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Abstract—This paper presents an overview of the best-known models that describe the binding of oxygen to
hemoglobin. A formal criteria-based approach was designed to find the optimal mathematical and physical
models of cooperative oxygen binding by hemoglobin. The main models of oxygenation, which are based on
power and exponential dependencies, were compared using regression and cluster analyses of experimental
data on oxyhemoglobin dissociation. Adair’s, Bernard’s, and Hill’s power-law models were shown to be supe-
rior to exponential models in describing the ligand binding by an oligomeric protein. The sequential four-
stage Koshland–Némethy–Filmer model, which corresponds to the Adair equation, was found to most
accurately describe the experimental data.
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INTRODUCTION
Hemoglobin is among the macromolecules that

have been most comprehensively studied in molecular
biology. Hill [1, 2] proposed his well-known equation
to describe the cooperative binding of ligands with
proteins more than a century ago for hemoglobin.
Using hemoglobin as an example, Monod developed
the theory of allosteric interactions [3–6], which
underlie many processes involved in regulating biolog-
ical activity of macromolecules. Allosteric regulation
refers to the regulation where the binding of a ligand to
one site of a protein affects the binding of another
molecule to another protein site (in this context,
allosteric interactions can be considered as a particular
case of more general cooperative effects, which addi-
tionally manifest themselves as contact interactions
between spatially close ligand-binding centers [7, 8]).
Many issues are still not understood in the function of
hemoglobin. Its four catalytically active subunits are
capable of binding various ligands. The heterote-
tramer can regulate the basic functions of its mono-
mers via cooperative effects (e.g., see [9, 10]). Alterna-
tive and accessory functions of hemoglobin have
attracted special interest in the past years [11]. How-
ever, the phenomenon of cooperative oxygen–hemo-
globin binding, which provides a classical example of
allosteric interactions, has not been studied well
enough to allow us to choose a single model among
many theoretical models developed to describe it. The

concerted functions of the subunits in the macromol-
ecule are due to their cooperative interactions. The
high level of functional adaptability of hemoglobin to
varying conditions in the body is achieved via fine
adjustments of its elements, which work as a single
entity [12–14]. A formal description of the interaction
of hemoglobin with its ligands does not obey the
Michaelis–Menten equation [15, 16]. Nonlinear
effects arise as a result of cooperative interactions, and
a variety of approaches are used to describe them in
the given system. The approaches include conceptual
models of protein–ligand interactions, chemical reac-
tions, and regression models. We note that such
approaches lack a physical content in a number of
cases [17–19]. Many descriptions have been proposed
for the cooperative effects that occur in the hemoglo-
bin molecule, but the relationships between individual
models have still not been established and there are no
criteria to choose the most adequate (best) model. We
believe that this problem deserves special investigation
(e.g., see [20, 21]).

We have previously proposed criteria [22] to evalu-
ate regression models of oxygen–hemoglobin binding
[23]. Here, we consider a broad range of models
designed to describe oxygen–hemoglobin binding and
systematize the approaches developed in the field.

METHODS
Models of oxygen–hemoglobin binding were the

focus of this study and were analyzed using numericalAbbreviations: ODC, oxyhemoglobin dissociation curve.
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Fig. 1. Experimental measurements of the oxyhemoglobin
dissociation curve (based on the data [24]). Hb4(O2)4 is a
tetrameric oxyhemoglobin molecule; pO2 is the partial
pressure of oxygen.
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methods and experimental data [24], which provide
the most complete and accurate measurements avail-
able for the functional dependence (Fig. 1).

To eliminate the stochastic measurement errors,
the data were digitally processed using piecewise-
polynomial smoothing algorithms (data array 1) [25]
or globally approximating polynomials (data array 2)
[26].

The stability of a solution to the problem of model-
ing the oxyhemoglobin dissociation curve (ODC) was
checked using the above data arrays and the initial data
(data array 3) [24].

Model parameters were optimized by the least-
squares method [27]. The coefficient of determination
was used to evaluate the goodness of fit for a model
[28]. A formal classification of models was con-
structed via cluster analysis [29].

Necessary computations were performed using the
MS Excel spreadsheet processor with the Visual Basic
for Applications (VBA) module.

RESULTS AND DISCUSSION

An overview of the models that describe oxygen–
hemoglobin binding. In the history of mathematical
models describing the oxygen–hemoglobin interac-
tion, Hüfner [30] was the first to propose an equation
(1890), which described oxygenation as a first-order
chemical reaction:

(1)2 2Hb O HbO ,α

β
⎯⎯⎯→+ ←⎯⎯⎯
(2)

where Hb is deoxyhemoglobin; O2 is oxygen; HbO2 is
oxyhemoglobin; α and β are the kinetic coefficients of
the forward and reverse reactions, respectively; y is the
hemoglobin saturation with oxygen; p is the partial
pressure of oxygen; k = α/β is the equilibrium reaction
constant; and k–1 (hereafter designated p50) is the oxy-
gen pressure at y = 50%.

The model fails to describe the S-like shape of the
ODC and can be used only to calculate the binding of
oxygen with myoglobin or an individual hemoglobin
subunit and to provide a basis for constructing the
equations that allow for a cooperative effect.

It should be noted that the Hüfner, Langmuir [31],
and Michaelis–Menten [32] equations are essentially
equivalent because they describe similar physical pro-
cesses:

(3)

where k' is the absorption constant, K'' is the absorp-
tion equilibrium constant (1/k'), C is the equilibrium
adsorbate concentration in the Langmuir equation,
[S] is the substrate concentration, and Km is the
Michaelis constant in the Michaelis–Menten equa-
tion.

The Hill equation (1910) [1, 2] is based on a model
that assumes the hemoglobin molecule to be a poly-
mer, which consists of h subunits and binds simultane-
ously h O2 molecules. Oxygenation is considered to be
an h-order reaction in this case:

(4)

(5)

where h is the Hill constant.
Adair et al. [34] (1925) proposed a model that was

based on the hypothesis of intermediate hemoglobin
saturation with oxygen and assumed that ligand bind-
ing proceeds consecutively in four steps:

(6)

(7)

(8)

(9)
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(10)

where a1 = k1, a2 = k1k2, a3 = k1k2k3, and a4 = k1k2k3k4
are the Adair coefficients; ki = αi/βi (i = 1, 2, 3, and 4)
are the equilibrium reaction constants; and Hb4 is the
hemoglobin tetramer.

Based on the Wyman–Allen hypothesis, which
postulates a simultaneous binding of two oxygen mol-
ecules to a hemoprotein molecule [35], Bernard [36]
(1960) proposed the following oxygenation equation:

(11)

where a is a certain constant kinetic coefficient. The
model is principally a combined variant of the Hill and
Adair equations.

The above (and related) mathematical equations
are based on the general chemical model that consid-
ers the interaction of a ligand and a protein in terms of
the law of the mass action and utilizes the n-th order
power function.

Alternative models of oxygen–hemoglobin binding
are based on the assumption of a transition process, to
which the law of the mass action is inapplicable [37–
40]. An exponential function is used to determine the
hemoprotein oxygenation rate in this case, and the
partial pressure of oxygen serves as its argument
(power).

Based on this idea, Vysochina [37] (1963) proposed
the following equation:

(12)

where b is the variable kinetic coefficient.
Podrabinek and Kamenskii [38] (1968) developed

a model that is based on the Hüfner equation and
assumes that the ligand binding constant is a function
of the degree of protein macromolecule deformation,
which exponentially depends on pO2:

(13)

where α and λ are the positive constant kinetic coeffi-
cients and k = αexp(λp) is the equilibrium reaction
constant.

The approach is similar to that developed by Ten-
ford [41] and used to construct models that describe
absorption of free ligands on a nucleic acid molecule
with partly filled ligand-binding centers.

Kislyakov [39] (1975) proposed the following equa-
tion:

(14)
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where b is the kinetic coefficient equal to a0 + a1z +
a2z2 and a0, a1, and a2 are the constant kinetic coeffi-
cients.

Khanin et al. [40] (1978) proposed a function that
is analogous to the above ones and has the following
form:

(15)

where δ1 and δ2 are the constant kinetic coefficients.
Analysis of the models of cooperative oxygen binding

by hemoglobin. It is possible to evaluate how accurately
the experimental ODC is approximated by mathemat-
ical functions with a certain physical content by using
the coefficient of determination (R2) to measure the
goodness of fit.

Because stochastic errors are always present in
experimental data to a certain extent and may qualita-
tively change the interpretation of experimental
results, two-step filtration was applied to the initial
ODC values.

At the first step, outliers were eliminated. A differ-
ence of more than 1% between a single point of the
experimental curve and its approximation with third-
order nonuniform rational B-splines excluded the
point from further analysis [42–44]. Only 2 out of
65 points were outliers. The next step included
smoothing with a third-order Savitzky–Golay piece-
wise polynomial filter. The filter is the derivative of the
moving average method, thus providing a simple,
available, and common tool to solve a number of sim-
ilar problems [45, 46]. The data obtained by digital fil-
tering were re-discretized with a regular grid incre-
ment of 0.5 mm Hg in an O2 partial pressure range of
0–622.5 mm Hg; the total number of points was 1246
(data array 1).

The functions were ranked in order of decreasing
R2 (Table 1). As is seen, the functions based on a power
dependence lead by a substantial margin in the
approximation list with the expectable exception of
the Hüfner equation, which is a basic model.

The facts that similar R2 values were obtained for
the Adair, Bernard, and Hill models and that the mod-
els similarly represent the oxygenation process indi-
rectly suggest a particular manner for oxygen binding
by hemoglobin; i.e., oxygen is bound in a stepwise
manner as a result of structural rearrangements that
arise in the protein macromolecule upon its binding
with ligands via equilibrium reactions.

In addition, this is indirectly (by the exclusion
method) supported by the approach based on the
exponential dependence and used in the alternative
models, together with the scatter observed for
the coefficient of determination in the group of equa-
tions 4–7 (Table 1).

To formally assign the approximating functions in
question to a particular type of physical (and, conse-
quently, mathematical) models, the models were clas-

( )1 21 exp ,y p= + δ −δ
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Table 1. ODC-approximating functions with a physical content (results obtained with data array 1)

R2 is hereinafter expressed in parts per million (ppm).

No. Model (equation) R2, ppm Number of constants

1 Adair model 999686 4
2 Bernard model 999623 2
3 Hill model 999386 2

4 Kislyakov model 996808 1
5 Podrabinek–Kamenskii model 996529 2
6 Khanin model 984591 2
7 Vysochina model 978350 1

8 Hüfner model 920640 1
sified according to R2 by nearest neighbor clustering,
using the Euclidean distance to measure the separa-
tion between models (Fig. 2a). It should also be noted
that much the same dendrogram was obtained by the
furthest neighbor method; i.e., clustering quality was
not impaired when the two methods were used.

The clustering characteristics of the mathematical
models under study were considered consecutively
based on their analytic representation with the
decreasing distance between models.

First, a dichotomy of the group of models 1–7 and
group 8 (Table 1), which consisted of one model (the
Hüfner equation), was observed at a distance of
57710 points. It is well known that the Hüfner model
fails to describe the cooperative character of oxygen-
ation; an illustrative and mathematically formal
demonstration is provided again by our cluster analysis
(Fig. 2a).

A decrease in distance to 11 938 points shows a sep-
aration of the remaining models into two subclusters
(cluster leaves). The Khanin and Vysochina equations
form a cluster with a between-model distance of 6241
points. The similarity of these two approximations is
determined by the equation component aexp(–bp),
where a and b are the kinetic coefficients and p is the
partial pressure of oxygen.

The other cluster (2578 points) comprises models
1–5 (Table 1). The closeness of the models formally
indicates that power equations more efficiently
describe the oxygenation process. For example,
although exponential, the Kislyakov equation has b–1

as a power and the Podrabinek–Kamenskii model is
based on the ratio kpn/(1 + kpn), where n = exp(λp),
as mentioned above.

The small distance (279 points) between
equations 4 and 5 reflects their similarity in having an
exponential component, but not their good fit to
experimental data.

The subcluster with a between-model distance of
237 points is a family of the Adair, Bernard, and Hill
power models, thus supporting the assumption that
ligand binding is an nth order chemical reaction.

Then, these mathematical approximations are pos-
sible to associate with physical models. The Adair
equation suggests consecutive ligand binding and is
therefore possible to associate with the Koshland–
Némethy–Filmer model [47]. The Bernard equation
(a hybrid solution) can be associated with the
Wyman–Allen model [48]; and the Hill equation,
with the Monod–Wyman–Changeux model (a sym-
metrical model) [3].

The cluster of these models divides into two sub-
cluster, one including the Adair and Bernard equa-
tions (with a between-model distance of 63 points)
and the other, the Hill equation. The Hill equation is
inferior to the other two in terms of R2. The Bernard
approximation groups with the Adair approximation,
suggesting their similarity in describing the ligand
binding by sequence states. Because the Adair equa-
tion has the highest R2 among all models under study,
the formal approach shows that the Koshland–
Némethy–Filmer model with the Adair equation as its
mathematical projection is superior in describing the
ligand binding with a macromolecule.

In the next variant of the experiment, the following
polynomial was used to directly approximate the ini-
tial data:

(16)

where a, b1–4, and c1–4 are coefficients and p (>0) is the
partial pressure of oxygen. We believe that this
approach makes it possible to evaluate how experi-
mental errors, such as outliers, or systematic errors of
approximation, affect the stability of the solution of a
numerical modeling problem. The polynomial was
selected so that no appreciable advantage was added to
the Adair, Bernard, or Hill equation compared with
the other models and that both power and logarithmic
transformation were included in the polynomial. Its
coefficient of determination was 999918 ppm, which is

( ) ( ) ( )
( ) ( ) ( )

2 3 4
1 2 3 4

2 3 4
1 2 3 4

ln ln ln ln
,

1 ln ln ln ln
a b p b p b p b p

y
c p c p c p c p

+ + + +=
+ + + +
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Fig. 2. A dendrogram (distance matrix) of several ODC-
describing models as constructed for data arrays (a) 1,
(b) 2, and (c) 3.
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higher than that of any of the regression models. This
formally supports the adequacy of the selected poly-
nomial. If the polynomial degree is increased from 4 to
higher values, R2 increases naturally, but the polyno-
mial approximates the interpolating polynomial, as is
the case, for example, with Fourier and Chebyshev
higher-order polynomials [49].

As in the above experiment, the numerical values
were again re-discretized with a regular grid increment
of 0.5 mm Hg and a total of 1246 points (data array 2),
thus allowing comparisons of the R2 estimates
obtained using data arrays 1 and 2.

As Table 2 demonstrates, the operation of taking
logarithm present in the polynomial quite expectedly
reduced the R2 values to some extent for the power
equations and increased R2 for the equations based on
an exponential function (Table 1) with the exception
of the Khanin equation. However, the differences had
almost no effect on the ranking of the regression mod-
els under study. Changes occurred only in positions 4
and 5 (Tables 1, 2). The Podrabinek–Kamenskii
equation had a higher coefficient of determination
compared with the Kislyakov equation in this case.
The dendrogram of the ODC models also remained
unchanged in structure (Fig. 2b).

Thus, use of piecewise-polynomial smoothing or
globally approximating polynomials does not affect
the general ranking of the models and their clustering
in dendrograms, indicating that consecutive binding
of ligands is a more plausible scenario.

However, data that were processed digitally were
used as reference values in the above experiments and
data processing might add transformation errors,
change the values of the coefficient of determination,
and affect the model clustering pattern.

The initial data (data array 3) were therefore used
without any treatment in the next experiment. This
makes it possible to evaluate the stability of the analyt-
ical algorithm in the case of data that include stochas-
tic errors and to avoid additional mathematical trans-
formations if appropriate. 

The results are shown as a ranking of the approxi-
mating functions (Table 3). The Vysochina and
Khanin equations exchanged their places in this case.
The change did not principally alter the general clus-
tering pattern, as was expected from the results of the
previous experiments. This finding supports the ade-
quacy of our estimates.

A cluster analysis was carried out with these data
(Fig. 2c). The results showed that the dendrogram
structure remained almost unchanged. Two clusters
formed at a distance of 1260 points, one including
models 1–4 (Table 3) and the other, model 5 (the Kis-
lyakov equation). Unlike in the previous experiments
(data arrays 1 and 2), the Podrabinek–Kamenskii
model occurred in the power model cluster (the Adair,
Bernard, and Hill models) rather than clustering
BIOPHYSICS  Vol. 66  No. 6  2021
together with the Kislyakov model. However, a rela-
tively great distance (613 points) separates the Podr-
abinek–Kamenskii model from the power model clus-
ter. This indicates, first, that stochastic errors are a
factor and, second, that there is a certain similarity in
describing the kinetics of oxygen binding by the hemo-
protein between the Podrabinek–Kamenskii model
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Table 2. ODC-approximating functions with a physical content (results obtained with data array 2)

No. Model (equation) R2, ppm Number of constants

1 Adair model 999548 4
2 Bernard model 999340 2
3 Hill model 999251 2

4 Podrabinek–Kamenskii model 997615 2
5 Kislyakov model 997154 1
6 Khanin model 983770 2
7 Vysochina model 980454 1

8 Hüfner model 915478 1

Table 3. ODC-approximating functions with a physical content (results obtained with data array 3)

No. Model (equation) R2, ppm Number of constants

1 Adair model 999545 4
2 Bernard model 999489 2
3 Hill model 999303 2

4 Podrabinek–Kamenskii model 998690 2
5 Kislyakov model 997430 1
6 Vysochina model 980780 1
7 Khanin model 976261 2

8 Hüfner model 946291 1
and the Adair, Bernard, and Hill models, as already
mentioned above.

As for the power models, the cluster structure, leaf
positions, and the proportions and absolute values of
distances between models were similar to those in the
previous experiments (Figs. 2a, 2b). It should be noted
that the distances observed between the Adair and
Bernard models (56 points) and between the Adair
and Bernard models and the Hill model (186 points)
in the last experiment were lower than in the previous
experiments (63 and 89 points for the former distance
and 237 and 208 points for the latter distance). The
difference in distance is probably determined by the
difference in total point number: 1246 points (data
arrays 1 and 2) vs. 65 points (data array 3). Then, the
distance of 613 points might be even greater in the pre-
vious experiments if the Podrabinek–Kamenskii
model clustered together with the power models.

CONCLUSIONS
Based on the experimental results, the Koshland–

Némethy–Filmer model, which suggests a consecu-
tive four-step binding of the ligand by an oligomeric
protein, was found to best approximate the experi-
mental data on oxygen binding by hemoglobin.

Our approach to evaluating the efficiency of ODC
approximation can be used to solve similar problems,
that is, to evaluate mathematical models with a physi-
cal content. This will eventually help to improve the
efficiency of finding the most promising variants when
designing modern molecular models and to more effi-
ciently verify the templates, models, and schemes that
exist in the field. We note that the cooperative binding
of biologically active compounds with nucleic acids
[6] is also possible to analyze using this method. Mod-
els developed in the field overlap the above models to
a substantial extent [50, 51]. The basic mathematical
constructs used to describe the ligand binding with
biopolymers in this case include the Scatchard equa-
tions, which are designed to calculate the absorption
isotherms; the Sips equations, which describe the het-
erogeneous ligand binding; and the results of theoret-
ical studies by Tenford [41], Hill [54], Latt and Sober
[55], and Crothers [56], who developed an approach
to describing ligand absorption on linear polymers.
Zasedatelev and colleagues [57–63] and Lando, Teif,
and colleagues [64–66] also performed important
studies in the field and developed a modern approach
to describing the cooperative binding of extended
ligands to linear nucleic acid templates.

Our method to evaluate the efficiency of ODC
approximation can additionally be used to solve prob-
lems of this kind in biomedicine, chemistry, and phar-
macology.
BIOPHYSICS  Vol. 66  No. 6  2021
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