

C1 –2.2 × 10–6

C2 –1.6 × 10–7

D1 –0.1 × 10–6

D2 –0.2 × 10–6
under conditions (11) for the following parameter val-
ues: α1 = 0.06, α2 = 0.08, η2 = 4. In this case, due to a
nonzero taxis (α1 = 0.06), the density of the resident is
redistributed (see Fig. 1), which leads to a shift in the
initial data (points Q1, Q2). As a result of the establish-
ment of equilibria, distributions of coexisting popula-
tions of resident and invader are obtained.

Both in the absence of taxis and when it is taken
into account, the density of the invader distribution
depends on the density at the initial moment of time.

Figure 5 shows the dynamics of populations from
different initial data (see Table 1 and Fig. 1) for two
sets of parameters: α1 = 0, α2 = 0.0029, η2 = 3.5 and
α1 = 0.06, α2 = 0.0746, η2 = 3.5. These parameter val-
ues were obtained in the course of a computational
experiment and are close to the values corresponding
to relations (18), but violate conditions (11). For both
sets of parameters, from different initial states, stable
population distributions are obtained, similar to those
displayed in Fig. 4. The presence of almost zero eigen-
values (σ ≈ 10–6) in the stability spectrum of these
solutions indicates multistability—the coexistence of
species and the success of invasion. Table 2 shows the
elements of the stability spectrum of these final states
closest to the imaginary axis.

Figure 6 shows the time evolution of population
distribution profiles corresponding to the Q2D2 trajec-
tory in Fig. 5. It can be seen that at the beginning of the
establishment of equilibrium there is a sharp decline in
the density of the aboriginal population due to the
istributions (points Sj, Qj in Fig. 4) to final ones (points A,

u0
v
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Fig. 6. The spatio-temporal evolution of population densities corresponding to the Q2D2 trajectory in Fig. 5.
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appearance of an invader; a smooth transition to a sta-
tionary solution then occurs.

CONCLUSIONS

The interaction of two populations was considered
on the basis of a system of nonlinear parabolic equa-
tions that take diffusion, taxis (directed migration) and
logistic growth into account. Maps of migration
parameters have been constructed that describe vari-
ous scenarios of competition under conditions of bio-
logical invasion. Using the apparatus of the theory of
cosymmetry and numerical-analytical studies, it was
shown that, in comparison with [11, 12], the formation
of a continuous family of coexisting populations (mul-
tistability) is possible for a larger set of parametric
dependencies. The method described in this paper
allows one to specify combinations of parameters for
successful invasion. This approach can be used to
study the phenomenon of multistability in nonlinear
multiparameter problems of mathematical biology
[18]. These results will improve the methods of analy-
sis of invasion and its consequences.
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